Респиратор в виде фильтрующей лицевой маски с лицевым уплотнителем, содержащим слой, проницаемый для водяного пара

Иллюстрации

Показать все

Респиратор с приданной формой в виде фильтрующей лицевой маски, содержащий корпус с приданной формой маски, содержащий по меньшей мере один фильтрующий слой и имеющий тыльную открытую сторону с периметром и лицевой уплотнитель, соединенный с периметром указанного корпуса маски и протяженный внутрь от указанного периметра корпуса маски, завершающийся на внутренней кромке лицевого уплотнителя, при этом указанный лицевой уплотнитель содержит по меньшей мере один проницаемый для водяного пара слой, также являющийся отталкивающим водную жидкость. 22 з.п. ф-лы, 4 ил.

Реферат

УРОВЕНЬ ТЕХНИКИ

Респираторы часто надевают на рабочем месте, например, для сведения к минимуму возможности проникновения нежелательных частиц в дыхательную систему пользователя.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В общем изложении сущности изобретения, в настоящем описании раскрыт респиратор с приданной формой в виде фильтрующей лицевой маски с лицевым уплотнителем, содержащим проницаемый для водяного пара слой. Эти и другие аспекты изобретения станут очевидными из приведенного ниже подробного описания. Однако это общее изложение сущности изобретения ни в коем случае не следует толковать как ограничивающее заявляемый в формуле изобретения объект изобретения, независимо от того, представлен ли такой объект изобретения в формуле изобретения первоначально поданной заявки, в измененной формуле изобретения или же он представлен в ходе рассмотрения заявки.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 - вид спереди в перспективе и в частичном разрезе одного из примеров респиратора с приданной формой в виде фильтрующей лицевой маски, раскрываемого в настоящем описании.

Фиг. 2 - вид сзади в перспективе респиратора согласно Фиг. 1.

Фиг. 3 - схематический вид части респиратора согласно Фиг. 2 в поперечном сечении, выполненном вдоль линии 3-3 согласно Фиг. 1.

Фиг. 4 - схематический вид в поперечном сечении части одного из примеров лицевого уплотнителя, раскрываемого в настоящем описании.

Подобные ссылочные позиции на разных фигурах указывают подобные элементы. Если не указано иное, все фигуры и чертежи в этом документе выполнены не в масштабе и выбраны с целью иллюстрации различных воплощений изобретения. В частности, геометрические размеры различных компонентов изображены только в иллюстративных целях, и из чертежей нельзя сделать никакого вывода о соотношении между геометрическими размерами различных компонентов. Несмотря на то, что в данном раскрытии могут быть использованы такие выражения, как «верх», «низ», «верхний», «нижний», «над», «выше» и «ниже», и «первый» и «второй», следует понимать, что эти выражения используются в их относительном смысле, если только не указано иное. В рамках настоящего описания такие выражения, как «вперед» и «передний», как правило, обозначают направление от лица пользователя, а такие выражения, как «тыльный» и «задний», в целом, обозначают направление к лицу пользователя (когда раскрываемый в настоящем описании подогнан в требуемом положении на лице пользователя). Такие выражения, как «внутрь» и «внутренний», обозначают направление от периметра респиратора, в целом, к центральному положению (например, к геометрическому центру) во внутреннем воздушном пространстве, ограниченном респиратором. Такие выражения, как «наружу» и «наружный» обозначают направление от этого геометрического центра, например, к периметру и/или за периметр респиратора. В рамках настоящего описания, если специально не оговорено иное, выражение «в целом», в качестве модификатора для свойства или определяющего признака, означает, что это свойство или определяющий признак может быть легко распознаваемым средним специалистом без необходимости в абсолютной точности или совершенном совпадении (например, в пределах ±20% - для свойств, поддающихся количественному определению). Выражение «в сущности», если специально не оговорено иное, означает высокую степень приближения (например, в пределах ±10% - для свойств, поддающихся количественному определению), однако оно также не требует абсолютной точности или совершенного совпадения. Такие термины, как «такой же», «равный», «равномерный», «постоянный», «строго» и т.п., следует понимать, как находящиеся в пределах обычных допусков или погрешности измерения, применимой в конкретных обстоятельствах, а не как требующие абсолютной точности или совершенного совпадения.

ПОДРОБНОЕ ОПИСАНИЕ

Глоссарий

Термин «приспосабливаемый» относится к конструкциям, обладающим достаточной гибкостью, или способностью к деформации, чтобы быть податливыми при формировании моделированных, криволинейных или плоских сегментов в ответ на усилия или давление при нормальных условиях использования;

термин «одноразовый» обозначает респиратор, который выбрасывают после назначенного периода использования, а не респиратор, используемый повторно и/или содержащий прикрепляемый к использованному респиратору свежий фильтрующий картридж и т.п.;

термин «внешнее воздушное пространство» означает окружающее атмосферное воздушное пространство, в которое входит выдыхаемый воздух после прохождения через корпус маски и/или клапан выдоха и за их пределы;

термин «лицевой уплотнитель» означает листообразную конструкцию, проходящую внутрь от периметра открытой стороны корпуса маски респиратора, являющуюся достаточно приспосабливаемой для пригонки к очертаниям лица пользователя, когда пользователь надевает респиратор, и способствующую сведению к минимуму или предотвращению проникновения частиц во внутреннее воздушное пространство;

термин «респиратор в виде фильтрующей лицевой маски» обозначает респиратор с корпусом маски, рассчитанным на фильтрацию проходящего сквозь него воздуха; по определению, для достижения этой цели отсутствуют отдельно идентифицируемые фильтрующие элементы, прикрепляемые к корпусу маски, формуемые поверх корпуса маски и т.д.

термин «крепежное устройство» означает конструкцию или комбинацию деталей, способствующих опоре и удерживанию корпуса маски на лице пользователя;

термин «выполненный за единое целое» означает, что рассматриваемые детали были изготовлены одновременно как единая деталь, а не как две отдельные детали, впоследствии соединенные друг с другом;

термин «внутреннее воздушное пространство» означает пространство между корпусом маски и лицом человека;

термин «отталкивающий водную жидкость» при использовании в отношении слоя означает, что этот слой успешно предотвращает проникновение (например, просачивание) водной жидкости (например, пота) сквозь этот слой;

термин «корпус маски» означает проницаемую для воздуха конструкцию респиратора, рассчитанную на подгонку к носу и рту человека и способствующую определению внутреннего воздушного пространства, отдельного от внешнего воздушного пространства;

термин «микрополость» означает полость в полимерном слое (например, в пленке), при этом указанная полость имеет наименьший геометрический размер от приблизительно 0,01 микрон до приблизительно 20 микрон;

термин «частица» означает любое дисперсное загрязняющее вещество, которое желательно частично или полностью исключить из внутреннего воздушного пространства респиратора, и широко охватывает частицы, представляющие собой твердые вещества, полутвердые вещества или агрегаты, и частицы, представляющие собой жидкие (аэрозольные) капельки;

термин «периметр» означает наружную кромку корпуса маски, которая может располагаться, в целом, поблизости от лица пользователя, когда человек надевает респиратор;

термин «с приданной формой» при использовании в отношении респиратора в виде фильтрующей лицевой маски и его корпуса маски означает, что корпус маски респиратора перманентно сформирован в требуемой подогнанной к лицу конфигурации и, в целом, сохраняет эту конфигурацию, когда он не используется, и этот респиратор с приданной формой по определению отличается от респираторов, выполненных с возможностью складывания в плоском состоянии, когда они не используются;

термин «низкомолекулярная» добавка означает добавку с молекулярным весом 5000 или менее, не связанную ковалентно с полимерными цепями слоя (например, полимерной пленки или нетканого полотна);

термин «проницаемый для водяного пара» означает слой, отталкивающий водную жидкость и характеризующийся проницаемостью для водяного пара (MVTR) 40- 20000 граммов на квадратный метр за 24 часов при испытании при температуре 38°С.

На Фиг. 1 показан один из примеров респиратора 10 с приданной формой в виде фильтрующей лицевой маски в виде спереди в перспективе и в частичном разрезе, для того чтобы показать часть лицевого уплотнителя 60 респиратора 10. Фиг. 2 изображает приведенный в качестве примера респиратор 10 в виде сзади в перспективе (то есть от открытой стороны респиратора 10). Респиратор 10 содержит корпус 12 с приданной формой респиратора и крепежное устройство 14, которое может содержать один или несколько ремешков 16, которые могут быть изготовлены, например, из эластичного материала. Корпус 12 маски содержит периметр 33, обладающий формой для соприкосновения с лицом пользователя, например, над переносицей, по щекам или вокруг щек и под подбородком. В некоторых воплощениях, в целом, весь или, в сущности, весь периметр 33 может лежать в воображаемой плоскости, как в примере конструкции согласно Фиг. 1 и 2. В других воплощениях в такой воображаемой плоскости может лежать только часть периметра 33. Корпус 12 маски обладает формой для образования замкнутого внутреннего воздушного пространства 30 вокруг носа и рта пользователя с тем, чтобы отделить это пространство от внешнего воздушного пространства 31, например, так, чтобы любой воздух, проникающий во внутреннее воздушное пространство 30 из внешнего воздушного пространства 31, должен проходить сквозь фильтрующий слой корпуса 12 маски. Во многих воплощениях корпус 12 маски может содержать куполообразную часть 35, выступающую вперед (то есть в направлении от лица пользователя) от периметра 33 корпуса 12 маски. Хотя куполообразная часть 35 часто, в целом, имеет чашевидную форму, может применяться любая подходящая форма.

На Фиг. 2 показан вид сзади лицевого уплотнителя 60 в качестве примера воплощении. Лицевой уплотнитель 60 выполнен на открытой (задней) стороне респиратора 10 и может обеспечивать удобную подгонку к лицу пользователя и, в то же время, способствовать сведению к минимуму или предотвращению проникновения частиц во внутреннее воздушное пространство 30. Лицевой уплотнитель 60, таким образом, представляет собой листообразный материал, протяженный внутрь от периметра 33 корпуса 12 маски и являющийся, в сущности, приспосабливаемым для пригонки к очертаниям лица пользователя, когда пользователь надевает респиратор 10, например, для достижения проницаемого для воздуха уплотнения. Во многих воплощениях лицевой уплотнитель 60 может быть протяжен внутрь (например, в направлении, в целом, совпадающем с воображаемой плоскостью, ограниченной периметром 33 корпуса маски) от, в целом, всех или, в сущности, всех частей периметра 33 корпуса 12 маски так, чтобы внутренняя кромка 64 лицевого уплотнителя 60 обеспечивала периметр, ограничивающий (т.е. окружающий) отверстие, выполненное с возможностью приема и вмещения по меньшей мере частей подбородка, щек, рта и носа пользователя. Следует отметить, что, когда респиратор 10 предоставляется пользователю, лицевой уплотнитель 60 часто может совпадать с вышеописанной воображаемой плоскостью, образованной периметром 33 корпуса 12 маски. Однако при надевании респиратора 10 пользователем, части лицевого уплотнителя 60 могут при приспособлении к лицу пользователя, немного прогибаться вперед (т.е. к куполообразной части 35 корпуса 12 маски), например, так, чтобы оказывать небольшое давление на лицо пользователя для сохранения вышеупомянутого непроницаемого для воздуха уплотнения. Лицевой уплотнитель 60 может оставаться немного прогнувшимся вперед даже тогда, когда респиратор 10, например, временно, снят с лица пользователя. (Также следует принять во внимание, что некоторый такой небольшой прогиб вперед может возникать в результате того, что несколько респираторов 10 укладывают в стопку для перевозки и хранения.) Однако следует понять, что лицевой уплотнитель 60, являющийся, как это описано выше, листообразным, отличается от конструкций с нелистовой формой, например, от конструкций, имеющих, в целом, трубчатое поперечное сечение (например, типа, описанного в патенте США №4,665,570).

Таким образом, как в дальнейших подробностях показано на Фиг. 3, лицевой уплотнитель 60 может содержать (наружный) периметр 62, соединенный (например, объединенный) с периметром 33 корпуса 12 маски, причем лицевой уплотнитель 60 выполнен протяженным внутрь и заканчивается внутренней кромкой 64 лицевого уплотнителя. Во многих воплощениях внутренняя кромка 64 может содержать вмещающую подбородок часть 66, вмещающую щеки часть 68 и вмещающую нос часть 69, как показано в примерем воплощения на Фиг. 2, хотя конкретная форма и расположение любой из этих частей может быть выбрана по желанию.

В различных воплощениях лицевой уплотнитель 60 может быть протяженным внутрь от периметра 33 корпуса 12 маски на расстояния по меньшей мере от приблизительно 5 мм, 10 мм, 15 мм, 20 мм или 25 мм. В дальнейших воплощениях лицевой уплотнитель 60 может быть протяженным внутрь от периметра 33 корпуса 12 маски на расстояние до приблизительно 50 мм, 40 мм, 30 мм, 20 мм или 10 мм. В некоторых воплощениях такое расстояние может быть больше (например, в 1,5, 2 или 3 раза) во вмещающей щеки части 68, чем либо во вмещающей подбородок части 66, либо во вмещающей нос части 69. В некоторых воплощениях лицевой уплотнитель 60 не поддерживается корпусом 12 маски и не находится в соприкосновении с корпусом 12 маски в любом местоположении или части лицевого уплотнителя за исключением вышеупомянутого периметра 62 лицевого уплотнителя, соединенного (например, скрепленного) с периметром 33 корпуса маски. В некоторых воплощениях лицевой уплотнитель 60 не поддерживается какой-либо опорной рамой (состоящей, например, из опорных элементов или подпорок, находящихся в соприкосновении с передней лицевой поверхностью лицевого уплотнителя 60).

Лицевой уплотнитель 60 может быть прикреплен к корпусу 12 маски, например, к периметру 33 корпуса 12 маски посредством любого желаемого механизма или способа прикрепления. Такие способы могут включать, например, ультразвуковое скрепление, термоскрепление, использование такого клея, как клей, склеивающий при надавливании, термоплавкий клей, отверждаемый излучением клей, использование механических крепежных средств, таких как одна или несколько скоб, зажимов и т.д., или любая комбинация этих способов. Прикрепление лицевого уплотнителя 60 к корпусу 12 маски может быть выполнено, например, в сущности, непрерывно вокруг всего периметра 33 корпуса 12 маски; или оно может быть выполнено только в выбранных местоположениях периметра 33. В примере воплощения согласно Фиг. 2 части лицевого уплотнителя 60 выполнены протяженными наружу вдоль петель 34 для прикрепления крепежного устройства корпуса 12 маски; однако при необходимости лицевой уплотнитель 60 может заканчиваться таким образом, чтобы эти его части, не выступали наружу вдоль петель 34 таким образом.

Как было упомянуто, лицевой уплотнитель 60 может быть легко изготовлен из приспосабливающегося листообразного материала (который в некоторых воплощениях может содержать несколько слоев, что более подробно обсуждается в настоящем описании ниже). В различных воплощениях лицевой уплотнитель 60 может иметь (общую) толщину менее чем приблизительно 2 мм, 1 мм, 0,5 мм, 0,2 мм или 0,1 мм. В некоторых воплощениях лицевой уплотнитель 60 не является выполненным за единое целое с корпусом 12 маски. То есть в таких воплощениях лицевой уплотнитель 60 не предусмотрен как расширение корпуса 12 маски, то есть, например, как закрученный или закатанный внутрь от периметра корпуса маски для формирования лицевого уплотнителя. В дальнейших воплощениях этого типа лицевой уплотнитель 60 может состоять из слоев материалов, отличных от тех, которые использованы в корпусе 12 маски (например, лицевой уплотнитель может не содержать фильтрующий слой того же состава и свойств, что и фильтрующий слой 18 корпуса 12 маски, который обсуждается в настоящем описании позднее). В конкретных воплощениях этого типа лицевой уплотнитель 60 может быть непроницаемым для воздуха (как это определено в настоящем описании) в отличие от фильтрующего слоя 18 корпуса 12 маски.

Эластичность лицевого уплотнителя 60 может быть выбрана по желанию. В различных воплощениях лицевой уплотнитель 60 (несмотря на то, что он по-прежнему является приспосабливаемым, как описано выше) может не проявлять какую-либо значительную эластичность (то есть в различных воплощениях удлинение до разрыва лицевого уплотнителя 60 может быть менее 40%, 20%, 10% или 5%). В других воплощениях лицевой уплотнитель 60 может иметь значительную эластичность (что проявляется в удлинении до разрыва, например, по меньшей мере 40%, 80% или 120%).

Лицевой уплотнитель, раскрываемый в настоящем описании, содержит по меньшей мере проницаемый для водяного пара слой. Такой слой определяется, в первой части, как характеризующийся проницаемостью для водяного пара (в настоящем описании обозначаемую аббревиатурой MVTR) 40-20000 граммов на квадратный метр за 24 часа при испытании при температуре приблизительно 38°С в «прямой» конфигурации (в отличие от «обращенной» испытательной конфигурации, в которой водная жидкость находится в непосредственном соприкосновении с испытываемым слоем); например, при испытании, в целом, сходном с испытанием, раскрытым в патенте США №5,981,038 (Weimer), и в опубликованной заявке на патент США №2011/0112458 (Метод испытания 1А) (Holm). В различных воплощениях проницаемый для водяного пара слой раскрываемого лицевого уплотнителя может в таком испытании характеризоваться проницаемостью для водяного пара по меньшей мере приблизительно 1000 граммов на квадратный метр за 24 часа, 2000 граммов на квадратный метр за 24 часа, 4000 граммов на квадратный метр за 24 часа, 5000 граммов на квадратный метр за 24 часа, 8000 граммов на квадратный метр за 24 часа, 10000 граммов на квадратный метр за 24 часа или 12000 граммов на квадратный метр за 24 часа. Включение такого проницаемого для водяного пара слоя в лицевой уплотнитель может предусматривать, что по меньшей мере в наиболее нормальных условиях любое количество пота, выделяемого кожей пользователя респиратора, может переноситься от кожи как водяной пар со скоростью, достаточной для поддержания кожи в удовлетворительно сухих условиях (вместо того, чтобы недопустимым образом собираться между лицевым уплотнителем и кожей).

Для использования в качестве проницаемого для водяного пара слоя раскрываемого лицевого уплотнителя могут быть пригодны многие основы (например, полимерные пленочные материалы, мембраны и т.п.). Такие основы можно в широком смысле разделить на две общие категории. Первая категория включает основы (например, пленки), достигающие высокой MVTR посредством включения в основу многочисленных микрополостей (т.е. микроскопических полостей с общим интервалом размеров 0,01-20 микрон, хотя также могут присутствовать полости и других размеров). Вторая категория включает основы (например, непористые пленки), достигающие высокой MVTR посредством того, что они содержат гидрофильные участки так, что молекулы воды могут проникать (например, диффундировать) сквозь по меньшей мере гидрофильные участки такой основы со скоростью, достаточной для достижения требуемой MVTR. Эти общие категории будут более подробно рассмотрены в настоящем описании позднее (с осознанием того, что некоторые из проницаемых для водяного пара слоев могут обладать свойствами обеих этих общих категорий).

Проницаемый для водяного пара слой дополнительно определяется, во второй части, как являющийся отталкивающим водную жидкость. То есть такой слой не будет позволять водной жидкости, попадающей на этот слой под атмосферным давлением, недопустимым образом проникать сквозь этот слой от одной основной поверхности к другой посредством капиллярного действия (капиллярного затекания). Такое свойство хорошо известно средним специалистам в данной области техники (и оно описано и обсуждено в патентах США №5,981,038 (Weimer) и №6,858,290 (Mrozinski)). В частных воплощениях отталкивающий водную жидкость слой может не позволять жидкому поту протекать сквозь этот слой посредством капиллярного действия. Такое барьерное свойство можно охарактеризовать, например, при помощи испытания сопротивления потовому загрязнению, относящегося к типу, раскрытому в патенте США №5,981,038 (Weimer). Так, в некоторых воплощениях проницаемый для водяного пара слой может получать оценку «удовлетворительно» в испытании сопротивления потовому загрязнению.

Раскрываемый в настоящем описании лицевой уплотнитель может приспосабливаться к коже пользователя так, чтобы предотвращать недопустимое просачивание взвешенных в воздухе частиц через пространство между кожей пользователя и лицевым уплотнителем. По меньшей мере в некоторых воплощениях лицевой уплотнитель, раскрываемый в настоящем описании, также может сводить к минимуму или предотвращать прохождение взвешенных в воздухе частиц сквозь сам лицевой уплотнитель, например, посредством включения слоя, представляющего собой барьер для взвешенных в воздухе частиц. Таким барьерным слоем для взвешенных в воздухе частиц может являться сам вышеописанный проницаемый для водяного пара слой, или им может являться дополнительный слой, присутствующий в лицевом уплотнителе. Однако достигаемый в таких воплощениях лицевой уплотнитель может не только допускать требуемое прохождение водяного пара и остановку водной жидкости, но также предусматривать достаточный барьер для прохождения взвешенных в воздухе частиц, чтобы достигалась и поддерживалась требуемая эффективность фильтрации респиратора, с которым используется этот лицевой уплотнитель. Таким образом, одним из способов оценки того, обеспечивает ли лицевой уплотнитель удовлетворительные барьерные свойства для взвешенных в воздухе частиц, является испытание респиратора, содержащего этот лицевой уплотнитель, для определения того, достигает ли этот респиратор требуемой оценки эффективности (являясь надлежащим образом подогнанным к лицу пользователя). В различных воплощениях такой респиратор, содержащий лицевой уплотнитель, содержащий проницаемый для водяного пара слой, раскрываемый в настоящем описании, может достигать градации N95, N99 или N100 в соответствии с системой классификации NIOSH при испытании способом, в целом, аналогичном процедурам, описанным в опубликованной заявке на патент США №2005/0079379 (Wadsworth) (абзацы [0022]-[0023]), и при оценке согласно стандарту NIOSH 42 CFR, часть 84, действующему на август 2003 г. Однако можно осуществлять и другие способы отбора барьерного слоя для взвешенных в воздухе частиц, являющегося кандидатом на использование в лицевом уплотнителе без непременного включения этого слоя в состав лицевого уплотнителя респиратора.

Как упоминалось, в некоторых воплощениях барьерное свойство для взвешенных в воздухе частиц лицевого уплотнителя может быть предоставлено самим проницаемым для водяного пара слоем. Следует принять во внимание, что некоторые проницаемые для водяного пара основы (например, те, которые не содержат взаимосвязанных микрополостей, допускающих течение воздуха сквозь основу от одной основной поверхности к другой в сколько-нибудь значительной мере, как, например, непористые пленки) можно легко определить, как обеспечивающие достаточные барьерные свойства для взвешенных в воздухе частиц. Например, основы, незначительно допускающие или не допускающие прохождения сквозь них воздуха, но проявляющие достаточно высокую MVTR, можно оценить, как подходящие без дальнейших испытаний. Однако для определения степени, в которой взвешенные в воздухе частицы различных размеров могут или не могут проникать сквозь основу, могут быть отобраны и другие, проницаемые для водяного пара основы. То есть даже такие основы, как содержащие микрополости, расположенные так, что они образуют соединенные сквозные каналы, проходящие от одной основной поверхности основы к другой основной поверхности, могут содержать каналы, являющиеся достаточно небольшими, достаточно извилистыми или комбинацией таковых, чтобы они могли по-прежнему удовлетворительно ограничивать прохождение взвешенных в воздухе частиц сквозь эту основу. Одним из простых способов, которым можно отобрать такие основы, является использование плотномера для измерения воздухопроницаемости (такого, как плотномеры, поставляемые Gurley Precision Instruments, Троя, Нью-Йорк, США), посредством которого измеряют время для прохождения заданного объема воздуха под действием заданного усилия через заданную площадь поверхности основы (как описано, например, в патенте США №6,858,290 (Mrozinski)). Если основа обладает такой комбинацией достаточно низкой пористости и/или достаточно небольших размеров пор, определяемым соответствующим временем плотномера, то основа может являться хорошим кандидатом на использование. В различных воплощениях время плотномера объемом 100 см3 для подходящей проницаемой для водяного пара основы может составлять по меньшей мере приблизительно 5 секунд, 10 секунд, 20 секунд, 50 секунд или 100 секунд. В дальнейших воплощениях время плотномера объемом 100 см3 для подходящей проницаемой для воздуха и водяного пара основы может составлять по меньшей мере приблизительно 1000 секунд, 500 секунд, 200 секунд, 100 секунд или 500 секунд. Следует принять во внимание, что, например, для основ, в сущности, обладающих недостатком взаимосвязанных сквозных каналов, проходящих через основу, такое время плотномера может быть, например, составлять более 1000 секунд, что для целей настоящего обсуждения будет определено как пограничное значение между основами, являющимися проницаемыми для воздуха, и основами, являющимися непроницаемыми для воздуха. (Для многих таких непроницаемых для воздуха основ, это время плотномера может приближаться к бесконечности.) Следует принять во внимание, что представленные выше критерии времени плотномера также можно использовать для оценки пригодности отдельного барьерного слоя для взвешенных в воздухе частиц, если такой отдельный слой используется для предотвращения прохождения взвешенных в воздухе частиц вместо проницаемого для водяного пара слоя.

Другим способом, которым можно идентифицировать потенциально подходящий барьерный слой для взвешенных в воздухе частиц (например, пленку), является способ, осуществляемый посредством определения коэффициента качества, представляющего собой хорошо известный параметр, часто используемый для характеристики эксплуатационных показателей фильтрующих слоев для респираторов и т.п. Такой коэффициент качества можно определить, например, подвергая основу действию потока воздуха, содержащего капельки аэрозоля хлорида натрия размером 0,075 мкм, и определяя, какая доля капелек аэрозоля способна проникнуть сквозь основу, как обсуждается, например, в патенте США №7,858,163 (Angadjivand). В различных воплощениях подходящая основа барьера для взвешенных в воздухе частиц (которая может являться, а может и не являться проницаемой для водяного пара основной) может проявлять коэффициент качества по меньшей мере приблизительно 0,4 мм-1 Н2О, 0,6 мм-1 Н2О, 0,8 мм-1 Н2О или 1,0 мм-1 Н2О при подвергании действию аэрозоля хлорида натрия, текущего со скоростью набегающего потока 13,8 см/с (или с какой бы то ни было скоростью, с которой воздух можно пропускать сквозь основу до тех пор, пока скорость является соразмерной с удовлетворительным выполнением испытания). В этом отношении следует признать, что такое испытание коэффициента качества может не подходить для основ с очень небольшой или отсутствующей сквозной пористостью; однако такое испытание может быть необходимо, поскольку многие такие основы могут быть оценены средним специалистом в данной области техники как обладающие достаточными свойствами остановки частиц без необходимости в испытании на коэффициент качества (например, на основе одного или нескольких вышеупомянутых критериев).

Таким образом, в итоге, основа (например, пленка какого-либо состава, типа или структуры), подходящая для использования в качестве проницаемого для водяного пара слоя лицевого уплотнителя будет обладать по меньшей мере комбинацией достаточно высокой способности допускать прохождение молекул водяного пара сквозь эту основу и достаточно высокого сопротивления капиллярному затеканию водной жидкости сквозь эту основу. В некоторых воплощениях, как было описано выше, такая основа также может обладать достаточно высокими барьерными свойствами для взвешенных в воздухе частиц. В некоторых других воплощениях в лицевой уплотнитель может быть включен отдельный барьерный слой для взвешенных в воздухе частиц. В еще одном воплощении конструкция лицевого уплотнителя может быть такой, что способность лицевого уплотнителя предотвращать проникновение взвешенных в воздухе частиц сквозь сам лицевой уплотнитель (например, в случаях, когда внешнему воздушному пространству открыта только очень малая площадь поверхности, например, по сравнению с площадью поверхности корпуса маски) может не являться проблемой, и поэтому такие барьерные свойства для взвешенных в воздухе частиц могут не требоваться.

Как упоминалось выше, одна из общих категорий основ, которые могут быть подходящими для использования в качестве проницаемого для водяного пара слоя, включает пленки/мембраны, содержащие многочисленные микрополости. Такие микрополости могут обеспечивать распространение молекул воды сквозь пленку, главным образом, посредством этих микрополостей, даже если полимерный материал, образующий твердый «скелет» пленки, может быть относительно непроницаемым для передачи молекул воды. В этом отношении следует отметить, что указанные микрополости необязательно должны быть соединены друг с другом с образованием непрерывного канала на всем пути сквозь пленку от одной основной поверхности к другой основной поверхности до тех пор, пока какой-либо твердый материал между смежными микрополостями (и/или на одной из основных поверхностей пленки) является достаточно тонким, чтобы не представлять непроходимый барьер для диффузии молекул воды. Как определено в настоящем описании, микрополость означает микроскопическую полость с наименьшим геометрическим размером в интервале 0,01-20 микрон, хотя также могут присутствовать и полости других размеров (также отметим, что для полости, имеющей вытянутую форму, такой наименьший геометрический размер можно измерить в любом местоположении по всей вытянутой длине этой полости).

Как было определено выше, микрополости необязательно должны быть соединены друг с другом с образованием непрерывных каналов сквозь пленку до тех пор, пока какой-либо твердый материал между смежными микрополостями является достаточно тонким, чтобы не представлять непроходимый барьер для диффузии молекул воды. Таким образом, в некоторых воплощениях такая пленка может быть непроницаемой для течения воздуха, что определяется в настоящем описании как означающее то, что время плотномера объемом 100 см3 для этой пленки составляет более 1000 секунд. Однако в других воплощениях такая пленка может допускать некоторое течение воздуха сквозь нее, что характеризуется временем плотномера менее (часто, существенно менее) 1000 секунд, как было обсуждено выше.

Доступны многочисленные пленочные основы, содержащие микрополости и именуемые в настоящем описании микропористыми пленками. В различных воплощениях они включают микропористые пленки, изготовленные путем растягивания пленок-предшественников (например, так, как это описано в патенте США №6,444,302 (Srinivas) и патенте США №3,953,566 (Gore)), в особенности пленок-предшественников, содержащих нуклеирующие вещества, минеральные наполнители, такие как карбонат кальция и т.п. (как описано, например, в патенте США №6,072,005 (Kobylivker), в патенте США №6,106,956 (Heyn) и в патенте США №6,569,225 (Edmundson)). Такие микропористые пленки также могут включать пленки, изготовленные посредством процессов обращения фаз в присутствии растворителя (как описано, например, в патенте США №6,413,070 (Kelly)), пленки, изготовленные посредством процессов термического обращения фаз (как описано, например, в патенте США №4,539,256 (Shipman) и в патенте США №4,726,989 (Mrozinski)), пленки, изготовленные посредством извлечения (например, выщелачивания) веществ из пленок-предшественников (например, как описано в патенте США №4,210,709 (Doi)) и т.д. В некоторых воплощениях подходящие микропористые пленки могут быть изготовлены посредством процесса высокоскоростного прядения (например, описанного в патенте США №7,338,916 (Rollin, Jr.)). Можно использовать комбинации этих способов (например, пленка-предшественник может быть как растянутой, так и подвергнутой извлечению из нее вещества, как описано, например, в патенте США №5,176,953 (Jacoby)). В других воплощениях можно использовать т.н. трековую мембрану (пленку) до тех пор, пока размер пор и густота пор этой мембраны рассчитаны в комбинации, обеспечивающей необходимую комбинацию способности к удовлетворительному допуску прохождения молекул воды и препятствования капиллярному затеканию сквозь них водной жидкости. В некоторых воплощениях подходящая микропористая пленка (или пленки) может представляться как часть многослойной структуры (например, как описано в патенте США №6,929,853 (Forte)). Микропористые пленки этих различных типов являются широкодоступными, что иллюстрируется, например, некоторыми пленками, поступающими в продажу под торговым обозначением CELGARD от Celgard, Шарлотт, Северная Каролина, США, торговым обозначением EXXAIRE - от Tredegar, Ричмонд, Вирджиния, США, торговым обозначением APTRA - от RKW, Ром, Джорджия, США, и торговым обозначением NUCLEPORE - от GE Healthcare/Whatman, Пискатауэй, Нью-Джерси, США. Следует подчеркнуть, что приведенные выше описания и перечисления представляют собой иллюстративные, неограничивающие примеры потенциально подходящих материалов.

В некоторых воплощениях микрополости могут быть, в сущности, однородно распределены по поперечному сечению пленки (то есть от одной основной поверхности к другой основной поверхности). В других воплощениях вдоль поперечного сечения пленки может присутствовать градиент размеров микрополостей, как иллюстрируется, например, некоторыми мембранами с обращением фаз в присутствии растворителя, в которых размеры микрополостей постепенно становятся меньше по поперечному сечению пленки (см., например, патент США №5,006,247 (Dennison)). В некоторых конкретных воплощениях пленка может содержать первую основную поверхность с полостями (порами), являющимися открытыми на первую основную сторону пленки, и вторую основную поверхность, содержащую наружный поверхностный слой, не содержащий полостей, открытых на вторую основную сторону пленки (что иллюстрируется некоторыми покрытыми наружным поверхностным слоем мембранами, которые можно изготовить посредством процессов обращения фаз в присутствии растворителя).

Микропористые пленки любого из вышеописанных типов могут быть изготовлены из любого подходящего материала, например, из синтетического полимерного материала, полимерного материала, полученного из природного материала, или физической композиции или сополимера любых подходящих полимеров. Потенциально подходящие материалы могут содержать полиамиды, сложные полиэфиры, целлюлозные полимеры и их производные, полиуретаны, полисульфоны, поликарбонаты, акриловые полимеры, виниловые полимеры и т.д. В некоторых воплощениях такие микропористые пленки могут быть изготовлены из относительно гидрофобных материалов (например, из таких полимерных материалов, как полипропилен, фторсодержащие полимеры и т.п.), и/или они могут быть покрыты добавками, могут быть подвергнутыми обработке поверхности и т.д., с целью снижения поверхностной энергии материала для того чтобы снизить вероятность проникновения водной жидкости сквозь поры этих материалов.

Как упоминалось выше, другой общей категорией основ с высокой MVTR, которые могут быть подходящими для использования в качестве проницаемого для водяного пара слоя лицевого уплотнителя, являются такие пленочные основы, которые достигают высокой MVTR посредством того, что они обладают гидрофильными участками пленки так, что молекулы воды могут с достаточной скоростью диффундировать сквозь по меньшей мере эти гидрофильные участки пленки. Поэтому такие пленки могут, таким образом, достигать первой части (высокая MVTR) обсужденного выше состоящего из двух частей определения проницаемого для водяного