Регулируемое неклассифицированное наполняющее устройство и способ

Иллюстрации

Показать все

Изобретение относится к области стерильного или асептического наполнения веществами закрытых контейнеров и устройств. Способ наполнения устройства включает в себя пронизывание инжекционным элементом (62) эластичной перегородки (62) устройства с образованием герметичной, пустой, стерильной камеры (11), сообщающейся по текучей среде с эластичной перегородкой (32). При пронизывании образуют кольцевую поверхность контакта между эластичной перегородкой (32) и инжекционным элементом (62), проходящую в осевом направлении между точкой проникновения на внутренней поверхности эластичной перегородки в сообщении по текучей среде со стерильной камерой (11) и наружной поверхностью перегородки, входящей в соприкосновение с инжекционным элементом (62), и обеззараживают инжекционный элемент (62), по меньшей мере, за счет одного из (i) трения между эластичной перегородкой (32) и инжекционным элементом (62) на кольцевой поверхности контакта и (ii) вытягивания эластичной перегородки (32) на кольцевой поверхности контакта. Вводят вещество через инжекционный элемент (62) в стерильную камеру (11) устройства. Извлекают инжекционный элемент (62) из эластичной перегородки (32). Обеспечивают самостоятельную повторную герметизацию эластичной перегородки (32) в проникающем отверстии, получающемся в результате извлечения инжекционного элемента (62). Сохраняют камеру (11) стерильной на протяжении стадий реализации способа. Изобретение касается устройства, стерильно заполняемого инжекционным элементом, а также системы для получения наполненного устройства, систем и способа для заполнения и повторной герметизации устройства. Обеспечивается стерильное или асептическое наполнение веществами закрытых контейнеров и устройств. 7 н. и 89 з.п. ф-лы, 43 ил., 4 табл.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к устройствам и способам стерильного или асептического наполнения веществами, такими как жидкости, гели, кремы, газы или порошки, устройств или контейнеров, и более конкретно, к таким устройствам и способам, которые стерильно или асептически наполняют закрытые контейнеры и устройства.

УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

«Чистая комната» представляет собой окружающую среду, обычно применяемую в производстве или в научных исследованиях, которая имеет низкий уровень загрязняющих веществ окружающей среды, таких как пыль, микробы воздуха, аэрозольные частицы и химические пары. «Чистая комната» имеет регулируемый уровень загрязненности, который характеризуется количеством частиц на кубический метр при определенном размере частиц. Чтобы дать представление, наружный атмосферный воздух в типичной городской окружающей среде содержит 35000000 частиц на кубический метр в диапазоне размеров 0,5 мкм и более в диаметре, в соответствии с «чистой комнатой» ISO 9, тогда как «чистая комната» ISO 1 не допускает частицы в данном диапазоне размеров и только 12 частиц на кубический метр размерами 0,3 мкм и менее.

«Чистые комнаты» могут быть весьма большими. Внутри «чистой комнаты» могут содержаться целые производственные предприятия с заводскими цехами, охватывающими тысячи квадратных метров. Их интенсивно применяют в производстве полупроводников, биотехнологии, медико-биологических науках и других областях, которые весьма чувствительны к загрязнению окружающей среды.

Воздух, попадающий в «чистую комнату» снаружи, фильтруется для исключения пыли, и воздух внутри непрерывно рециркулирует через высокоэффективный воздушный фильтр (HEPA) и/или фильтр для очистки воздуха, загрязненного ультрамелкими частицами (ULPA), для устранения создаваемых внутри загрязнителей. Служебный персонал входит и уходит через воздушные шлюзы (иногда с включением стадии воздушного душа) и носит защитную одежду, такую как шапочки, маски, перчатки, обувь и комбинезоны. Оборудование внутри «чистой комнаты» разработано, чтобы создавать минимальную загрязненность воздуха. Применяют только специальные тряпки и корзины. Мебель «чистой комнаты» разработана, чтобы производить минимум частиц и чтобы быть легко моющейся. Бытовые материалы, такие как бумага, карандаши и ткани, изготовленные из натуральных волокон, часто не допускаются, и применяют заменители. Некоторые «чистые комнаты» содержат при положительном давлении, так чтобы при каких-либо утечках, воздух выходил из помещения вместо того, чтобы входил нефильтрованный воздух. Некоторые системы отопления, вентиляции и кондиционирования воздуха «чистой комнаты» регулируют влажность до низких уровней, так что для предотвращения проблем с электростатическими разрядами (ESD) необходимо дополнительное оборудование (напр., «ионизаторы»).

«Чистые комнаты» сохраняют не содержащий частицы воздух за счет применения либо HEPA, либо ULPA фильтров, использующих принципы ламинарного или турбулентного потока воздуха. Системы ламинарного, или однонаправленного, потока воздуха направляют фильтрованный воздух вниз в постоянной струе по направлению к фильтрам, расположенным на стенках вблизи пола «чистой комнаты» или через возвышающиеся перфорированные панели пола для рециркуляции. Системы ламинарного потока воздуха обычно используют приблизительно 80 процентов потолка «чистой комнаты» для сохранения постоянной обработки воздуха. Для конструирования фильтров ламинарного воздушного потока и вытяжек для предотвращения избыточного поступления частиц в воздух используют нержавеющую сталь или другие неизлучающие материалы. Для турбулентного, или неоднонаправленного, воздушного потока используют как вытяжки для ламинарного воздушного потока, так и фильтры с неконкретизированными скоростями для поддержания воздуха в «чистой комнате» в постоянном движении, хотя и не в одном и том же направлении. Турбулентный воздух стремится захватывать частицы, которые могут находиться в воздухе, и направлять их по направлению к полу, где они попадают в фильтры и покидают окружающую среду «чистой комнаты».

В фармацевтической промышленности термин «изолятор» охватывает множество деталей оборудования. Главной целью одной группы является обеспечение ограничения манипулирования опасными материалами либо асептически, либо нет. Главной целью еще одной группы является обеспечение микробиологически регулируемой окружающей среды, внутри которой могут выполняться асептические манипуляции. Защитные изоляторы часто используют отрицательное давление внутреннего воздуха, и большинство изоляторов, применяемых для асептической обработки, используют положительное давление. Процесс уничтожения спор, обычно доставляемых за счет наполнения газом, может применяться для содействия микробиологическому регулированию. Некоторые крупномасштабные изоляторы предоставляют отверстие, часто называемое мышиная нора, для обеспечения непрерывного удаления изолированного продукта. Другие изоляторы остаются герметичными на протяжении всех производственных манипуляций.

Асептические манипуляции могут включать тестирование стерильности или асептическую обработку для производства продуктов медицинского назначения. Изоляторы применяют для предоставления микробиологически регулируемой окружающей среды для асептической обработки для производства продуктов медицинского назначения, помеченных как стерильные. Изоляторы можно рассматривать как более объемлющее развитие барьеров, применяемых в общепринятых «чистых комнатах». Барьеры «чистых комнат» произошли от пластиковых гибких штор вплоть до жестких барьеров с отверстиями для перчаток. Цели барьеров состоят в том, чтобы все больше и больше отделять окружение «чистой комнаты», в том числе оператора, от критической зоны, где выполняются асептические манипуляции и вскрываются стерильные материалы. Когда степень изоляции является почти совершенной, процедуры уничтожения спор могут применяться без ущерба для операторов. Соответственно, изолятор представляет собой устройство физических барьеров, которые интегрированы в такой степени, чтобы изолятор мог быть герметичным для того, чтобы осуществлять рутинный тест утечки на основании соответствия давления установленным пределам. Внутри он обеспечивает рабочее пространство, которое отделено от окружающей среды. Манипуляции можно выполнять внутри пространства снаружи, не нарушая его целостности. Промышленные изоляторы, применяемые для асептической обработки, представляют собой изоляторы, в которых внутреннее пространство и открытые поверхности являются микробиологически регулируемыми. Регулирование достигается посредством применения задерживающих микробы фильтров, процессов стерилизации, процессов уничтожения спор (например, за счет наполнения газом) и предупреждения повторного загрязнения из внешней окружающей среды. Процесс уничтожения спор представляет собой обработку газом, паром или жидкостью, применяемую к поверхностям с применением агента, который признан способным убивать споры бактерий и грибов. Процесс применяется ко внутренним поверхностям изолятора и наружным поверхностям материалов внутри изолятора, когда не требуются общепринятые способы стерилизации.

«Чистые комнаты» классифицируют в соответствии с количеством и размером частиц, разрешенных на объем воздуха. Большие количества, типа «класс 100» или «класс 1000», относятся к FFD-STD-209E и обозначают количество частиц размером 0,5 мкм или более, разрешенных на кубический фут воздуха. Стандарт также допускает интерполяцию, поэтому возможно описать, например, «класс 2000». Малые количества относятся к стандартам ISO 14644-1, которые устанавливают десятичный логарифм количества частиц 0,1 мкм или более, разрешенных на кубический метр воздуха. Например, «чистая комната» класса 5 ISO имеет самое большее 105=100000 частиц на кубический метр. Поскольку 1 м³ составляет приблизительно 35 футов³, два стандарта являются наиболее эквивалентными при измерении 0,5 мкм частиц, хотя стандарты тестирования отличаются. Воздух обычного помещения относится приблизительно к классу 1000000 или ISO 9. Для определения концентрации взвешенных в воздухе частиц используют устройств светового рассеяния с подсчетом дискретных частиц, равных и больших чем установленные размеры, в обозначенных местах взятия образцов.

ФЕДЕРАЛЬНЫЙ СТАНДАРТ США 209E Стандарты «чистой комнаты»
Класс максимум частиц/фут³ эквивалент ISO
≥0,1 мкм ≥0,2 мкм ≥0,3 мкм ≥0,5 мкм ≥5 мкм
1 35 7,5 3 1 0,007 ISO 3
10 350 75 30 10 0,07 ISO 4
100 3500 750 300 100 0,7 ISO 5
1000 35000 7,500 3000 1000 7 ISO 6
10000 350000 75000 30000 10000 70 ISO 7
100000 3,5×106 750000 300000 100000 700 ISO 8

Стандарты «чистой комнаты» ISO 14644-1
Класс максимум частиц/м³ эквивалент ФЕДЕРАЛЬНОГО СТАНДАРТА 209E
≥0,1 мкм ≥0,2 мкм ≥0,3 мкм ≥0,5 мкм ≥1 мкм ≥5 мкм
ISO 1 10 2,37 1,02 0,35 0,083 0,0029
ISO 2 100 23,7 10,2 3,5 0,83 0,029
ISO 3 1000 237 102 35 8,3 0,29 Класс 1
ISO 4 10000 2370 1020 352 83 2,9 Класс 10
ISO 5 100000 23700 10200 3520 832 29 Класс 100
ISO 6 1,0×106 237000 102000 35200 8320 293 Класс 1000
ISO 7 1,0×107 2,37×106 1020000 352000 83200 2930 Класс 10000
ISO 8 1,0×108 2,37×107 1,02×107 3520000 832000 29300 Класс 100000
ISO 9 1,0×109 2,37×108 1,02×108 35200000 8320000 293000 Воздух помещения

Оба федеральных стандарта 209E и ISO 14644-1 допускают двойные логарифмические связи между размером частиц и концентрацией частиц. По этой причине не существует нулевой концентрации частиц. Места в таблице без записей являются неприемлемыми комбинациями размеров частиц и классов чистоты и не должны читаться как ноль.

Стандарты «чистой комнаты» BS 5295
максимум частиц/м³
Класс ≥0,5 мкм ≥1 мкм ≥5 мкм ≥10 мкм ≥25 мкм
Класс 1 3,000 0 0 0
Класс 2 300000 2000 30
Класс 3 1000000 20000 4000 300
Класс 4 200000 40000 4000

BS 5295 Класс 1 также требуют, чтобы наибольшие частицы, присутствующие в любом образце, не превышали 5 мкм.

Классификация GMP EU
Класс максимум частиц/м³
В состоянии покоя В состоянии покоя Во время работы Во время работы
0,5 мкм 5 мкм 0,5 мкм 5 мкм
Класс A 3520 20 3500 20
Класс B 3520 29 352000 2900
Класс C 352000 2900 3520000 29000
Класс D 3520000 29000 n/a n/a

Термин «гарантированный уровень стерильности» (SAL) используют в микробиологии для описания вероятности, что отдельная единица останется нестерильной после подвергания ее процессу стерилизации. Например, производители медицинских устройств конструируют свои процессы стерилизации для крайне низкого SAL - устройства «один на миллион» должны быть нестерильными. SAL также используют для описания убивающей эффективности процесса стерилизации, где очень эффективный процесс стерилизации имеет очень низкий SAL.

В микробиологии считается невозможно доказать, что были разрушены все организмы, поскольку: 1) они могут присутствовать, но не обнаруживаться, просто поскольку они не инкубируются в своей предпочтительной окружающей среде, и 2) они могут присутствовать, но не обнаруживаться, поскольку их существования никогда не доискивались. Вследствие этого SAL используют для описания вероятности, что данный процесс стерилизации не разрушил все микроорганизмы.

Математически SAL, относящиеся к вероятности, обычно представляют собой очень небольшие числа, и поэтому их правильно выражать отрицательными показателями степени (напр., «SAL данного процесса составляет 10 в минус шестой»). SAL, относящиеся к эффективности стерилизации, обычно представляют собой значительно большие числа, и поэтому их правильно выражать положительными показателями степени (напр., «SAL данного процесса составляет 10 в шестой»). При таком использовании отрицательный эффект процесса иногда подразумевается посредством использования слова «уменьшение» (напр., «Данный процесс дает уменьшение в шестой степени»).

SAL может применяться для описания микробной популяции, которая была уничтожена за счет процесса стерилизации. Каждое логарифмическое уменьшение (10−1) представляет 90% уменьшение микробной популяции. Поэтому процесс, показывающий достижение «уменьшения в шестой степени» (10−6), уменьшит популяцию от миллиона организмов (106) до очень близкой к нулю.

Для того чтобы стерилизовать или асептически заполнять веществами контейнеры или устройства, например, лекарственными препаратами, вакцинами и пищевыми продуктами, «чистые комнаты» и изоляторы использовались для того, чтобы обеспечить необходимые SAL для сохранения заполняющего продукта асептическим или стерильным. Однако, как представлено выше, «чистые комнаты» и изоляторы могут потребовать существенных капитальных затрат, эксплуатационных расходов, многочисленных средств регулирования, сложного и дорогого оборудования и/или высококвалифицированного персонала. Соответственно, было бы желательным стерильное или асептическое наполнение веществами без данных «чистых комнат» и/или изоляторов, в то же время тем не менее обеспечивая необходимые SAL для сохранения заполняемых веществ асептическими или стерильными.

Вот почему целью настоящего изобретения является преодоление одного или более описанных выше дефектов и/или недостатков предыдущего уровня техники.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В соответствии с одним аспектом создан способ, согласно которому: (a) пронизывают эластичную перегородку устройства инжекционным элементом, при этом устройство образует герметичную, пустую, стерильную камеру, сообщающуюся по текучей среде с эластичной перегородкой; (b) при пронизывании образуют кольцевую поверхность контакта между эластичной перегородкой и инжекционным элементом, проходящую в осевом направлении между точкой проникновения на внутренней поверхности эластичной перегородки в сообщении по текучей среде со стерильной камерой и наружной поверхностью перегородки, входящей в соприкосновение с инжекционным элементом, и обеззараживание инжекционного элемента, по меньшей мере, за счет одного из (i) трения между эластичной перегородкой и инжекционным элементом на кольцевой поверхности контакта и (ii) вытягивания эластичной перегородки на кольцевой поверхности контакта; (c) вводят вещество через инжекционный элемент в стерильную камеру устройства; (d) извлекают инжекционный элемент из эластичной перегородки; (e) обеспечивают возможность самостоятельной повторной герметизации эластичной перегородки в проникающем отверстии, получающемся в результате извлечения инжекционного элемента; и (f) сохраняют камеру стерильной на протяжении действий от (a) до (e).

Некоторые варианты осуществления включают в себя осуществление пронизывания в окружающей среде, образующей уровень загрязненности более чем приблизительно класс 100 или ISO 5. Некоторые подобные варианты осуществления включают проведение стадий a) - e) в окружающей среде, образующей уровень загрязненности более чем приблизительно класс 100 или ISO 5. Некоторые варианты осуществления включают проведение стадии пронизывания в окружающей среде, образующей уровень загрязненности более чем приблизительно класс 100 или ISO 5 и менее либо равно приблизительно класса 100000 или ISO 8.

В некоторых вариантах осуществления при обеззараживании инжекционного элемента уменьшают бионагрузку на кольцевой поверхности контакта между эластичной перегородкой и инжекционным элементом, по меньшей мере, приблизительно на 3 степени. В некоторых подобных вариантах осуществления обеззараживание инжекционного элемента уменьшают бионагрузку на кольцевой поверхности контакта между эластичной перегородкой и инжекционным элементом, по меньшей мере, приблизительно на 5 степеней. В некоторых подобных вариантах осуществления обеззараживание инжекционного элемента уменьшают бионагрузку на кольцевой поверхности контакта между эластичной перегородкой и инжекционным элементом, по меньшей мере, приблизительно на 6 степеней.

Некоторые варианты осуществления дополнительно включают повторную герметизацию получающегося проникающего отверстия. В некоторых подобных вариантах осуществления стадия повторной герметизации включает повторную герметизацию получающегося проникающего отверстия с помощью механического уплотнения, жидкого герметика, термостойкого уплотнения и/или химического уплотнения. Некоторые варианты осуществления дополнительно включают передачу излучения на получающееся проникающее отверстие для осуществления или дополнительного выполнения уплотнения.

В некоторых вариантах осуществления эластичная перегородка содержит зону проникновения приблизительно в форме купола, а при пронизывании пронизывают эластичную перегородку в зоне проникновения в форме купола. В некоторых подобных вариантах осуществления эластичная перегородка образует по существу выпуклую наружную поверхность и по существу вогнутую внутреннюю поверхность напротив выпуклой наружной поверхности. В некоторых подобных вариантах осуществления внутренняя поверхность перегородки образует относительно утопленную поверхность, проходящую по существу вокруг зоны проникновения. В некоторых подобных вариантах осуществления относительно утопленной поверхностью является желобок.

В некоторых вариантах осуществления эластичная перегородка образует зону проникновения, в которую проникает инжекционный элемент, и зона проникновения имеет такую форму, чтобы усилить давление, прикладываемое эластичной перегородкой к инжекционному элементу во время стадии пронизывания. В некоторых подобных вариантах осуществления зона проникновения эластичной перегородки имеет приблизительно форму купола.

В некоторых подобных вариантах осуществления зона проникновения приблизительно в форме купола образует по существу выпуклую наружную поверхность и по существу вогнутую внутреннюю поверхность. В некоторых вариантах осуществления при пронизывании внутренняя поверхность эластичной перегородки образует начальную трещину по существу с максимальным вытягиванием эластичной перегородки инжекционным элементом.

В некоторых вариантах осуществления кольцевая поверхность контакта образована частью пронизываемой эластичной перегородки, проходящей кольцеобразно вокруг инжекционного элемента по существу на протяжении осевого расстояния, проходящего между внутренней и наружной точками контакта между пронизываемой перегородкой и инжекционным элементом. В некоторых вариантах осуществления осевое расстояние составляет, по меньшей мере, приблизительно 1/2 мм. В некоторых вариантах осуществления осевое расстояние составляет, по меньшей мере, приблизительно 1 мм. И в некоторых подобных вариантах осуществления осевое расстояние составляет, по меньшей мере, приблизительно 1-1/3 мм.

В некоторых вариантах осуществления кольцевая поверхность контакта между эластичной перегородкой и инжекционным элементом образует по существу перевернутую форму усеченного конуса.

В некоторых вариантах осуществления коэффициент трения поверхности инжекционного элемента, взаимодействующего с перегородкой, меньше коэффициента трения пронизываемой части эластичной перегородки.

Некоторые варианты осуществления дополнительно включают снижение напряжения на внутренней поверхности перегородки внутри зоны проникновения инжекционного элемента при пронизывании, при этом на внутренней поверхности перегородки образован желобок, который проходит по существу вокруг зоны проникновения. В некоторых подобных вариантах осуществления желобок проходит кольцеобразно вокруг и рядом с зоной проникновения или прилегает к ней.

В некоторых вариантах осуществления инжекционный элемент содержит по меньшей мере один порт для дозирования вещества из инжекционного элемента, и согласно способу дополнительно герметизируют порт относительно окружающей атмосферы до тех пор, пока, по меньшей мере, часть порта сообщается по текучей среде со стерильной камерой. Некоторые подобные варианты осуществления дополнительно включают перемещение, по меньшей мере, одного из крышки и порта инжекционного элемента из закрытого положения, герметизирующего порт относительно окружающей атмосферы, в открытое положение, открывающее порт в сообщение по текучей среде со стерильной камерой. Некоторые подобные варианты осуществления дополнительно включают, перед или во время стадии извлечения, перемещение, по меньшей мере, одного из крышки и порта инжекционного элемента из открытого положения в закрытое положение. Некоторые подобные варианты осуществления дополнительно включают введение вещества из инжекционного элемента в стерильную камеру после перфорирования эластичной перегородки или после того, как часть порта проходит через внутреннюю поверхность эластичной перегородки и находится в сообщении по текучей среде со стерильной камерой. Некоторые подобные варианты осуществления дополнительно включают по существу герметизацию порта и внутренней части инжекционного элемента от окружающей атмосферы в закрытом положении. В некоторых вариантах осуществления герметизация включает образование по существу влагонепроницаемого уплотнения с относительно мягким материалом на поверхности контакта крышки и инжекционного элемента. Некоторые варианты осуществления дополнительно включают во время стадий пронизывания и извлечения, по существу предотвращение контакта между портом и эластичной перегородкой. Некоторые подобные варианты осуществления дополнительно включают помещение крышки между портом и эластичной перегородкой и по существу предотвращение контакта между портом и эластичной перегородкой.

В некоторых вариантах осуществления эластичная перегородка является самозакрывающейся и по существу предотвращает поступление текущей среды через получающееся проникающее отверстие. Некоторые варианты осуществления дополнительно включают введение токсического вещества через инжекционный элемент в стерильную камеру устройства и использование крышки для предотвращения какого-либо воздействия токсического вещества на окружающую атмосферу на всем протяжении способа.

В некоторых вариантах осуществления обеззараживание инжекционного элемента включает приложение эластичной перегородкой давления к инжекционному элементу на кольцевой поверхности контакта между эластичной перегородкой и инжекционным элементом и, в свою очередь, уничтожение организмов на поверхности контакта. В некоторых подобных вариантах осуществления приложение давления к инжекционному элементу включает пронизывание части эластичной перегородки в форме по существу купола или выпуклой формы.

В некоторых вариантах осуществления эластичная перегородка образует зону проникновения, в которую проникает инжекционный элемент, и зона проникновения эластичной перегородки имеет толщину перед проникновением в диапазоне, составляющем от приблизительно ½ до приблизительно двукратного наружного диаметра инжекционного элемента. В некоторых вариантах осуществления эластичная перегородка образует зону проникновения, содержащую углубление, имеющее уменьшенную толщину эластичной перегородки, а при пронизывании пронизывают эластичную перегородку с уменьшенной толщиной зоны проникновения. В некоторых подобных вариантах осуществления углубление зоны проникновения образует по существу форму усеченного конуса. В некоторых вариантах осуществления инжекционный элемент содержит проникающий наконечник, образующий первый угол конуса, а углубление зоны проникновения образует второй угол конуса, который по существу такой же, как первый угол конуса. В других вариантах осуществления инжекционный элемент содержит проникающий наконечник, образующий первый угол конуса, а углубление зоны проникновения образует второй угол конуса, который больше, чем первый угол конуса.

В соответствии с еще одним аспектом создано устройство, которое стерильно заполняется инжекционным элементом и образует порт, который обычно является герметичным относительно окружающей атмосферы и может открываться для дозирования через него вещества из инжекционного элемента. Устройство содержит корпус, образующий герметичную, пустую, стерильную камеру; и эластичную перегородку, сообщающуюся по текучей среде с герметичной, пустой, стерильной камерой. Эластичная перегородка может быть пронизана инжекционным элементом и образует кольцевую поверхность контакта между эластичной перегородкой и инжекционным элементом, проходящую в осевом направлении между (i) точкой проникновения на внутренней поверхности эластичной перегородки в гидравлическом сообщении со стерильной камерой и (ii) наружной поверхностью перегородки, входящей в соприкосновение с инжекционным элементом. Относительное перемещение, по меньшей мере, одного из инжекционного элемента и эластичной перегородки относительно другого обеззараживает инжекционный элемент за счет (i) трения между эластичной перегородкой и инжекционным элементом на кольцевой поверхности контакта и/или (ii) вытягивание эластичной перегородки на кольцевой поверхности контакта.

В некоторых вариантах осуществления относительное перемещение инжекционного элемента и эластичной перегородки открывает порт инжекционного элемента в гидравлическое сообщение со стерильной камерой для дозирования вещества из инжекционного элемента в стерильную камеру. В некоторых вариантах осуществления относительное перемещение открывает порт после обеззараживания инжекционного элемента на кольцевой поверхности контакта, и по меньшей мере, часть порта проходит через перегородку.

В некоторых вариантах осуществления относительное перемещение инжекционного элемента и эластичной перегородки обеззараживает инжекционный элемент с уменьшением бионагрузки на кольцевой поверхности контакта между эластичной перегородкой и инжекционным элементом, по меньшей мере, приблизительно на 3 степени. В некоторых подобных вариантах осуществления относительное перемещение инжекционного элемента и эластичной перегородки обеззараживает инжекционный элемент с уменьшением бионагрузки на кольцевой поверхности контакта между эластичной перегородкой и инжекционным элементом, по меньшей мере, приблизительно на 5 степеней. В некоторых подобных вариантах осуществления относительное перемещение инжекционного элемента и эластичной перегородки обеззараживает инжекционный элемент с уменьшением бионагрузки на кольцевой поверхности контакта между эластичной перегородкой и инжекционным элементом, по меньшей мере, приблизительно на 6 степеней.

В некоторых вариантах осуществления упругий элемент является повторно герметизируемым или допускает повторную герметизацию в получающемся проникающем отверстии. В некоторых подобных вариантах осуществления получающееся проникающее отверстие упругого элемента повторно герметизируют с помощью по меньшей мере одного из механического уплотнения, жидкого герметика, термостойкого уплотнения и/или химического уплотнения.

В некоторых вариантах осуществления эластичная перегородка содержит зону проникновения, пронизываемую инжекционным элементом и образующую приблизительную форму купола. В некоторых подобных вариантах осуществления эластичная перегородка образует по существу выпуклую наружную поверхность и по существу вогнутую внутреннюю поверхность напротив выпуклой наружной поверхности. В некоторых подобных вариантах осуществления внутренняя поверхность перегородки образует относительно утопленную поверхность, проходящую по существу вокруг зоны проникновения. В некоторых подобных вариантах осуществления относительно утопленной поверхностью является желобок. Некоторые варианты осуществления дополнительно содержат средство снижения напряжения на внутренней поверхности перегородки во время пронизывания ее инжекционным элементом. В некоторых подобных вариантах осуществления средством является желобок, образованный на внутренней поверхности перегородки и проходящий по существу вокруг зоны проникновения перегородки инжекционным элементом.

В некоторых вариантах осуществления эластичная перегородка имеет твердость в диапазоне от приблизительно 1 до приблизительно 100 по Шору. В некоторых подобных вариантах осуществления эластичная перегородка имеет твердость по Шору в диапазоне от приблизительно 20 до приблизительно 80.

В некоторых вариантах осуществления эластичная перегородка образует зону проникновения, которая может быть пронизана инжекционным элементом, и зона проникновения имеет такую форму, чтобы усилить давление, прикладываемое эластичной перегородкой у инжекционному элементу во время пронизывания инжекционным элементом. В некоторых подобных вариантах осуществления зона проникновения эластичной перегородки имеет приблизительно форму купола. В некоторых вариантах осуществления зона проникновения приблизительно в форме купола образует по существу выпуклую наружную поверхность и по существу вогнутую внут