Способ восстановления рабочей поверхности стенок кристаллизатора
Изобретение относится к области металлургии и может быть использовано при восстановлении рабочей поверхности стенок кристаллизатора без его разборки. Способ включает очистку рабочей поверхности стенок кристаллизатора, дробеструйную обработку изношенных участков, примыкающих к углам кристаллизатора и расположенных в нижней части рабочих поверхностей стенок, изготовленных из меди или ее сплавов, и высокоскоростное газопламенное напыление на них жаропрочного износостойкого покрытия в виде механически активированного порошка cBN-Ni3Al-Si-C-Co-Y при следующем соотношении компонентов, мас.%: cBN 21-34, Ni3Al 37-40, Si 9-12, С 3-5, Со12-15,Y 5-7, начиная с глубины износа не менее 250-450 мкм, толщиной, не превышающей величину износа. Высокоскоростное газопламенное напыление упомянутого покрытия осуществляется в защитной среде аргона на слой NiAl толщиной 100-150 мкм, обладающий эффектом памяти формы, нанесенный на изношенные стенки катализатора. Изобретение позволяет проводить операцию восстановления без разборки кристаллизатора, а также повысить износостойкость покрытия и адгезию покрытия к рабочей поверхности кристаллизатора. 1 з.п. ф-лы, 3 пр.
Реферат
Изобретение относится к области металлургии и может быть использовано при восстановлении рабочей поверхности стенок кристаллизатора без его разборки.
Известны следующие способы восстановления стенок катализатора.
Способ восстановления рабочей поверхности нижней части стенок кристаллизатора, изготовленных из меди и ее сплавов, без его разборки включает насечку глубиной до 0,5 мм рабочей поверхности с глубиной износа не менее 1,0 мм. Затем проводят дробеструйную обработку рабочей поверхности с глубиной износа не менее 0,5 мм. На обработанную рабочую поверхность газотермическим напылением наносят подслой из термореагирующего материала толщиной 0,1-0,2 мм и рабочий слой из износостойкого материала. При этом глубина остаточного износа составляет не менее 0,5 мм (патент РФ №2286228).
Способ восстановления рабочих стенок кристаллизатора без его разборки, включающий дробеструйную обработку изношенных участков, примыкающих к углам кристаллизатора и расположенных в нижней части рабочих поверхностей стенок, изготовленных из меди или ее сплавов, и газотермическое напыление на них износостойкого покрытия на основе медно-никелевых сплавов (патент РФ №2119404).
Недостатком данных способов является низкая прочность сцепления покрытий с основой и износостойкость покрытий.
Наиболее близким является способ восстановления рабочих стенок кристаллизатора без его разборки, включающий дробеструйную обработку изношенных участков, примыкающих к углам кристаллизатора и расположенных в нижней части рабочих поверхностей стенок, изготовленных из меди или ее сплавов, и газотермическое напыление на них износостойкого покрытия на основе медно-никелевых сплавов, напыление покрытия осуществляют, начиная с глубины износа не менее 0,5-0,6 мм, толщиной, не превышающей глубину износа. После напыления покрытия на него наносят жаростойкую смазку. Покрытие напыляют толщиной, меньшей глубины износа не менее чем на 0,5-0,6 мм (патент РФ №2186654).
Однако данный способ отличается невысокой стойкостью покрытия из-за недостаточной прочности сцепления его с рабочей поверхностью стенок кристаллизатора.
Задачей изобретения является совершенствование способа восстановления рабочей поверхности стенок кристаллизатора без его разборки.
Техническим результатом является повышение износостойкости, адгезии покрытия к рабочей поверхности кристаллизатора.
Технический результат достигается предложенным способом восстановления рабочей поверхности стенок кристаллизатора, включающим очистку рабочей поверхности стенок кристаллизатора, дробеструйную обработку изношенных участков, примыкающих к углам кристаллизатора и расположенных в нижней части рабочих поверхностей стенок, изготовленных из меди или ее сплавов, и высокоскоростное газопламенное напыление на них жаропрочного износостойкого покрытия в виде механически активированного порошка cBN-Ni3Al-Si-C-Co-Y при следующем соотношении компонентов, масс. %:
cBN | 21-34 |
Ni3Al | 37-40 |
Si | 9-12 |
С | 3-5 |
Co | 12-15 |
Y | 5-7, |
начиная с глубины износа не менее 250-450 мкм, толщиной, не превышающей величину износа.
Высокоскоростное газопламенное напыление механически активированного порошка cBN-Ni3Al-Si-C-Co-Y осуществляется в защитной среде аргона на слой NiAl толщиной 100-150 мкм, обладающий эффектом памяти формы, нанесенный на изношенные стенки катализатора.
В процессе высокоскоростного газопламенного напыления механически активированных порошков происходит выделение энергии, накопленной в процессе механической активации, что обеспечивает более надежную адгезию и повышенные прочностные свойства многослойного композита, а высокая скорость напыления обеспечивает формирование наноразмерной структуры. Указанная последовательность напыления порошков при формировании композита «слой из материала с эффектом памяти формы - упрочняющий слой» обеспечивает увеличение его жаропрочности, а слой из материала с эффектом памяти формы блокирует или замедляет распространение дефектов в процессе эксплуатации, что способствует повышению долговечности и прочностных свойств.
Способ реализуется следующим образом. Проводят очистку рабочей поверхности стенок кристаллизатора, дробеструйную обработку изношенных участков, примыкающих к углам кристаллизатора и расположенных в нижней части рабочих поверхностей стенок, изготовленных из меди или ее сплавов. Затем на изношенные стенки катализатора наносят слой NiAl толщиной 100-150 мкм, обладающий эффектом памяти формы. Далее в защитной среде аргона на слой NiAl осуществляют высокоскоростное газопламенное напыление жаропрочного износостойкого покрытия в виде механически активированного порошка cBN-Ni3Al-Si-C-Co-Y, начиная с глубины износа не менее 250-450 мкм, толщиной, не превышающей величину износа.
Примеры конкретного выполнения
Пример 1. Способ восстановления рабочей поверхности стенок кристаллизатора осуществляют по технологии, описанной выше, при следующем соотношении компонентов механически активированного порошка cBN-Ni3Al-Si-C-Co-Y, масс. %:
cBN | 21 |
Ni3Al | 40 |
Si | 12 |
C | 5 |
Co | 15 |
Y | 7 |
Пример 2. Способ восстановления рабочей поверхности стенок кристаллизатора осуществляют по технологии, описанной выше, при следующем соотношении компонентов механически активированного порошка cBN-Ni3Al-Si-C-Co-Y, масс. %:
cBN | 29 |
Ni3Al | 38 |
Si | 10 |
С | 4 |
Co | 13 |
Y | 5 |
Пример 3. Способ восстановления рабочей поверхности стенок кристаллизатора осуществляют по технологии, описанной выше, при следующем соотношении компонентов механически активированного порошка cBN-Ni3Al-Si-C-Co-Y, масс. %:
cBN | 34 |
Ni3Al | 37 |
Si | 9 |
С | 3 |
Со | 12 |
Y | 5 |
1. Способ восстановления рабочей поверхности стенок кристаллизатора, включающий очистку рабочей поверхности стенок кристаллизатора, дробеструйную обработку изношенных участков, примыкающих к углам кристаллизатора и расположенных в нижней части рабочих поверхностей стенок, изготовленных из меди или ее сплавов, и высокоскоростное газопламенное напыление активированного порошка cBN-Ni3Al-Si-C-Co-Y с формированием на них жаропрочного износостойкого покрытия при следующем соотношении компонентов, мас.%:
cBN | 21-34 |
Ni3Al | 37-40 |
Si | 9-12 |
С | 3-5 |
Со | 12-15 |
Y | 5-7, |
начиная с глубины износа не менее 250-450 мкм, толщиной, не превышающей величину износа.
2. Способ по п. 1, отличающийся тем, что высокоскоростное газопламенное напыление механически активированного порошка cBN-Ni3Al-Si-C-Co-Y осуществляют в защитной среде аргона на слой NiAl толщиной 100-150 мкм, обладающий эффектом памяти формы, нанесенный на изношенные стенки катализатора.