Усовершенствованные иммобилизованные биологические объекты

Иллюстрации

Показать все

Группа изобретений относится к медицине. Описано устройство, имеющее поверхность, содержащую слоистое покрытие, в котором внешний слой покрытия содержит множество молекул катионного сверхразветвленного полимера, характеризующихся (i) наличием центрального фрагмента с молекулярной массой 14-1,000 Да, (ii) общей молекулярной массой 1,500-1,000,000 Да, (iii) отношением общей молекулярной массы к молекулярной массе центрального фрагмента по меньшей мере 80:1; и (iv) наличием концевых функциональных групп, где одна или несколько из указанных концевых функциональных групп ковалентно связаны с антикоагулянтным объектом. Устройство включает материал, который обладает большей стабильностью во времени. 5 н. и 16 з.п. ф-лы, 10 ил., 3 табл., 11 пр.

Реферат

Настоящее изобретение относится к иммобилизованным биологическим объектам, к устройствам, имеющим на поверхности покрытие, содержащее в себе такие биологические объекты; а также к способам и промежуточным продуктам, используемым для их получения. В частности, настоящее изобретение относится к иммобилизованным антикоагулянтным объектам, таким как гепарин, а также к устройствам, например медицинским, аналитическим и разделяющим устройствам, имеющим на поверхности покрытия, содержащие иммобилизованный гепарин.

Уровень техники

Когда медицинское устройство помещают в организм или приводят в контакт с жидкостями организма, запускается ряд различных реакций, некоторые из которых приводят к коагуляции крови, контактирующей с поверхностью такого устройства. Для противодействия этому серьезному побочному эффекту перед помещением медицинского устройства в организм пациента или перед приведением устройства в контакт с жидкостями организма системно вводят хорошо известное антикоагулянтное соединение гепарин, обеспечивающее антитромботический эффект.

Тромбин является одним из нескольких факторов коагуляции, которые вместе обеспечивают образование тромбов на поверхности, контактирующей с кровью. Антитромбин (также известный как антитромбин III («AT» или «ATIN»)) является наиболее известным ингибитором коагуляции. Он нейтрализует действие тромбина и других факторов коагуляции, и таким образом ограничивает или прекращает коагуляцию крови. Гепарин резко повышает скорость, с которой антитромбин ингибирует факторы коагуляции.

Однако системная терапия высокими дозами гепарина часто связана с серьезными побочными эффектами, среди которых преобладают кровотечения. Другим редким, но серьезным осложнением гепариновой терапии является развитие иммунологического ответа, называемого гепарин-индуцированной тромбоцитопенией (ГИТ), которая может привести к тромбозу (как к венозному, так и к артериальному). Системное введение высоких доз гепарина, например, во время операции, также требует частого мониторинга активированного времени свертывания (используемого для контроля и управления гепариновой терапией), и соответствующих изменений дозировки, если они необходимы.

Таким образом, желательно иметь решения, при которых системное введение гепарина пациенту является необязательным или может быть ограничено. Предполагается, что этого можно добиться путем модификации поверхности медицинских устройств с использованием антикоагулянтных свойств гепарина. Таким образом, был разработан ряд более или менее успешных методик, где на поверхность медицинского устройства наносился слой гепарина, обеспечивающий нетромбообразующие свойства поверхности. Для устройств, в которых необходима долговременная биологическая активность, слой гепарина предпочтительно является устойчивым к вымыванию и деградации.

Гепарин является полисахаридом, несущим отрицательно заряженные группы сульфатов и карбоновых кислот на сахаридных единицах. Предпринимались попытки ионного связывания гепарина с поликатионными поверхностями, но такие модификации поверхности имеют тенденцию к потере стабильности со временем, что приводит к исчезновению нетромбообразующей функции в результате вымывания гепарина с поверхности.

Затем исследовались различные модификации поверхности, в которых гепарин ковалентно связывался с группами на поверхности.

Одним из наиболее успешных способов получения нетромбообразующего медицинского устройства является ковалентное связывание фрагмента гепарина с модифицированной поверхностью устройства. Общий способ и его усовершенствования раскрыты в Европейских патентах EP-B-0086186, EP-B-0086187, EP-B-0495820, а также в US 6,461,665.

В этих патентах описывается получение субстратов с модифицированной поверхностью путем первоначального избирательного расщепления полисахаридной цепи гепарина, например с использованием азотистой кислоты, приводящего к формированию концевых альдегидных групп. После этого на поверхность медицинского устройства вводят один или несколько слоев, модифицирующих поверхность и несущих первичные аминогруппы, и затем осуществляют реакцию альдегидных групп полисахаридной цепи с аминогруппами на модифицирующих поверхность слоях с последующим восстановлением промежуточных оснований Шиффа с получением стабильных вторичных аминогрупп.

Известны и другие способы модификации поверхностей. Например, в US 2005/0059068 описывается субстрат, предназначенный для использования в микроанализах. Активированный полиаминовый дендример ковалентно связан с поверхностью субстрата через силансодержащие группы. Дендример имеет точки ветвления, которые являются третичными аминами, и концевые остатки, которые являются NH2, OH, COOH или SH группами. Молекулы, содержащие функциональные группы OH или NH2, могут быть связаны с дендримером через концевые остатки дендримера. Поскольку субстрат предназначен для применения в микроанализах, он обычно имеет форму ровной поверхности, бусин, луночного планшета, мембраны и т.д., а компонент, содержащий OH или NH2 группу, является нуклеиновой кислотой, белком или пептидом.

В WO 03/057270 описывается устройство, например контактные линзы, с гладким покрытием, обладающим высокой поверхностной гидрофильностью. Приведен ряд примеров покрывающих материалов, включающий гликозаминогликаны (например, гепарин или хондроитинсульфат) и ПАМАМ (полиамидоаминовые) дендримеры. ПАМАМ дендримеры являются наиболее предпочтительными покрытиями. В этом документе в качестве примера приведены контактные линзы, содержащие множество слоев из ПАМАМ дендримера и сополимера полиакриламид-полиакриловая кислота (сополимер ПААм-ПАА). Покрытия формируют путем последовательного погружения контактных линз в растворы двух покровных материалов, причем ПААм-со-ПАА является внешним слоем.

В US 2003/0135195 описывается медицинское устройство, такое как катетер, с гидрофильной оболочкой высокой гладкости, полученной из смеси коллоидного алифатического полиуретанового полимера, водного раствора поли(1-винилпирролидон-со-2-диметиламиноэтилметакрилат)-ПВП и дендримеров. Этот документ раскрывает, что покрытие можно нанести на устройство путем погружения устройства в коллоидную дисперсию алифатического полиуретанового полимера в растворе поли(1-винилпирролидон-со-2-диметиламиноэтилметакрилат)-ПВП и активного агента (например, гепарина) в смеси дендримера, воды, N-метил-2-пирролидона и триэтиламина. В этом документе раскрыто, что гепарин может содержаться в полостях внутри дендримера. Также раскрыто, что содержащийся гепарин элюируется из гидрофильного полимерного матрикса с заданной скоростью.

В US 2009/0274737 описываются имплантаты, такие как стенты, имеющие гидрофильную поверхность с углом смачивания ≤80°. Один, два или более антикоагулянтных ингредиентов могут быть перманентно связаны с такой поверхностью, и примеры антикоагулянтов включают гепарин и некоторые дендримеры, особенно сульфатированные дендримеры. Поверхность может быть функционализирована для связывания антикоагулянта, и примерами функционализации является силанизация и реакция с 1,1'-карбонилдиимидазолом (КДИ).

Документ US 4,944,767 относится к полимерному материалу, способному адсорбировать высокие количества гепарина. Материал является блок-сополимером, в котором полиуретановые цепи соединяются с полиамидоаминовыми цепями.

Более ранняя заявка авторов настоящего изобретения, WO 2010/029189, относится к медицинскому устройству, имеющему покрытие с антикоагулянтными молекулами, такими как гепарин, ковалентно присоединенными через 1,2,3-триазольный линкер. Указанный документ описывает азидную или алкиновую функционализацию полиамина; получение гепарина с алкиновой или азидной функциональной группой (как нативного, так и деполимеризованного под действием азотистой кислоты); а также реакцию связывания модифицированного гепарина с модифицированным полимером через 1,2,3-триазольный линкер.

Продукт, описанный в WO 2010/029189, имеет много преимуществ, однако авторы изобретения попытались разработать усовершенствованный материал, в котором биодоступность гепарина или другой прикрепленной антикоагулянтной молекулы была бы повышена, и который обладал бы большей стабильностью во времени, и который можно было бы получать надежным способом, обеспечивающим стабильное получение целевого продукта.

Гепарины способны связывать широкий ряд биомолекул, включая ферменты, ингибиторы сериновых протеиназ (такие как антитромбин), факторы роста и белки экстрацеллюлярного матрикса, ферменты модификации ДНК и рецепторы гормонов. При использовании в хроматографии гепарин является не только аффинным лигандом, но также ионообменником с высокой плотностью заряда. Таким образом, биомолекулы можно специфически и обратимо адсорбировать гепаринами, иммобилизованными на нерастворимом носителе. Таким образом, иммобилизованные гепарины имеют ряд полезных немедицинских областей применения, в частности при анализе и разделении.

Раскрытие изобретения

В соответствии с настоящим изобретении, описываются, среди прочего: устройство, имеющее поверхность, содержащую слоистое покрытие, в котором внешний слой покрытия содержит множество молекул катионного сверхразветвленного полимера, характеризующегося (i) наличием центрального фрагмента с молекулярной массой 14-1,000 Да; (ii) общей молекулярной массой 1,500-1,000,000 Да; (iii) отношением общей молекулярной массы к молекулярной массе центрального фрагмента по меньшей мере 80:1 (например, по меньшей мере 100:1); и (iv) наличием функциональных концевых групп, где одна или несколько указанных концевых групп содержат антикоагулянтные объекты, ковалентно присоединенные к этим группам.

Краткое описание чертежей

Фиг.1 является схематической двумерной иллюстрацией различных типов сверхразветвленных полимеров, в которых A представляет собой полимер, имеющий (теоретически) точки ветвления в каждой мономерной единице; B представляет собой разветвленный полимер с линейным остовом и прикрепленными к нему разветвленными клиньями, называемыми дендронами; C представляет собой полимер с точками ветвления, встроенными в линейные сегменты; a D представляет собой дендример.

Фиг.2 является двумерной иллюстрацией примера ПАМАМ дендримера, имеющего 3 генерации (в трехмерном виде структура является примерно сферической).

Фиг.3 является схематической двумерной иллюстрацией примера дендримера второго генерации, в котором центральная часть содержит три реакционно-способных функциональных группы, все из которых являются замещенными; первый слой имеет шесть реакционно-способных функциональных групп, все из которых являются замещенными; а второй слой имеет двенадцать реакционно-способных функциональных групп. Такой дендример в трехмерном виде имеет по существу сферическую форму.

Фиг.4 показывает, как первая функциональная группа гепаринового компонента (или другого антикоагулянтного объекта) может реагировать со второй функциональной группой, которая является концевой группой дендримера или другого сверхразветвленного полимера.

Фиг.5 показывает, как несколько дендримеров или других сверхразветвленных полимеров могут быть поперечно сшиты друг с другом перед функционализацией гепарином или другим антикоагулянтным объектом.

Фиг.6 показывает, как несколько дендримеров или других сверхразветвленных полимеров, функционализированных гепарином или другим антикоагулянтным объектом, могут быть поперечно сшиты друг с другом.

Фиг.7 является схематической иллюстрацией компонентов изобретения. Показано, как несущие антикоагулянтные объекты сверхразветвленные полимеры во внешнем слое покрытия взаимодействуют (посредством ковалентных связей и/или ионных взаимодействий) с нижележащими и другими сверхразветвленными полимерами во внешнем слое покрытия.

Фиг.8 показывает процент тромбоцитов, остающихся в крови после контакта с различными нетромбообразующими покрытиями (см. Пример 6).

Фиг.9 показывает пример окраски толуидиновым синим ПВХ трубки до и после нанесения гепаринсодержащего покрытия по настоящему изобретению (см. Пример 3.2 и Пример 6.3). На фиг.9: часть A - до нанесения; часть B - после.

На Фиг.10 показан процент тромбоцитов, остающихся в крови после контакта с различными нетромбообразующими оболочками (См. Пример 11).

Подробное описание изобретения

Антикоагулянтные объекты

Антикоагулянтными объектами являются объекты, способные взаимодействовать с кровью млекопитающих так, чтобы предотвращать коагуляцию или образование тромба.

Антикоагулянтные объекты хорошо известны специалистам в данной области техники, и многие из них являются олигосахаридами или полисахаридами. Некоторые из этих объектов являются гликозаминогликанами, включающими соединения, содержащие глюкозамин, галактозамин и/или уроновую кислоту. Среди них наиболее подходящими гликозаминогликанами являются «гепариновые объекты», и особенно гепарин полной длины (т.е. нативный гепарин).

Термин «гепариновый компонент» относится к гепариновой молекуле, фрагменту гепариновой молекулы или производному гепарина или аналогу гепарина. Производные гепарина могут соответствовать любому функциональному или структурному варианту гепарина. Иллюстративные вариации включают соли гепарина и щелочного металла или щелочноземельного металла, такие как гепарин натрия (например, Гепсал или Пуларин), гепарин калия (например, Кларин), гепарин лития, гепарин кальция (например, Кальципарин), гепарин магния (например, Кутепарин), и гепарин с низкой молекулярной массой (например, полученный путем окислительной деполимеризации или деаминирующего расщепления, например Ардепарин натрия или Далтепарин). Другие примеры включают гепаран-сульфат, гепариноиды, соединения на основе гепарина и гепарин, содержащий гидрофобный противоион. Другие желательные антикоагулянтные объекты включают синтетические гепариновые композиции, обозначаемые как композиции «фондапаринукса» (например, Arixtra от GlaxoSmithKline), подразумевающие антитромбин-опосредованное ингибирование фактора Xa. Дополнительные производные гепарина включают гепарины и гепариновые компоненты, модифицированные в результате, например, умеренной деградации под действием азотистой кислоты (US 4,613,665) или периодатного окисления (US 6,653,457), а также других модифицирующих реакций, известных в данной области техники, в результате которых сохраняется биоактивность гепаринового компонента.

Термин гепариновые компоненты также включает случаи, когда такие компоненты связаны с линкером или спейсером, как описано ниже. Десульфатированный гепарин или гепарин, функционализированный, например, по карбоксильной группе фрагмента уроновой кислоты, менее пригоден, чем другие формы гепарина, поскольку у него в целом снижены антикоагулянтные свойства по сравнению с другими формами гепарина. Монофункционализированные карбоновые кислоты, или карбоновые кислоты с низкой степенью функционализации, могут быть пригодными для настоящего изобретения, если у них сохраняется биоактивность гепарина.

Соответственно, каждый антикоагулянтный объект в какой-то одной точке прикреплен к молекуле сверхразветвленного полимера, в частности прикреплен к ней концевой группой. Прикрепление осуществляется через функциональные концевые группы на молекуле сверхразветвленного полимера, как обсуждается далее. Когда антикоагулянтный объект является прикрепленным в одной точке гепариновым компонентом, он, соответственно, присоединен к молекуле сверхразветвленного полимера через восстанавливающий конец (иногда обозначаемый как положение C1 восстанавливающего конца). Преимущество прикрепления по концевой группе, а особенно прикрепления к восстанавливающей концевой группе, состоит в том, что биологическая активность антикоагулянтного объекта (например, гепаринового компонента) оказывается максимальной, благодаря повышенной доступности участков взаимодействия с антитромбином, по сравнению с прикреплением где-либо в другом месте антикоагулянтного объекта (например, гепаринового компонента).

Когда используется несколько антикоагулянтных объектов, например гепариновых компонентов, все или некоторые из них могут относиться к различным типам; однако обычно они относятся к одному типу.

Антикоагулянтные объекты обычно являются анионными (как в случае гепариновых компонентов).

Можно также рассматривать возможность использования и других антикоагулянтных объектов, таких как гирудин, кумадины (антагонисты витамина K класса 4-гидроксикумаринов, такие как варфарин), антитромбоцитарные лекарственные средства (такие как клопидогрел и абциксимаб), аргатробан, тромбомодулин или антикоагулянтные белки (такие как протеины C, S или антитромбин). Антикоагулянтные объекты могут также включать ферменты, такие как апираза. Такие вещества могут быть заряженными (например, анионными) или незаряженными. Метод их присоединения к сверхразветвленному полимеру с сохранением биоактивности может быть разработан любым специалистом в данной области техники.

Сверхразветвленные полимеры

Примеры различных типов сверхразветвленных полимеров схематически показаны на Фиг.1, типы A-D. На фиг.1A обозначает полимер, теоретически обладающий точками ветвления в каждой мономерной единице; B представляет собой разветвленный полимер с линейным остовом и присоединенными к нему разветвленными клиньями, называемыми дендронами; C представляет собой полимер с точками ветвления, встроенными в линейные сегменты; a D представляет собой дендример. Эти полимеры являются примерами сверхразветвленных полимеров, подходящих для осуществления настоящего изобретения, если центральный сегмент является достаточно малым по отношению к общему размеру молекулы.

Термин «молекула сверхразветвленного полимера» хорошо известен в данной области техники и относится к молекуле, имеющей трехмерную структуру, подобную дереву, исходящему из центрального фрагмента, обычно располагающегося в середине. В контексте настоящего изобретения этот термин также включает дендримеры, которые хорошо известны и являются сверхразветвленными полимерными молекулами, в которых степень ветвления составляет 100% (иногда обозначаются как «полностью разветвленные», т.е. 100% функциональных групп, способных разветвляться, являются разветвленными), и которые, таким образом, являются высоко симметричными по отношению к центральной части.

Сверхразветвленные полимеры состоят из трех основных структурных компонентов: (i) центральной части, (ii) внутренней части и (iii) функциональных концевых групп. Центральная часть располагается в центре молекулы, и к ней присоединяются разветвленные клинья, называемые дендронами. Дендроны могут быть полностью разветвленными, или менее чем полностью разветвленными.

Центральная часть молекулы сверхразветвленного полимера является полифункциональной (с несколькими функциональностями одного и того же типа, или с несколькими функциональностями разных типов), и количество несомых ею функциональных групп определяет количество ветвей, которые можно иметь молекула. Обычно все функциональные группы центральной части используются при разветвлении. Аналогичным образом, форма молекулы сверхразветвленного полимера определяется формой центральной части: по существу тетраэдрические центральные части дают начало по существу сферическим молекулам сверхразветвленных полимеров, а более удлиненные центральные части дают начало яйцевидным или палочковидным молекулам сверхразветвленных полимеров.

В настоящем изобретении центральный фрагмент может быть относительно небольшим по сравнению с общим размером полимера, имеющего молекулярную массу от 14 до 1,000 Да, обычно от 40 до 300 Да, например от 50 до 130 Да.

Дендримеры являются полностью разветвленными молекулами, в которых степень ветвления составляет 100%. Таким образом, их структура является высоко упорядоченной, и для такого исходного материала единственной переменной является число слоев или генераций дендримера. Генерации условно нумеруются по направлению вовне от центральной части. См., например, Таблицы 2-4 ниже. Фиг.2 иллюстрирует третью генерацию дендримера, а Фиг.3 иллюстрирует вторую генерацию дендримера. Благодаря высоко согласованной и симметричной структуре, распределение по молекулярной массе для дендримеров данной генерации является крайне узким, что является особенно предпочтительным, поскольку обеспечивает высокооднородный по свойствам продукт.

Тем не менее, другие сверхразветвленные молекулы также содержат большое количество ветвей, например степень ветвления обычно составляет по меньшей мере 30%, 40% или 50%, например по меньшей мере 60%, 70%, 80% или 90%. В отличие от дендримеров, структура таких сверхразветвленных молекул не вполне регулярна, но они также могут принимать в целом глобулярную структуру.

Обычно центральный фрагмент не идентичен повторяющейся единице(ам) полимера. Однако в одном из вариантов осуществления изобретения центральная часть является компонентом того же самого типа, что и повторяющаяся единица (или одна из повторяющихся единиц) полимера.

Молекулы сверхразветвленного полимера обычно готовят либо с помощью дивергентного метода, в рамках которого слои выстраивают от центральной части, или с помощью конвергентного метода, в котором фрагменты сначала выстраивают, строят, а затем конденсируют. Дендримеры обычно получают с помощью дивергентного метода.

В синтезе дендримеров необходима высокая степень контроля над реакцией добавления каждой новой единицы ветвления, и полученные продукты характеризуются индексом полидисперсности (ИПД) от 1,00 до 1,05. Размер дендрона зависит от числа мономерных слоев, и каждый добавленный слой представляет собой генерацию (G). Внутренняя часть состоит из разветвленных мономеров, которые имеют функциональность ABx, где x≥2. Тщательная подготовка единиц ветвления делает возможным контроль реакции между A и B', где B' является активированным состоянием B. В результате большие дендримеры дают начало структурам глобулярной формы с размером наномасштабе и низкой внутренней вязкостью.

Традиционно, дендримеры синтезируют с использованием итерационной методики, в рамках которой ABx мономеры поочередно добавляют к растущим частицам, после чего следует этап активации/снятия защиты. Эти методики нуждаются в эффективных реакциях, обеспечивающих полную замену терминальных групп B'. Любое отклонение ведет к структурным дефектам, накапливающимся во время роста дендримера и приводящим к затрудненности или невозможности очистки.

Для дальнейшего обсуждения синтеза и номенклатуры дендримеров см. статью: Aldrichimica Acta (2004) 37(2) 1-52, «Dendrimers: building blocks for nanoscale synthesis», включенную в настоящий документ посредством ссылки во всей своей полноте, например страницы 42-43.

Сверхразветвленные полимеры, которые являются дендримерами со структурными дефектами такого типа, также можно использовать в настоящем изобретении.

Сверхразветвленные полимеры, которые не являются дендримерами, могут, например, быть получены путем полимеризации реактивного мономера или нескольких реактивных мономеров. Например, сверхразветвленные полимеры, являющиеся полиаминами, можно получать путем полимеризации азиридина, например путем обработки основанием.

Иллюстративные центральные компоненты включают амины, такие как фрагмент аммиака (М.м. 14 Да), диаминов (например, этилендиамин (М.м. 56 Да), пропилендиамин (М.м. 70 Да), или 1,4-диаминобутан (М.м. 84 Да)) и триаминов (например, диэтилентриамин (NCH2CH2NHCH2CH2N) (М.м. 99 Да) или 1,2,3-триаминопропан (М.м. 89 Да)). Другие центральные части могут быть кислородсодержащими, включая C(Me)(CH2O)3 (М.м. 117 Да), или серосодержащими, включая (NCH2CH2S-SCH2CH2N) (М.м. 148 Да).

Катионные сверхразветвленные полимеры имеют преимущественно положительный заряд при pH около 7, то есть они содержат только незаряженные группы и положительно заряженные группы при pH 7, или (менее предпочтительно) они содержат отрицательно заряженные группы при pH 7, но число положительно заряженных групп выше, чем число отрицательно заряженных групп. Катионные сверхразветвленные полимеры по настоящему изобретению обычно в качестве функциональных концевых групп содержат первичные амины.

Сверхразветвленные полимеры по настоящему изобретению могут иметь несколько функциональных групп, например они могут быть полиаминами (полностью или по большей части содержащими группы вторичных и третичных аминов, с первичными аминами в качестве концевых функциональных групп), полиамидоаминами (амидные группы и группы вторичных и третичных аминов, с первичными аминами в качестве концевых функциональных групп) или полиэфирами с функциональными аминогруппами (например, такими полиэфирами, как ПЭГ, в которых концевые группы трансформированы в группы из первичных аминов).

Иллюстративным семейством сверхразветвленных полимеров являются полиамидоамины (ПАМАМ), в которых компонент аммония или ди- или триамина (например, этилендиамин) может применяться в качестве центрального фрагмента, а добавление генераций разветвленной молекулы может осуществляться путем реакции аммония или свободных аминогрупп, например с метилакрилатом, а потом с этилендиамином, обеспечивая структуру с рядом свободных аминогрупп на внешней поверхности. Последующие генерации можно строить с помощью дальнейшей реакции с метилакрилатом и этилендиамином. Структура, в которой все первичные аминогруппы из внутренних слоев прореагировали с метилакрилатом и этилендиамином, является дендримером. ПАМАМ дендримеры поставляются под торговой маркой Starburst® и производятся Dendritech Inc. Дендримеры Starburst поставляются Dendritech Inc., Sigma Aldrich и Dendritic Nanotechnologies (DNT).

Другие иллюстративные сверхразветвленные полимеры могут включать полиамины, такие как полипропилениминовые (ППИ) и полиэтилениминовые (ПЭИ) полимеры, полученные в результате полимеризации соответствующих структурных единиц. Сверхразветвленные полимеры на основе ППИ можно также синтезировать из центральной части, такой как диаминобутан, и строить путем реакции первичных аминогрупп с акрилонитрилом с последующим гидрированием. ППИ дендримеры поставляются под торговой маркой Astramol™ компаниями DSM и Sigma Aldrich. Полиэтилениминовые полимеры поставляются, например, BASF, Nippon Shokubai и Wuhan Bright Chemical.

Таким образом, сверхразветвленный полимер может быть выбран из полиамидоамина, полипропиленимина, полиэтиленимина и других полиаминовых полимеров и сополимеров, содержащих один или несколько из полиамидоаминовых, полипропилениминовых, полиэтилениминовых и полиаминовых сверхразветвленных полимеров.

В целом, катионные сверхразветвленные полимеры, содержащие первичные аминогруппы в качестве функциональных концевых групп, например ПАМАМ или полиэтиленимины или полипропиленимины, особо предпочтительны для применения в настоящем изобретении.

Сверхразветвленные аминированные полимеры, содержащие сложные эфиры, карбонаты, ангидриды и полиуретаны, менее пригодны, поскольку имеют тенденцию к деградации. Однако биологическая стабильность может зависеть от числа и соотношений биодеградируемых групп, и таким образом, некоторые из них могут быть пригодны для осуществления настоящего изобретения.

Свойства некоторых сверхразветвленных полимеров описаны в Таблице 1 внизу.

Таблица 1
Примеры сверхразветвленных полимеров с подходящим отношением общей молекулярной массы к молекулярной массе центрального фрагмента
Тип Поставщик Торговое название Центральная часть Молекулярная масса (Да) Отношение
ПЭИ BASF Lupasol® WF Этан-1,2-диамин (М.м. 56 Да) 25,000 ~450:1
ПАМАМ Dendritech DNT Sigma Aldrich Starburst® G3-G10 Этан-1,2-диамин (М.м. 56 Да) 7,000-935,000 (например, 7,000-900,000) ~125:1-16,700:1
ППИ DSM Sigma Aldrich Astramol™ Am-64 Бутан-1,4-диамин (М.м. 84 Да) 7,000 ~85:1
ПЭИ Nippon Shokubai Epomin-P-1050 Этан-1,2-диамин (М.м. 56 Да) 70,000 ~1250:1
ПЭИ Wuhan Bright Chemical G-35 Этан-1,2-диамин (М.м. 56 Да) 70,000 ~1250:1
Примеры полимеров с другими типами структуры (не пригодные для настоящего изобретения сверхразветвленные полимеры)
Тип Поставщик Торговое название Центральная часть Молекулярная масса (Да) Отношение
ПЭИ BASF Lupasol® SN Не идентифицирована, полимерная 1,000,000 Не опр.
ПЭИ BASF Lupasol® SK Не идентифицирована, полимерная 2,000,000 Не опр.
ПЭИ Wuhan Bright Chemical G-35 Этан-1,2-диамин (М.м. 56 Да) 1,500 ~25:1
ПАМАМ Dendritech DNT Sigma Aldrich Starburst® G3-G10 Этан-1,2-диамин (М.м. 56 Да) 1,430 ~26:1
ППИ DSM Astramol™ Am-8 Бутан-1,4-диамин (М.м. 84 Да) 316 ~4:1

ПАМАМ, проиллюстрированный на Фиг.2, основан на этилендиамине в качестве центрального фрагмента. Свойства в зависимости от числа генераций показаны в Таблице 2 внизу.

Таблица 2
Генерация М.м. (Да) Измеренный диаметр/Ангстрем Число поверхностных групп Отношение общей М.м. к М.м. центральной части
Центральная часть/G0 56/517* 15 4 ~9:1

1 1,430 22 8 ~26:1
2 3,256 29 16 ~58:1
3 6,909 36 32 ~125:1
4 14,215 45 64 ~250:1
5 28,826 54 128 ~515:1
6 58,048 67 256 ~1,040:1
7 116,493 81 512 ~2,080:1
8 233,383 97 1,024 ~4,170:1
9 467,162 114 2,048 ~8,340:1
10 934,720 135 4,096 ~16,700:1
См. статью Aldrichimica Acta (2004) 37(2) 1-52 «Dendrimers: building blocks for nanoscale synthesis)).
* Структура, см. Схему 1.

Схема 1. Синтез Дендримера ПАМАМ-G0. На Схеме 1 «a» является метилакрилатом, а «b» является этан-1,2-диамином.

Синтез иллюстративного ПЭИ сверхразветвленного полимера на основе этилендиаминовой центральной части путем полимеризации азиридина показан на Схеме 2.

Схема 2. Синтез ПЭИ сверхразветвленного полимера. На Схеме 2: ПЭИ сверхразветвленный полимер является 4-й генерацией, содержащей этан-1,2-диаминовую центральную часть (М.м.=56 Да). * указывает примеры положений, где могут быть добавлены дополнительные азиридиновые мономеры.

Синтез иллюстративного ППИ дендримера на основе бутан-1,4-диаминовой центральной части путем полимеризации акрилонитрила показан на Схеме 3.

Схема 3. Синтез ППИ дендримера. На схеме 3: ППИ дендример является 3-й генерацией, содержащей бутан-1,4-диаминовую центральную часть (М.м.=84 Да).

Молекулы сверхразветвленного полимера, пригодные для настоящего изобретения, обычно имеют молекулярную массу примерно от 1,500 до 1,000,000 Да, более предпочтительно примерно от 10,000 до 300,000 Да, например около 25,000-200,000 Да. Молекулы сверхразветвленного полимера, пригодные для настоящего изобретения, предпочтительно являются по существу сферическими по форме. Обычно они имеют диаметр примерно от 2 до 100 нм, например от 2 до 30 нм, в особенности около 5-30 нм, как определяют по результатам лазерного светорассеяния.

Когда сверхразветвленный полимер является ПАМАМ дендримером, он обычно имеет молекулярную массу примерно от 5,000 до 1,000,000 Да, более предпочтительно примерно от 12,000 до 125,000 Да, и диаметр примерно от 1 до 20 нм, например от 2 до 10 нм, особенно около 4-9 нм.

В сверхразветвленных полимерах для применения в соответствии с настоящим изобретением отношение общей молекулярной массы к молекулярной массе центрального фрагмента составляет по меньшей мере 80:1, например по меньшей мере 100:1, например по меньшей мере 200:1, например по меньшей мере 500:1, например по меньшей мере 1000:1. Это отношение обычно меньше 20,000:1, например меньше 10,000:1, например меньше 5,000:1. Например, отношение составляет от 80:1 до 20,000:1, например от 200:1 до 5,000:1, например от 200:1 до 1600:1, например от 400:1 до 1600:1.

Во избежание неопределенности общая молекулярная масса упоминаемого здесь сверхразветвленного полимера включает массу любого ковалентно присоединенного антикоагулянтного объекта, или любого полезного агента.

Указанное отношение определяется молекулярной массой центральной части и общей молекулярной массой сверхразветвленного полимера. Расчетное отношение варьируется в зависимости от центральной части (а именно ее химического состава и молекулярной массы) и в зависимости от изменений молекулярной массы генераций (а именно молекулярной массы мономеров и числа мономеров, присоединенных в каждой генерации).

Для ПАМАМ дендримеров предпочтительной является центральная часть, полученная из этан-1,2-диамина, а число генераций предпочтительно составляет от 3 до 10, более предпочтительно от 4 до 7, т.е. 4, 5, 6 или 7.

Для ПАМАМ сверхразветвленных полимеров предпочтительной является центральная часть, полученная из этилендиамина, а число встроенных реактивных мономеров (метилакрилат, М.м.=56 Да, и этилендиамин, М.м.=57 Да) в сверхразветвленном полимере составляет примерно от 50 до 9,000, например от 100 до 5,000, например от 100 до 2,000 из каждого мономера.

Для ПЭИ сверхразветвленных полимеров предпочтительной является центральная часть, полученная из этилендиамина, а число встроенных азиридиновых мономеров (М.м.=42 Да) в сверхразветвленном полимере составляет примерно от 110 до 20,000, например от 110 до 10,000, например от 110 до 3,000 мономеров.

Для ППИ сверхразветвленных полимеров предпочтительной является центральная часть, полученная из бутан-1,4-диамина, а число встроенных акронитриловых мономеров (М.м.=56 Да) в сверхразветвленном полимере составляет примерно от 120 до 17,000, например от 120 до 4,000, например от 120 до 1,000 мономеров.

В уст