Устройство диагностики неисправности устройства очистки выхлопного газа

Иллюстрации

Показать все

Изобретение относится к области очистки отработавших газов двигателя внутреннего сгорания. Устройство диагностики неисправности включает в себя: устройство очистки выхлопного газа, расположенное в выхлопном канале двигателя внутреннего сгорания и включающее в себя катализатор селективного каталитического восстановления; устройство подачи, подающее добавку, такую как аммиак, устройству очистки выхлопного газа; устройство EGR, обеспечивающее рециркуляцию части выхлопного газа из выхлопного канала на нижней по потоку стороне положения подачи добавки во впускной канал; средство вычисления для вычисления количества притока NOx в устройство очистки выхлопного газа с использованием параметра, указывающего рабочее состояние двигателя внутреннего сгорания; средство диагностики для диагностики неисправности в устройстве очистки выхлопного газа с использованием вычисленного количества притока NOx в качестве параметра; и средство корректировки для корректировки в сторону увеличения вычисленного количества притока NOx в соответствии с количеством добавки, рециркулирующей вместе с выхлопным газом, когда часть выхлопного газа рециркулирует. При использовании изобретения предотвращается снижение точности диагностики неисправностей. 3 з.п. ф-лы, 6 ил.

Реферат

Область техники

Настоящее изобретение относится к технологии диагностики неисправности для устройства очистки выхлопного газа, обеспеченного в выхлопном канале двигателя внутреннего сгорания.

Уровень техники

Патентный документ 1 описывает конфигурацию, включающую в себя катализатор селективного каталитического восстановления (SCR), добавляющий клапан, который добавляет водный раствор мочевины в выхлопной газ, втекающий в катализатор SCR, и систему EGR (рециркуляции выхлопного газа) низкого давления, которая направляет часть выхлопного газа (газа EGR) из выхлопного канала на нижней по потоку стороне катализатора SCR во впускной канал.

Патентный документ 2 описывает конфигурацию, включающую в себя катализатор SCR, добавляющий клапан, который добавляет водный раствор мочевины в выхлопной газ, втекающий в катализатор SCR, и систему EGR низкого давления, которая направляет часть выхлопного газа из выхлопного канала на нижней по потоку стороне катализатора SCR во впускной канал. Патентный документ 2 также описывает технологию для уменьшения количества газа EGR при добавлении водного раствора мочевины из добавляющего клапана.

Патентный документ 3 описывает конфигурацию, включающую в себя катализатор SCR, добавляющий клапан, который добавляет водный раствор мочевины в выхлопной газ, втекающий в катализатор SCR, и систему EGR низкого давления, которая направляет часть выхлопного газа из выхлопного канала на нижней по потоку стороне катализатора SCR во впускной канал. Патентный документ 3 также описывает технологию подачи водного раствора мочевины из добавляющего клапана при рециркуляции газа EGR, когда необходимо нейтрализовать конденсированную воду, которая имеется в канале газа EGR низкого давления.

Патентный документ 4 описывает конфигурацию двигателя внутреннего сгорания с искровым зажиганием, включающего в себя устройство, которое подает аммиак во впускной канал и катализатор SCR, расположенный в выхлопном канале.

Патентные документы

Патентный документ 1: WO 2012/164713

Патентный документ 2: WO 2011/030433

Патентный документ 3: WO 2011/070647

Патентный документ 4: Выложенная заявка на патент Японии № 2010-159705

Задачи, на решение которых направлено изобретение

В качестве технологии обнаружения неисправности в устройстве очистки выхлопного газа, включающем в себя катализатор SCR и т.п., известна технология, в которой количество NOx, которое втекает в катализатор SCR (далее называемое «количество притока NOx»), и количество NOx, вытекающее из катализатора SCR (далее называемое «количество оттока NOx») используются в качестве параметров для вычисления отношения очищенного NOx (доля количества NOx, очищенного катализатором SCR, относительно количества притока NOx) катализатора SCR, и неисправность в устройстве очистки выхлопного газа диагностируется на основании отношения очищенного NOx.

Хотя количество притока NOx и количество оттока NOx могут быть вычислены на основании значений измерения датчика NOx, так как требуются два датчика NOx, возможность установки на транспортное средство может снижаться, или стоимость изготовления может увеличиваться. С учетом этого предложен способ, в котором только количество оттока NOx вычисляется с использованием датчика NOx, а количество притока NOx оценивается (вычисляется) на основании рабочего состояния двигателя внутреннего сгорания.

В транспортном средстве с установленной системой EGR низкого давления, как описано в вышеуказанных патентных документах 1-3, прекурсор аммиака, такой как водный раствор мочевины или аммиак, может быть введен в двигатель внутреннего сгорания системой EGR низкого давления. Когда прекурсор аммиака или аммиак сгорает в двигателе внутреннего сгорания, образуется NOx, например, монооксид азота (NO). В результате количество NOx, выпускаемое из двигателя внутреннего сгорания или, другими словами, количество притока NOx к катализатору SCR увеличивается. В таком случае, количество притока NOx, которое вычисляется на основании рабочего состояния двигателя внутреннего сгорания, становится меньше, чем фактическое количество притока NOx. С другой стороны, количество оттока NOx, которое вычисляется на основании значения измерения датчика NOx, имеет тенденцию проявлять немалое увеличение, так как фактическое количество притока NOx увеличивается. В связи с этим имеется возможность, что отношение очищенного NOx, которое вычисляется с использованием вычисленного значения количества притока NOx и измеренного значения количества оттока NOx в качестве параметров, может становиться меньше, чем фактическое отношение очищенного NOx, и ошибочная диагностика того, что в устройстве очистки выхлопного газа возникла неисправность, может быть выполнено, хотя неисправность в устройстве очистки выхлопного газа не возникала.

С учетом этого, способ запрета диагностики неисправности является возможным, когда газ EGR рециркулирует. Однако, когда рабочее состояние, в котором газ EGR рециркулирует, продолжается, имеется возможность, что диагностика неисправности не может быть выполнена, и неисправность в устройстве очистки выхлопного газа больше не может быть обнаружена предложенным образом.

Настоящее изобретение выполнено с учетом различных обстоятельств, описанных выше, и его задача с помощью устройства диагностики неисправности устройства очистки выхлопного газа, причем устройство диагностики неисправности включает в себя: устройство очистки выхлопного газа, которое включает в себя катализатор селективного каталитического восстановления; устройство подачи, которое подает аммиак или добавку, которая представляет собой прекурсор аммиака, устройству очистки выхлопного газа; устройство EGR, которое направляет часть выхлопного газа из выхлопного канала на нижней по потоку стороне положения подачи добавки во впускной канал; и средство диагностики, которое выполняет диагностику неисправности устройства очистки выхлопного газа с использованием вычисленного значения количества притока NOx в качестве параметра, заключается в том, чтобы предотвращать снижение точности диагностики неисправности, даже когда часть добавки вводится в двигатель внутреннего сгорания устройством EGR.

Средство для решения задач

Для решения задач, описанных ранее, настоящее изобретение обеспечивает устройство диагностики неисправности устройства очистки выхлопного газа, включающее в себя: устройство очистки выхлопного газа, которое размещено в выхлопном канале двигателя внутреннего сгорания, и которое включает в себя катализатор селективного каталитического восстановления; устройство подачи, которое подает добавку, которая представляет собой аммиак или прекурсор аммиака, устройству очистки выхлопного газа; устройство EGR, которое обеспечивает рециркуляцию части выхлопного газа из выхлопного канала на нижней по потоку стороне положения подачи добавки посредством устройства подачи во впускной канал; средство вычисления для вычисления количества притока NOx, которое представляет собой количество NOx, которое втекает в устройство очистки выхлопного газа, при использовании параметра, указывающего рабочее состояние двигателя внутреннего сгорания; и средство диагностики для диагностики неисправности в устройстве очистки выхлопного газа при использовании количества притока NOx, вычисленного средством вычисления в качестве параметра, причем количество притока NOx, вычисленное средством вычисления, корректируется в соответствии с количеством добавки, рециркулирующей вместе с выхлопным газом посредством устройства EGR.

В частности, устройство диагностики неисправности устройства очистки выхлопного газа согласно настоящему изобретению включает в себя:

устройство очистки выхлопного газа, которое размещено в выхлопном канале двигателя внутреннего сгорания, и которое включает в себя катализатор селективного каталитического восстановления;

устройство подачи, которое подает добавку, которая представляет собой аммиак или прекурсор аммиака, устройству очистки выхлопного газа;

устройство EGR, которое обеспечивает рециркуляцию части выхлопного газа из выхлопного канала на нижней по потоку стороне положения подачи добавки посредством устройства подачи во впускной канал;

средство вычисления для вычисления количества притока NOx, которое представляет собой количество NOx, которое втекает в устройство очистки выхлопного газа, при использовании параметра, указывающего рабочее состояние двигателя внутреннего сгорания;

средство диагностики для диагностики неисправности в устройстве очистки выхлопного газа с использованием количества притока NOx, вычисленного средством вычисления в качестве параметра; и

средство корректировки для корректировки в сторону увеличения количества притока NOx, вычисленного средством вычисления, в соответствии с количеством добавки, рециркулирующей вместе с выхлопным газом, когда часть выхлопного газа рециркулирует с помощью устройства EGR.

Когда часть выхлопного газа (газа EGR) рециркулирует с помощью устройства EGR, часть добавки, подаваемой из устройства подачи, возможно, может рециркулировать вместе с газом EGR. В таком случае, так как добавка сгорает в двигателе внутреннего сгорания, количество NOx, выпускаемое из двигателя внутреннего сгорания, увеличивается. В частности, когда добавка сгорает вместе с топливно-воздушной смесью в двигателе внутреннего сгорания, образуется монооксид азота (NO), когда аммиак (NH3) окисляется. В результате количество NOx, фактически выпущенное из двигателя внутреннего сгорания (количество NOx, которое фактически течет в устройство очистки выхлопного газа и далее называемое «фактическое количество притока NOx»), становится больше, чем количество притока NOx, вычисленное средством вычисления (далее называемое «вычисленное значение количества притока NOx»). Другими словами, вычисленное значение количества притока NOx становится меньше, чем фактическое количество притока NOx. В связи с этим, когда диагностика неисправности устройства очистки выхлопного газа выполняется с использованием вычисленного значения количества притока NOx в качестве параметра, точность диагностики, возможно, может снижаться.

Для сравнения, когда диагностика неисправности устройства очистки выхлопного газа выполняется в состоянии, в котором газ EGR сгорает в двигателе внутреннего сгорания, средство корректировки согласно настоящему изобретению корректирует вычисленное значение количества притока NOx в соответствии с количеством добавки, которая рециркулирует вместе с газом EGR. В частности, средство корректировки согласно настоящему изобретению корректирует в сторону увеличения вычисленное значение количества притока NOx так, что вычисленное значение количества притока NOx становится больше, когда количество добавки, рециркулирующей вместе с газом EGR, является большим, чем, когда количество добавки, рециркулирующей вместе с газом EGR, является небольшим. Когда вычисленное значение количества притока NOx корректируется таким образом, разница между вычисленным значением количества притока NOx и фактическим количеством притока NOx уменьшается. В связи с этим может быть предотвращено снижение точности диагностики, когда средство диагностики выполняет диагностику неисправности устройства очистки выхлопного газа с использованием вычисленного значения количества притока NOx после корректировки в качестве параметра.

В случае, когда устройство EGR выполнено с возможностью рециркуляции газа EGR из выхлопного канала на нижней по потоку стороне устройства очистки выхлопного газа во впускной канал, количество добавки, которая рециркулирует вместе с газом EGR, должно быть точно получено для того, чтобы увеличивать точность диагностики неисправности устройства очистки выхлопного газа. Количество добавки, которое рециркулирует вместе с газом EGR, может быть вычислено с использованием количества добавки, которое просачивается через устройство очистки выхлопного газа (далее называемое «просочившееся количество»), доли количества выхлопного газа, рециркулирующего в качестве газа EGR, относительно количества выхлопного газа, вытекающего из устройства очистки выхлопного газа (соответствующее отношению EGR), и периода времени, требуемого для части выхлопного газа, вытекающей из устройства очистки выхлопного газа, чтобы снова втекать в устройство очистки выхлопного газа через впускной канал и двигатель внутреннего сгорания (время запаздывания перемещения) в качестве параметров. В этом случае приблизительно все количество добавки, которое рециркулирует вместе с газом EGR, предположительно окисляется в двигателе внутреннего сгорания. В связи с этим прирост количества NOx, фактически выпущенного из двигателя внутреннего сгорания (разница между вычисленным значением количества притока NOx и фактическим количеством притока NOx) коррелирует с рециркулирующим количеством добавки, которое вычислено с использованием параметров, описанных выше. С учетом этого, средство корректировки может корректировать вычисленное значение количества притока NOx посредством способа, включающего в себя этапы, на которых вычисляют рециркулирующее количество добавки с использованием параметров, описанных выше, и прибавляют рециркулирующее количество добавки к вычисленному значению количества притока NOx в момент времени, когда время запаздывания перемещения истекло.

Просочившееся количество добавки может быть вычислено с использованием температуры катализатора селективного каталитического восстановления, расхода потока выхлопного газа, текущего через катализатор селективного каталитического восстановления, и количества аммиака, адсорбированного катализатором селективного каталитического восстановления в качестве параметров. Например, просочившееся количество добавки, когда температура катализатора селективного каталитического восстановления является высокой, больше, чем, когда температура катализатора селективного каталитического восстановления является низкой. Просочившееся количество добавки, когда расход потока выхлопного газа, текущего через катализатор селективного каталитического восстановления, является большим, больше, чем, когда расход потока выхлопного газа, текущего через катализатор селективного каталитического восстановления, является небольшим. Просочившееся количество добавки, когда количество аммиака, адсорбированного катализатором селективного каталитического восстановления, является большим, больше, чем, когда количество аммиака, адсорбированного катализатором селективного каталитического восстановления, является небольшими. С учетом этого, на основании этих тенденций график или функция, представляющая зависимость между температурой катализатора селективного каталитического восстановления, расходом потока выхлопного газа, текущего через катализатор селективного каталитического восстановления, количеством аммиака, адсорбированного катализатором селективного каталитического восстановления, и просочившимся количеством добавки, может быть получена заранее, и просочившееся количество добавки может быть получено на основании графика или функции.

В дополнение, время запаздывания перемещения может быть вычислено с использованием длины канала, проходимого частью выхлопного газа, вытекающего из устройства очистки выхлопного газа, до втекания снова в устройство очистки выхлопного газа через канал EGR, впускной канал и двигатель внутреннего сгорания, пропускной способности канала и скорости потока выхлопного газа (коррелирует с количеством впускаемого воздуха в единицу времени) в качестве параметров. Например, чем больше длина канала, тем больше время запаздывания перемещения. Чем больше пропускная способность канала, тем больше время запаздывания перемещения. Чем медленнее скорость потока выхлопного газа, тем больше время запаздывания перемещения. Более того, так как длина канала и пропускная способность канала представляют собой фиксированные значения, график или функция, представляющая зависимость между скоростью потока выхлопного газа и временем запаздывания перемещения, может быть получена заранее, и время запаздывания перемещения может быть получено на основании графика или функции.

Когда рециркулирующее количество восстановителя и время запаздывания перемещения получены способом, таким как способ, описанный выше, средство корректировки может корректировать вычисленное значение количества притока NOx путем прибавления рециркулирующего количества добавки к вычисленному значению количества притока NOx в момент времени, когда время запаздывания перемещения истекло. В дополнение, средство диагностики может диагностировать неисправность в устройстве очистки выхлопного газа на основании вычисленного значения количества притока NOx после корректировки. В результате может быть предотвращено снижение точности диагностики неисправности, даже когда часть добавки введена в двигатель внутреннего сгорания устройством EGR.

Далее, в случае, когда устройство EGR выполнено с возможностью обеспечения рециркуляции газа EGR из выхлопного канала на нижней по потоку стороне положения подачи добавки и на верхней по потоку стороне устройства очистки выхлопного газа во впускной канал, рециркулирующее количество добавки может быть вычислено с использованием отношения EGR и времени запаздывания перемещения в качестве параметров. С учетом этого, средство корректировки может вычислять рециркулирующее количество добавки с использованием отношения EGR и времени запаздывания перемещения в качестве параметров и корректировать количество притока NOx, вычисленное средством вычисления в соответствии с его результатом вычисления.

Устройство диагностики неисправности устройства очистки выхлопного газа согласно настоящему изобретению может дополнительно включать в себя средство изменения для изменения количества добавки, которое подается из устройства подачи в соответствии с корректирующим количеством, когда средство корректировки корректирует в сторону увеличения вычисленное значение количества притока NOx. В этом случае количество добавки, которое подается из устройства подачи, представляет собой количество в соответствии с фактическим количеством притока NOx. В результате количество NOx, не очищенное устройством очистки выхлопного газа, может быть уменьшено.

Эффект изобретения

Согласно настоящему изобретению в устройстве диагностики неисправности устройства очистки выхлопного газа, причем устройство диагностики неисправности включает в себя: устройство очистки выхлопного газа, которое включает в себя катализатор селективного каталитического восстановления; устройство подачи, которое подает добавку, которая представляет собой аммиак или прекурсор аммиака, устройству очистки выхлопного газа; устройство EGR, которое направляет часть выхлопного газа из выхлопного канала на нижней по потоку стороне положения подачи добавки во впускной канал; и средство диагностики, которое выполняет диагностику неисправности устройства очистки выхлопного газа с использованием вычисленного значения количества притока NOx в качестве параметра, может быть предотвращено снижение точности диагностики неисправности, даже когда часть добавки введена в двигатель внутреннего сгорания устройством EGR.

Краткое описание чертежей

Фиг. 1 представляет собой схему, показывающую схематическую конфигурацию двигателя внутреннего сгорания и его систему впуска и выхлопа, к которой применено настоящее изобретение;

Фиг. 2 представляет собой схему, показывающую зависимость между фактическим количеством притока NOx и отношением очищенного NOx;

Фиг. 3 представляет собой блок-схему, показывающую процедуру обработки, выполняемую посредством ЭБУ при корректировке вычисленного значения количества притока NOx;

Фиг. 4 представляет собой схему, показывающую зависимость между адсорбированным количеством аммиака катализатора SCR, температурой катализатора SCR и просочившимся количеством аммиака;

Фиг. 5 представляет собой схему, показывающую зависимость между расходом потока выхлопного газа, который проходит через катализатор SCR, температурой катализатора SCR и отношением очищенного NOx; и

Фиг. 6 представляет собой схему, показывающую другой пример конфигурации двигателя внутреннего сгорания и его системы впуска и выхлопа, к которой применено настоящее изобретение.

Способы осуществления изобретения

Далее конкретный вариант выполнения настоящего изобретения будет описан со ссылкой на чертежи. Должно быть понятно, что размеры, материалы, формы, относительные конструкции и т.п. компонентов, описанных в настоящем варианте выполнения, не предназначены для ограничения технического объема охраны изобретения кроме тех случаев, когда указано иное.

Фиг. 1 представляет собой схему, показывающую схематическую конфигурацию двигателя внутреннего сгорания и его систему впуска и выхлопа, к которой применено настоящее изобретение. Двигатель 1 внутреннего сгорания, показанный на Фиг. 1, представляет собой двигатель внутреннего сгорания с воспламенением от сжатия (дизельный двигатель), который использует дизельное топливо в качестве основного топлива, или двигатель внутреннего сгорания с искровым зажиганием (бензиновый двигатель), который использует бензин в качестве основного топлива.

Впускной канал 2 соединен с двигателем 1 внутреннего сгорания. Впускной канал 2 представляет собой канал для направления наружного воздуха (воздуха), взятого из атмосферы, в двигатель 1 внутреннего сгорания. Компрессор 30 центробежного нагнетателя (турбонагнетателя) 3 размещен на промежуточной части впускного канала 2. Впускной дроссельный клапан 4, который изменяет площадь сечения канала впускного канала 2, размещен во впускном канале 2 на верхней по потоку стороне компрессора 30.

Выхлопной канал 5 соединен с двигателем 1 внутреннего сгорания. Выхлопной канал 5 представляет собой канал для направления газа (выхлопного газа), сгоревшего внутри цилиндра двигателя 1 внутреннего сгорания, в устройство очистки выхлопного газа и т.п. Турбина 31 турбонагнетателя 3 размещена на промежуточной части выхлопного канала 5. Первый корпус 6 катализатора размещен в выхлопном канале 5 на нижней по потоку стороне турбины 31.

Первый корпус 6 катализатора вмещает сажевый фильтр, окислительный катализатор и т.п. внутри цилиндрического корпуса. Более того, первый корпус 6 катализатор может вмещать трехкомпонентный катализатор или катализатор для восстановления окклюдированных оксидов вместо окислительного катализатора. В этом случае трехкомпонентный катализатор или катализатор для восстановления окклюдированных оксидов может быть выполнен посредством сажевого фильтра.

Второй корпус 7 катализатора размещен в выхлопном канале 5 на нижней по потоку стороне первого корпуса 6 катализатора. Второй корпус 7 катализатора вмещает катализатор селективного каталитического восстановления (катализатор SCR), окислительный катализатор или т.п. внутри цилиндрического корпуса. Более того, второй корпус 7 катализатора может вмещать сажевый фильтр, удерживающий катализатор SCR. В этом случае первый корпус 6 катализатора может вмещать окислительный катализатор, или альтернативно окислительный катализатор может быть размещен внутри второго корпуса 7 катализатора без обеспечения первого корпуса 6 катализатора. Второй корпус 7 катализатора выполнен таким образом, чтобы соответствовать устройству очистки выхлопного газа согласно настоящему изобретению.

Добавляющий клапан 8 прикреплен к выхлопному каналу 5 между первым корпусом 6 катализатора и вторым корпусом 7 катализатора. Добавляющий клапан 8 представляет собой клапан впрыска для впрыска аммиака или добавки, которая представляет собой прекурсор аммиака, в выхлопной канал 5. В этом случае водный раствор мочевины, карбамат аммония или т.п. могут использоваться в качестве прекурсора аммиака, но в настоящем варианте выполнения использован водный раствор мочевины. Добавляющий клапан 8 соответствует устройству подачи согласно настоящему изобретению. Более того, когда первый корпус 6 катализатор вмещает трехкомпонентный катализатор или катализатор для восстановления окклюдированных оксидов, путем образования обогащенной атмосферы выхлопного газа, который втекает в первый корпус 6 катализатора, аммиак также может быть образован в трехкомпонентном катализаторе или катализаторе для восстановления окклюдированных оксидов.

Водный раствор мочевины, впрыскиваемый из добавляющего клапана 8 в выхлопной канал 5, втекает во второй корпус 7 катализатора вместе с выхлопным газом. В этот момент водный раствор мочевины пиролизуется теплом выхлопного газа или гидролизуется катализатором SCR. Когда водный раствор мочевины пиролизуется или гидролизуется, образуется аммиак (NH3). Аммиак (NH3), образованный таким образом, адсорбируется или сохраняется катализатором SCR. Аммиак (NH3), адсорбированный или сохраненный катализатором SCR, вступает в реакцию с оксидами азота (NOx), содержащимися в выхлопном газе, и образует азот (N2) и воду (H2O). Другими словами, аммиак (NH3) функционирует в качестве восстановителя оксидов азота (NOx).

Далее основной конец канала 90 EGR соединен с выхлопным каналом 5 на нижней по потоку стороне второго корпуса 7 катализатора. Завершающий конец канала 90 EGR соединен с впускным каналом 2 на нижней по потоку стороне впускного дроссельного клапана 4 и на верхней по потоку стороне компрессора 30. Канал 90 EGR представляет собой канал для направления части выхлопного газа (газа EGR) из выхлопного канала 5 во впускной канал 2.

Клапан 91 EGR и охладитель 92 EGR расположены посередине вдоль канала 90 EGR. Клапан 91 EGR представляет собой клапанный механизм, который изменяет площадь сечения канала канала 90 EGR, и который регулирует количество газа EGR, которое течет через канал 90 EGR. Охладитель 92 EGR представляет собой устройство, которое охлаждает газ EGR, текущий через канал 90 EGR, и может представлять собой, например, теплообменник, который вызывает обмен тепла между газом EGR и охлаждающей водой. Более того, канал 90 EGR, клапан 91 EGR и охладитель 92 EGR представляют собой элементы, образующие устройство 9 EGR.

ЭБУ 10 прилагается к двигателю 1 внутреннего сгорания, выполненному как описано выше. ЭБУ 10 представляет собой электронный блок управления, образованный ЦП, ПЗУ, ОЗУ, резервным ОЗУ и т.п. ЭБУ 10 электрически соединен с различными датчиками, включая измеритель 11 потока воздуха, датчик 12 NOx, датчик 13 положения акселератора и датчик 14 положения коленчатого вала.

Измеритель 11 потока воздуха размещен во впускном канале 2 на верхней по потоку стороне впускного дроссельного клапана 4 и выводит электрический сигнал, коррелированный с количеством (массой) воздуха, который течет через впускной канал 2. Датчик 12 NOx прикреплен к выхлопному каналу 5 на нижней по потоку стороне второго корпуса 7 катализатора и выводит электрический сигнал, коррелированный с концентрацией NOx в выхлопном газе, который вытекает из второго корпуса 7 катализатора. Датчик 13 положения акселератора выводит электрический сигнал, коррелированный с величиной работы (величиной нажатия акселератора) педали акселератора (не показана). Датчик 14 положения коленчатого вала выводит электрический сигнал, коррелированный с вращательным положением выходного вала (коленчатого вала) двигателя 1 внутреннего сгорания.

Более того, в дополнение к впускному дроссельному клапану 4, добавляющему клапану 8 и клапану 91 EGR, описанным выше, ЭБУ 10 электрически соединен различными устройствами, такими как клапан впрыска топлива (не показан). ЭБУ 10 электрически управляет различными устройствами, описанными выше, на основании выходных сигналов различных датчиков, описанных выше.

Например, ЭБУ 10 вычисляет нагрузку двигателя или скорость вращения двигателя на основании выходных сигналов от датчика 13 положения акселератора и датчика 14 положения коленчатого вала и управляет количеством впрыска топлива или моментом впрыска топлива в соответствии с его результатами вычисления. В дополнение, ЭБУ 10 диагностирует неисправность катализатора SCR с использованием количества NOx, которое втекает в катализатор SCR (количество притока NOx), размещенный во втором корпусе 7 катализатора, в качестве параметра.

Далее будет описан способ диагностики неисправности катализатора SCR. Сначала ЭБУ 10 вычисляет количество NOx, выпускаемое из двигателя 1 внутреннего сгорания (другими словами, количество NOx, которое течет в катализатор SCR второго корпуса 7 катализатора (количество притока NOx)) на основании параметра, указывающего рабочее состояние двигателя 1 внутреннего сгорания.

Количество NOx, выпускаемое из двигателя внутреннего сгорания или, другими словами, количество NOx, образуемое, когда топливно-воздушная смесь сгорает в двигателе 1 внутреннего сгорания, коррелирует с количеством кислорода, содержащимся в топливно-воздушной смеси, количеством топлива, содержащимся в топливно-воздушной смеси, моментом впрыска топлива и скоростью вращения двигателя. Количество кислорода, содержащееся в топливно-воздушной смеси, коррелирует с количеством впускаемого воздуха (выходным сигналом измерителя 11 потока воздуха). Количество топлива, содержащееся в топливно-воздушной смеси, коррелирует с количеством впрыска топлива. В связи с этим ЭБУ 10 может вычислять количество притока NOx с использованием выходного сигнала измерителя 11 потока воздуха, количества впрыска топлива, момента впрыска топлива и скорости вращения двигателя в качестве параметров. Более того, зависимость между различными параметрами, описанными выше, и количеством притока NOx может быть эмпирически получена и сохранена в ПЗУ ЭБУ 10 заранее в виде графика или функционального выражения. Средство получения согласно настоящему изобретению, выполненное в виде ЭБУ 10, вычисляет количество притока NOx, как описано выше.

ЭБУ 10 диагностирует неисправность катализатора SCR с использованием вычисленного значения количества притока NOx (вычисленное значение количества притока NOx) в качестве параметра. В качестве способа диагностики неисправности катализатора SCR с использованием вычисленного значения количества притока NOx в качестве параметра, например, способ, в котором отношение очищенного NOx, количество очищенного NOx или т.п. вычисляют с использованием вычисленного значения количества притока NOx в качестве параметра, и результат вычисления сравнивают с пороговым значением, может быть использован. Далее будет описан пример, в котором отношение очищенного NOx и пороговое значение сравнивают друг с другом. Отношение очищенного NOx в этом случае относится к доле количества NOx, очищенного катализатором SCR, относительно количества NOx, которое втекает в катализатор SCR, и может быть вычислено с помощью выражения (1), приведенного ниже.

Enox=(Anoxin-Anoxout)/Anoxin (1)

В выражении (1), приведенном выше, Enox обозначает отношение очищенного NOx. Anoxin обозначает количество притока NOx, и вычисленное значение количества притока NOx, вычисленное способом, описанным выше, сохранено в Anoxin. Anoxout обозначает количество оттока NOx, и значение, полученное умножением выходного сигнала (концентрации NOx) датчика 12 NOx на расход потока выхлопного газа в единицу время (сумма количества впускаемого воздуха в единицу времени и количества впрыска топлива в единицу времени), сохранено в Anoxout.

После того, как отношение Enox очищенного NOx вычислено с помощью выражения (1), приведенного выше, ЭБУ 10 определяет, является ли отношение Enox очищенного NOx равным или выше, чем пороговое значение. «Пороговое значение» в этом случае относится к минимальному отношению очищенного NOx или значению, полученному прибавлением запаса к минимальному отношению очищенного NOx, когда неисправность катализатора SCR не возникает. ЭБУ 10 определяет, что неисправность катализатора SCR не возникла, когда отношение Enox очищенного NOx равно или выше, чем пороговое значение. С другой стороны, определение того, что неисправность катализатора SCR возникла, выполняется, когда отношение Enox очищенного NOx ниже порогового значения. Средство диагностики согласно настоящему изобретению, выполненное в виде ЭБУ 10, выполняет обработку диагностики неисправности катализатора SCR, как описано выше, с использованием вычисленного значения количества притока NOx в качестве параметра.

Когда обработка диагностики неисправности катализатора SCR выполняется во время рециркуляции части выхлопного газа во впускной канал 2 из выхлопного канала 5, с помощью устройства 9 EGR, или, конкретнее, во время перетекания части выхлопного газа (газа EGR), рециркулирующего с помощью устройства 9 EGR, в катализатор SCR, имеется возможность того, что будет выполнена ошибочная диагностика.

Когда часть аммиака, просачивается через катализатор SCR, когда газ EGR рециркулирует, часть аммиака всасывается в двигатель 1 внутреннего сгорания вместе с газом EGR. Аммиак, всасываемый в двигатель 1 внутреннего сгорания, сгорает вместе с топливно-воздушной смесью. В этом случае, так как аммиак вступает в контакт с кислородом при высокой температуре, аммиак окисляется, и образуется NOx, например, монооксид азота (NO). В результате, когда аммиак всасывается в двигатель 1 внутреннего сгорания вместе с газом EGR, количество NOx, выпускаемое из двигателя 1 внутреннего сгорания, увеличивается по сравнению с тем, когда аммиак не всасывается в двигатель 1 внутреннего сгорания.

Когда количество NOx, выпускаемое из двигателя 1 внутреннего сгорания, увеличивается по причине, описанной выше, возникает погрешность между вычисленным значением количества притока NOx и фактическим количеством притока NOx. В дополнение, когда фактическое количество притока NOx увеличивается, количество NOx, не очищенного катализатором SCR, может увеличиваться, и количество оттока NOx может увеличиваться. В частности, когда количество водного раствора мочевины, впрыскиваемое из добавляющего клапана 8, регулируется на основании вычисленного значения количества притока NOx, так как количество водного раствора мочевины, впрыскиваемое из добавляющего клапана 8, становится меньше, чем количество, подходящее для фактического количества притока NOx, количество оттока NOx увеличивается. В результате, как показано на Фиг. 2, даже когда неисправность катализатора SCR не возникает, отношение Enox очищенного NOx, которое вычислено с помощью выражения (1), приведенного выше, может опускаться ниже порогового значения. Более того, сплошная линия на Фиг. 2 обозначает отношение очищенного NOx, которое вычислено с использованием фактического количества притока NOx в качестве параметра, а штрихпунктирная линия на Фиг. 2 обозначает отношение очищенного NOx, которое вычислено с использованием вычисленного значения количества притока NOx в качестве параметра. В дополнение, точечная линия на Фиг. 2 обозначает пороговое значение.

В дополнение, в способе сравнения количества очищенного NOx катализатора SCR с пороговым значением количество очищенного NOx катализатора SCR могут вычислять путем вычитания количества оттока NOx из вычисленного значения количества притока NOx. В этом случае, когда вычисленное значение количества притока NOx меньше, чем фактическое количество притока NOx, вычисленное значение количества очищенного NOx становится меньше, чем фактическое количество очищенного NOx. В результате, вычисленное значение количества очи