Длинная пустотелая широкохордная лопатка вентилятора и способ ее изготовления
Иллюстрации
Показать всеДлинная пустотелая широкохордная лопатка вентилятора, состоящая из оболочки, выполненной из листа из титанового сплава, и жестко скрепленных с ней силовых несущих элементов: лонжерона, выполненного из титанового сплава, и остальных, выполненных из волокнистого однонаправленного металломатричного высокомодульного композиционного материала. Причем n+1 силовых несущих элементов выполнены в виде замков «ласточкин хвост» и размещены между других n силовых несущих элементов и на краях замка лопатки, n-1 силовых несущих элементов, выполненных из композиционного материала, имеют замковую часть, выполненную в виде «ласточкина хвоста», и размещенную внутри оболочки часть в виде стержня с постоянным или с постепенно сужающимся к концу лопатки поперечным четырехугольным сечением, со стороной или сторонами, контактирующими с оболочкой, повторяющими ее форму. Все несущие элементы диффузионной сваркой при температуре и давлении замковыми частями скреплены друг с другом и оболочкой, а частями, размещенными внутри оболочки, - с оболочкой. Лонжерон состоит из замковой части, выполненной в виде «ласточкина хвоста» замка лопатки, выполненного за одно целое с центральным стержнем с коробчатым четырехугольным поперечным сечением, стоек с поперечным четырехугольным сечением, со сторонами, скрепленными с оболочкой, повторяющими ее форму. Между каждой стойкой и центральным стержнем лонжерона имеется прямоугольная щель. Каждая щель заглублена в замковую часть лонжерона, в каждой из этих двух щелей на стойки установлена гладкая, стальная, каленая или нагартованная, шлифованная лента, а на стержень лонжерона установлена гладкая, стальная, каленая или нагартованная, шлифованная лента-вставка с выемками, выполненными по дуге окружности на одной из сторон ленты. В каждой щели между гладкой лентой и лентой-вставкой с требуемым натягом по вершинам гофров δ>Y∂, где Y∂ - допустимая деформация сжатия гофра пакета в мм, так размещен многопролетный пакет, собранный «гофр в гофр» из одной, двух или более стальных, каленых или нагартованных, шлифованных, гофрированных лент, что гофры пакета, опирающиеся на ленту-вставку, размещены в ее выемках, и вершины гофров опираются на выемки в их плоскости симметрии, а ƒ≥Y∂+h, где ƒ - стрела выгиба гофра и h - глубина выемки ленты-вставки. На свободном конце стержня лонжерона выполнены полки. На каждую полку отогнутым концом опирается лента-вставка, а гладкая лента отогнута на торец стойки и отогнутым концом опирается на отогнутый конец ленты-вставки так, что при колебаниях лопатки происходят взаимные упругие проскальзывания с сухим трением отогнутых концов этих лент. Гофрированные ленты пакета, гладкие ленты и ленты-вставки изготовлены из жаропрочной нержавеющей стали, не теряющей упругие свойства при 600°С, а контактирующие поверхности этих лент покрыты износостойким покрытием, сохраняющим свои защитные свойства при этой температуре. Достигаются высокая прочность и статическая жесткость, сохраняющаяся или нарастающая в процессе технологического цикла, с высокоэффективным демпфирующим устройством, снижающим динамические напряжения в лопатке при ударе и вибрации до безопасного уровня на всех рабочих режимах авиадвигателя и повышающим ресурс и надежность вентилятора. 2 н. и 9 з.п. ф-лы, 9 ил.
Реферат
Группа изобретений относится к области машиностроения, а именно к пустотелым широкохордным лопаткам вентилятора с демпфером для гашения вибраций и способам изготовления пустотелых широкохордных лопаток вентиляторов, в том числе и к длинным пустотелых широкохордных лопаток вентиляторов с длиной 0,7÷1,5 м.
Повышение надежности путем предупреждения усталостных повреждений рабочих лопаток является актуальной задачей современного авиадвигателестроения. Возникновение этих повреждений во многом определяется уровнем вибрационных напряжений в лопатках во всем диапазоне режимов эксплуатации двигателя. Одним из важнейших факторов, снижающих уровень этих напряжений, является демпфирующая способность лопаток, которая определяется энергией, рассеянной в обтекающем газовом потоке (аэродемпфирование), в материале, и за счет конструкционного демпфирования в замковом соединении, и в контакте бандажных или антивибрационных полок для ступеней с этими полками.
Вентиляторы современных авиационных газотурбинных двигателей выполняются с широкохордными титановыми рабочими лопатками без антивибрационных полок, часто имеют пустотелую конструкцию пера лопатки. Конструкционное демпфирование (в замке лопатки) и демпфирование в материале этих лопаток мало, а аэродинамическое демпфирование резко падает на нерасчетных режимах (см. Б.Ф. Шорр, Г.В. Мельникова, H.Н. Серебряков «Разработка технологий демпфирования колебаний рабочих лопаток турбин ТВД», ТО №13496, 2009).
Поэтому для предотвращения опасных резонансных колебаний лопаток применяют специальные демпфирующие устройства. В абсолютном большинстве известных случаев это устройства конструкционного демпфирования, у которых энергия рассеивается за счет работы сил сухого (кулонова) трения между контактирующими поверхностями при их взаимном упругом проскальзывании в процессе колебаний.
Выбор этого вида демпфирования выбран потому, что его использование позволяет создавать специальные демпфирующие устройства, обеспечивающие оптимальный уровень демпфирования рабочих лопаток турбомашин при конструктивных параметрах демпфирующих устройств. Под конструктивными параметрами здесь понимаются параметры, не существенно (допустимо) ухудшающие габаритные, массовые, технологические, конструктивные характеристики рабочих колес турбомашины и при этом улучшающие эксплуатационные характеристики этих колес и турбомашины в целом. Выбор в пользу этого вида демпфирования сделан уже в самых ранних разработках этих устройств.
Известен ротор турбомашины (см. а.с. 333277. Ротор турбомашины/ Н.С. Кондратов, П.Д. Вильнер, И.Д. Эскин. - Заявлено 12.11.1966. Опубл. 23.03.1972, Бюл. №11.), содержащий диск с лопатками, имеющими демпфирующее устройство в виде пакета металлических пластин, отличающийся тем, что с целью повышения эффективности демпфирования лопаток, они выполнены с разрезными хвостовиками, в разрез которых вставлены металлические пластины с натягом, созданным за счет упругой деформации (выпрямления) предварительно изогнутых металлических пластин, а в замок лопатки под различными углами запрессованы штифты.
Оригинальность этого предложения состоит в том, что упругодемпфирующий элемент располагается внутри ножки лопатки и в качестве такого элемента использован многослойный пакет стальных пластин, сжатый распределенной нагрузкой, полученной за счет больших упругих деформаций пакета при установке его в ножку. В случае, когда жесткость на изгиб стороны ножки будет одного порядка, что и жесткость на изгиб одной пластины, при числе пластин m≥10 в пакете максимальное значение коэффициента рассеивания пакета может достигать очень высоких значений Ψmax≈4÷5 (см. Эскин И.Д. Исследование обобщенных упругофрикционных характеристик демпферов и амортизаторов авиационных двигателей: дис… канд. тех. наук/ И.Д. Эскин. - Куйбышев: КуАИ, 1973. - 150 с. ), т.е. эти устройства при должном подборе его параметров способно обеспечить высокий коэффициент рассеивания системе «диск - лопатки» на наиболее опасных низких формах ее колебаний и, следовательно, эффективное гашение этих колебаний лопаток.
Поэтому рассмотрим его недостатки с точки зрения возможного его использования для демпфирования колебаний рабочих широкохордных, пустотелых, титановых лопаток вентилятора авиационного двухконтурного газотурбинного двигателя.
Демпфирующее устройство по а.с. 333277 при постановки его в ножку титановой рабочей лопатки вентилятора будет недопустимо ее изнашивать при колебаниях лопатки (см. ниже).
Ширина этого устройства равна ширине ножки лопатки (ширине лопатки), что неприемлемо для широкохордных лопаток.
Сдавливающая нагрузка между пластинами пакета для получения требуемых демпфирующих характеристик устройства должна быть большой (по крайней мере, должна быть одного порядка с рабочей нагрузкой, действующей на лопатку) и воздействует на стенки ножки, что снижает прочностные характеристики лопатки.
Конструкция демпфирующего устройства по а.с. 333277 не эффективна при применении ее в длинной пустотелой широкохордной лопатки вентилятора, во - первых, потому, что при конструктивных размерах и массе жесткость пакета при первой форме колебаний лопатки окажется слишком малой для эффективного гашения этих колебаний.
Во - вторых, геометрия изогнутых пластин этого демпфирующего устройства, создающих сдавливающую нагрузку между его пластинами, и компоновка пакета (см. фиг. 1 а.с. 333277) не обеспечит высокие демпфирующие свойства лопатке и требуемую оптимальную настройку демпфирующего устройства при использовании его в широкохордной пустотелой лопатке большой длины (например, 0,7÷1,5 м) и не имеющей ножки.
Известно также демпфирующее устройство (патент США №5205714, 27.04.1993), действие которого основано на рассеянии энергии колебаний лопатки за счет работы сил сухого трения, возникающих при контакте малоподвижного элемента демпфирующего устройства с участком тела колеблющейся лопатки, расположенным внутри ее ножки или в области замкового соединения. Для создания контактного давления используются пружины или другие упругие элементы.
Заметим, что при одном и том же контактном давлении демпфирующее устройство по а.с. СССР 333277 будет рассеивать в разы большую энергию, чем демпфирующее устройство по патенту США №5205714 за счет в разы большего суммарного взаимного проскальзывания контактирующих поверхностей.
Известно также демпфирующее устройство (патент США №6283707, 04.09.2001), использующие для создания контактного давления центробежную силу инерции от вращения рабочего колеса элементов конструкции, размещенных внутри пера или замка лопатки, через упругие элементы.
Числа оборотов вентиляторов двухконтурных авиационных двигателей лежат в диапазоне n=3000÷8300 об/мин (причем нижние значения этих оборотов характерны для гражданских двигателей с большой степенью двухконтурности, а верхние для военных). Масса элемента, размещенного в замке или пере лопатки, не велика и едва ли в большинстве практических случаев превысит 50÷100 г. Поэтому величина создаваемой таким элементом центробежной силы в указанном диапазоне оборотов во многих практических случаях может оказаться недостаточной для создания такой настройки демпфера, которая бы эффективно гасила колебания лопатки.
Известно также устройство демпфирования широкохордных рабочих лопаток вентилятора (см. патент №2461717 РФ, МПК F01D 5/26, F01D25/06. Устройство демпфирования колебаний широкохордных лопаток вентиляторов с большой конусностью втулки и вентилятор газотурбинного двигателя/ Б.Ф. Шорр, Η.Н. Серебряков, М.А. Морозов. - http://www.findpatent.ru/patent/246/2A61717/html), расположенное между рабочим колесом и бустером подпорных ступеней вентилятора, содержит кольцеобразную металлическую пластину, крепящуюся снаружи к диску вентилятора и/или к бустеру и изогнутые профилированные элементы. Элементы выступают соответственно каждой рабочей лопатке над кольцеобразной пластиной по ее внешнему диаметру. Каждый из элементов включает упругую часть и фрикционную часть, отогнутую от упругой и загнутую в направлении внутреннего диаметра кольцеобразной металлической пластины. Элементы выполнены с возможностью прижатия фрикционной части к ответной торцовой поверхности ножки лопатки центробежной силой вентилятора без совершения совместных колебаний для создания силы трения, демпфирующей колебания лопатки. Жесткость крепления элемента к диску вентилятора и/или к бустеру не допускает совместных колебаний устройства и ножки лопатки. Достигается повышение надежности демпфирования колебаний широкохордных лопаток вентилятора с большой конусностью втулки за счет создания силы трения при перемещениях фрикционного элемента устройства и наружной поверхности торца ножки лопатки.
По нашему мнению, формулировка этой формулы изобретения содержит грубые неточности. Так утверждение, что фрикционная часть прижимается к ответной торцовой поверхности ножки лопатки центробежной силой вентилятора неточно, потому, что неясно какая это сила. Лопатки вентилятора создают центробежные силы, действующие на вентилятор, но как ясно из анализа конструкции предложенного устройства, эти силы не создают сдавливающей нагрузки между фрикционной частью устройства и торцом ножки лопатки. Эта нагрузка в этом устройстве создается небольшой долей центробежной силы, создаваемой в основном массой отогнутой части фрикционного элемента (см. ниже). Термин «несовместные колебания», по нашему мнению, не удачен и не точен, так как при наличии ненулевых сил трения на контактных поверхностях на каждом размахе системы «лопатка - демпфирующее устройство», в начале каждого размаха, будет этап, где элементы системы деформируются «совместно», как единое целое. Принципиально возможными являются и этапы деформации системы, на которых происходит постепенное расширение зоны взаимных упругих проскальзываний с сухим трением на контактных поверхностях элементов. Да и на этапе полного расслоения системы колебания ее элементов в строгом смысле не перестают быть совместными, так как и на этом этапе остаются справедливыми некоторые условия совместности деформации ее элементов.
Кроме описанных выше смысловых неточностей демпфирующее устройство по патенту №2461717 РФ имеет ряд физических недостатков.
Как указывалось выше, внутри лопатки может быть размещен демпфер, у которого суммарная величина взаимных проскальзываний с сухим трением на его контактных поверхностях будет в разы больше, чем величина аналогичного проскальзывания демпфера, контактирующего с внешней поверхностью лопатки (например, демпфера по патенту №2461717 РФ), и при одной и той же величине сдавливающей нагрузки, при той же форме и амплитуде колебаний лопатки, демпфер, размещенный внутри лопатки на каждом размахе колебаний будет рассеивать больше энергии, чем демпфер, рассеивающий энергию только за счет работы сил сухого трения на взаимных проскальзываниях его контактной поверхности относительно внешней поверхности лопатки, и, следовательно, обеспечит более высокую надежность демпфирования.
Так из текста его описания следует, что демпфирующее устройство применяется для гашения колебаний лопаток вентилятора, изготовленных из титана.
Широко известно, что титан плохо работает на сухое трение. При сухом трении в паре «титан - металл», например, в паре «титан - сталь», частицы титана вырываются из титанового элемента и налипают на стальной, происходит интенсивный износ титанового элемента.
В описании патента ничего не сказано о мерах, повышающих износостойкость титана.
Как известно, для этих целей наиболее широко применяется оксидирование титановых сплавов. Твердая окисная пленка исключает вырывание и налипание частиц титана и обеспечивает величину коэффициента трения скольжения в паре «титан - сталь» такую же, как в паре «сталь по стали».
Оксидирование титановых сплавов оказалось достаточным для обеспечения изготовления из титановых сплавов различных резьбовых соединений и допускает, например, многократное перезатягивание гаек из титанового сплава. Но нам неизвестно какой ресурс будет у титановой оксидированной лопатки (и, следовательно, авиадвигателя) при взаимодействии ее с демпфирующим устройством по патенту №2461717 РФ при 8000 циклах ее нагружения в минуту.
Деформация фрикционного элемента следит за деформацией лопатки в месте контакта (в том смысле, что величины центробежной силы, действующей на фрикционный элемент, оказывается достаточно для сохранения непрерывного контакта фрикционного элемента и лопатки).
Чтобы эффективность демпфирующего устройства по патенту №2461717 РФ была бы приемлема жесткость его фрикционного элемента в направлении поперечных колебаний лопатки должна быть, по крайней мере, одного порядка с жесткостью лопатки в этом же направлении (см. Эскин И.Д. Исследование обобщенных упругофрикционных характеристик демпферов и амортизаторов авиационных двигателей: приложение к дис… канд. тех. наук/ И.Д. Эскин. Приложение.- Куйбышев: КуАИ, 1973. - 315 с.), т.е. достаточно большой.
В конструкции демпфирующего устройства по патенту №2461717 выполнение этого условия приводит к достаточно большой жесткости его фрикционного элемента в направлении, перпендикулярном плоскости поперечных колебаний лопатки.
Лопатка совершает пространственные колебания. Возрастание составляющей ее деформации в направлении отрыва фрикционного элемента от поверхности лопатки уменьшает долю центробежной силы, создающей сдавливающую нагрузку между лопаткой и фрикционным элементом, от половинного значения центробежной силы при нулевом значении этой составляющей вплоть до нуля при отрыве фрикционного элемента. Причем, чем больше жесткость фрикционного элемента в направлении, перпендикулярном плоскости поперечных колебаний лопатки, тем интенсивнее идет процесс снижения этой доли центробежной силы на данном размахе колебаний. Это физическое явление несколько снижает демпфирующие свойства этого демпфирующего устройства.
При появлении зазора между лопаткой и фрикционным элементом у неработающего двигателя, а этот зазор может появиться в силу ряда эксплуатационных причин, например, за счет износа контактирующих поверхностей лопатки и фрикционного элемента, этот зазор будет выбираться на работающем двигателе при действии центробежной силы, причем доля центробежной силы, создающей сдавливающую нагрузку между лопаткой и фрикционным элементом, будет уменьшаться (от половины центробежной силы) тем больше, чем больше жесткость фрикционного элемента в направлении, перпендикулярном плоскости поперечных колебаний лопатки, и чем больше зазор. Это физическое явление в процессе эксплуатации может существенно снизить демпфирующие свойства этого демпфирующего устройства вплоть до такого уровня, когда демпфирующее устройство станет бесполезным.
Для того, чтобы вся центробежная сила фрикционного элемента создавала сдавливающую нагрузку на контактных поверхностях лопатки и фрикционного элемента, в зависимом пункте формулы изобретения патента №2461717 РФ предложено демпфирующее устройство, у которого фрикционный элемент установлен, с возможностью свободного смещения его в направляющих в радиальном направлении.
Недостатком этого устройства является его конструктивная и технологическая сложность, которая, прежде всего, заключается в выполнении с высокими точностью и чистотой изготовления основания с направляющими и самого фрикционного элемента, исключающими заклинивание его в направляющих, которое в свою очередь может привести к увеличению дисбаланса ротора вентилятора.
К числу основных недостатков демпфирующего устройства по патенту №2461717 РФ то обстоятельство, что применение его в гражданских газотурбинных двигателях с оборотами n=3000÷4000 об/мин с большой степенью двухконтурности с рабочими лопатками вентилятора, выполняемыми с ножками, оказывается не эффективным или даже не целесообразным в силу того, что центробежная сила, создаваемая фрикционным элементом при его конструктивных параметрах, окажется не достаточной для создания настройки демпфера, обеспечивающей его эффективную работу, или настройка демпфера окажется даже не снижающей максимальные напряжения лопатки на ее наиболее опасных формах колебания до приемлемого уровня (см. ниже).
К числу основных недостатков демпфирующего устройства по патенту №2461717 РФ относится также то обстоятельство, что применение его для военных газотурбинных двигателях с оборотами n=7000÷8300 об/мин не возможно, или не эффективно, так как у вентиляторов этих двигателей рабочие лопатки выполнены либо совсем без ножек, либо с короткими ножками, у которых смещения, на которых бы рассеивалась энергия, при использовании демпфера по патенту №2461717 РФ, малы и, следовательно, мала эта энергия.
Кроме того, даже в гипотетическом случае, когда максимальное число оборотов вентилятора достаточно велико, например, n≥8000 об/мин и рабочие лопатки вентилятора выполнены с высокими ножками, двигатель при запуске или останове проходит через обороты, частоты которых совпадают с резонансными частотами опасных низших форм колебания рабочих лопаток вентилятора и эти частоты относительно невелики, например, соответствуют n≤4000 об/мин, и/или двигатель имеет рабочие режимы с оборотами, находящимися в резонансных зонах этих форм колебаний рабочих лопаток вентилятора, демпфирующее устройство по патенту №2461717 РФ на этих режимах работы окажется малоэффективным вследствие недостаточной величины центробежной силы, создаваемой фрикционным элементом устройства.
Для эффективного гашения колебаний длинной пустотелой широкохордной лопатки вентилятора демпфирующее устройство по патенту №2461717 РФ вообще не годится, так как эти лопатки, либо вообще не имеют ножки, либо длина этих ножек не достаточна для создания эффективного демпфирующего устройства такого типа.
Для использования в авиадвигателях пятого поколения требуются пустотелые широкохордные лопатки вентиляторов до 1÷1,5 м длиной с рабочей температурой до 250°С. Они должны иметь стойкость к точечным ударам при попадании посторонних предметов, иметь высокую усталостную прочность при длительном воздействии статических и динамических нагрузок и быть устойчивыми к скручиванию при высоких оборотах. В настоящее время эти лопатки изготавливаются из волокнистых однонаправленных композиционных металломатричных материалов с малым удельным весом, высокой прочностью и высокой стойкостью к эрозии в потоке газов.
Известен способ изготовления пустотелых лопаток вентилятора (см. патент США №398646), по которому оболочки лопатки изготавливают из бораалюминиевого волокнистого композиционного материала, в полости, образованной оболочками, размещают титановый лонжерон. Лонжерон и оболочки сваривают диффузионной сваркой при температуре и давлении.
Недостатком этого способа является сложность получения оболочек аэродинамической формы из непластичных (хрупких) волокон бораалюминия. Основным несущим элементом в этой конструкции крупноразмерной лопатки является лонжерон, и так как титан обладает худшей прочностью, чем боралюминий, более рациональным было бы силовой элемент выполнить из бораалюминия, а оболочки из титана (см. ниже).
Известен способ получения лопатки компрессора (см. патент РФ №2229035), состоящей из оболочки и силовых несущих элементов, имеющих полости, или выполнена без полостей, включающий придание пластинам, из которых выполнены оболочка и несущие элементы, заданной формы и размеров, укладку пластин друг на друга в штамп, повторяющий форму и размеры лопатки, и диффузионную сварку при температуре и давлении. Оболочку и несущие элементы выполняют из одного и того же материала, или хотя бы одну пластину вырезают из металла с иными характеристиками прочности.
Недостатком этого способа при применении его к изготовлению крупноразмерных лопаток является то, что основная часть такой лопатки будет изготовлена из металлического листового материала с высоким удельным весом, но не обладающим достаточной прочностью и жесткостью, необходимых для изготовления пустотелых широкохордных лопаток вентилятора. При изготовлении таких лопаток с полостями снижается одновременно ее вес и прочность, что принципиально не позволяет достичь результатов, получаемых способом (см. патент РФ 2296246, МПК F04D 29/38. Способ получения широкохордной пустотелой лопатки вентилятора/ Ε.Н. Каблов, Ю.А. Абузин, А.И. Наймушин, В.Н. Кочетов, А.А. Шавнев. Опубл. 27.03.2007. Интернет: http://www.freepatent.ru/patents/2296246), состоящим в том, что пустотелую широкохордную лопатку вентилятора, состоящую из оболочки и силовых несущих элементов изготавливают следующей последовательностью операций: придают оболочке требуемую форму и размеры, получают несущие элементы из предварительно сформованных монослоев композиционного материала путем их ступенчатой термодеформационной обработки с постепенным увеличением ее воздействия на материал, укладывают в оболочку несущие элементы на расстояниях друг от друга в соответствии со схемой армирования, укладывают сформированную таким образом заготовку в штамп, повторяющий профиль и размеры лопатки, в составе собранной заготовки выполняют завершающую стадию термодеформационной обработки несущих элементов при одновременном прессовании и диффузионной сварке лопатки при заданной температуре и давлении.
Оболочку выполняют из листа из титанового сплава. Несущие элементы изготавливают из волокнистого однонаправленного металломатричного высокомодульного композиционного материала - борных волокон в алюминиевой матрице, или борных волокон с покрытием карбида кремния в алюминиевой матрице, или углеродных волокон в алюминиевой матрице, или волокон карбида кремния в титановой матрице.
Ступенчатую термодеформационную обработку несущих элементов лопатки проводят в несколько стадий. На первой стадии степень воздействия термодеформационной обработки составляет 40-70%, на второй стадии степень воздействия термодеформационной обработки с одновременным формованием несущих элементов до требуемой геометрической формы составляет 60-90%, а окончательную термодеформационную обработку несущих элементов до 100% проводят в составе собранной заготовки при одновременном прессовании и диффузионной сварке лопатки.
Этот способ позволяет получить легкие пустотелые широкохордные лопатки вентиляторов авиационных ГТД с высокой прочностью и статической жесткостью, сохраняющимися или нарастающими в процессе технологического цикла, повысить ресурс и надежность вентилятора ГТД.
Общим недостатком пустотелых широкохордных лопаток, получаемых вышерассмотренными способами, и самих этих способов является то обстоятельство, что в конструкции этих лопаток и способах не предусмотрена постановка специального демпфирующего устройства, что при очень крупных размерах этих лопаток и подверженности их большим вибрационным и ударным нагрузкам может оказаться в ряде практических случаях очень важной проблемой и конструктор столкнется с необходимостью разработки конструкции пустотелой широкохордной лопатки с высокоэффективным демпфирующим устройством и способа ее изготовления.
Нам не удалось отыскать не только хотя бы один пример успешного практического применения в серийно выпускаемой турбомашине специальных демпфирующих устройств пустотелых широкохордных лопаток вентилятора, но и патентов, где бы предлагались такие лопатки с высокоэффективным демпфирующим устройством. Заметим также, что актуальность решения этой задачи будет только возрастать с развитием прогресса в авиадвигателестроении.
Поэтому в качестве прототипов предлагаемой длинной пустотелой широкохордной лопатки вентилятора и способа ее изготовления, как наиболее близкие по техническому решению к предлагаемым, принята пустотелая широкохордная лопатка вентилятора, получаемая по способу (см. патент РФ 2296246, МПК FQ4D 29/38. Способ получения широкохордной пустотелой лопатки вентилятора), и сам этот способ.
Ставится задача создания конструкции длинной легкой пустотелой широкохордной лопатки вентилятора авиационного ГТД пятого поколения с высокой прочностью и статической жесткостью, сохраняющимися или нарастающими в процессе технологического цикла, с высокоэффективным демпфирующим устройством, способным не только снизить динамические напряжения в лопатке при ударе и вибрации до безопасного уровня на всех рабочих режимах авиадвигателя, но и повысить ресурс и надежность вентилятора ГТД.
Поставленная задача решается тем, что предлагается длинная пустотелая широкохордная лопатка вентилятора, состоящая из оболочки, выполненной из листа из титанового сплава, и жестко скрепленных с ней силовых несущих элементов, выполненных кроме одного из волокнистого однонаправленного металломатричного композиционного материала - борных волокон в - алюминиевой матрице, или борных волокон с покрытием карбида кремния в алюминиевой матрице, или углеродных волокон в алюминиевой матрице, или волокон карбида кремния в титановой матрице, причем n+1 силовых несущих элемента выполнены в виде замков «ласточкин хвост», и размещены между других n силовых несущих элементов и на краях замка лопатки, n-1 силовых несущих элементов, выполненных из композиционного материала, имеют замковую часть, выполненную в виде «ласточкина хвоста», и размещенную внутри оболочки часть в виде стержня с постоянным или с постепенно сужающимся к концу лопатки поперечным четырехугольным сечением, с стороной или сторонами, контактирующими с оболочкой, повторяющими ее форму, все несущие элементы диффузионной сваркой при температуре и давлении замковыми частями скреплены друг с другом, а частями, размещенными внутри оболочки - с оболочкой, отличающаяся тем, что внутри оболочки размещен еще один силовой несущий элемент - лонжерон, выполненный из титанового сплава, состоящий из замковой части, выполненной в виде «ласточкина хвоста» замка лопатки, выполненных заодно целое с замковой частью центрального стержня с постоянным или с постепенно сужающимся к концу лопатки коробчатым прямоугольным или четырехугольным поперечным сечением или поперечным сечением в виде двутавра и двух или четырех стоек с поперечным четырехугольным сечением, со сторонами, контактирующими с оболочкой, повторяющими ее форму, между каждой стойкой или каждой парой стоек и центральным стержнем лонжерона или полками двутавра имеется прямоугольная щель, расположенная параллельно хорде некоторого поперечного сечения лопатки, при котором при заданной закрутке лопаток обеспечивалась прочность стоек и центрального стержня лонжерона, причем каждая щель заглублена в замковую часть лонжерона, в каждой из этих двух щелей, на стойки установлена гладкая, стальная, каленая или нагартованная, шлифованная лента, а на стержень лонжерона установлена гладкая, стальная, каленая или нагартованная, шлифованная лента - вставка с выемками, выполненными по дуге окружности на одной из сторон ленты, и в каждой из двух щелей между гладкой лентой и лентой - вставкой с требуемым натягом по вершинам гофров δ>Y∂, где Y∂ - допустимая деформация сжатия гофра пакета в мм, так размещен многопролетный пакет, собранный «гофр в гофр» из одной, двух или более стальных, каленых или нагартованных, шлифованных, гофрированных лент, что гофры пакета, опирающиеся на ленту - вставку, размещены в ее выемках, и вершины гофров опираются на выемки в их плоскости симметрии, а ƒ≥Y∂+h, где ƒ - стрела выгиба гофра и h - глубина выемки ленты - вставки, и на свободном конце стержня лонжерона выполнены полки, располагающиеся над стойками, и между торцами полки, и оболочкой имеются зазоры, большие допустимой величины деформации лопатки, лента - вставка отогнутым концом опирается на полку, а гладкая лента отогнута на торец или торцы пары стоек и отогнутым концом опирается на отогнутый конец ленты - вставки так, что при колебаниях лопатки происходят взаимные упругие проскальзывания с сухим трением отогнутых концов этих лент, диффузионной сваркой при температуре и давлении замковая часть лонжерона жестко соединена с замками контактирующих с нею несущих силовых элементов и с оболочкой и стойки жестко соединены с оболочкой, гофрированные ленты пакета, гладкие ленты и ленты - вставки изготовлены из жаропрочной нержавеющей стали, не теряющей упругие свойства при 600°С, а контактирующие поверхности этих лент покрыты износостойким покрытием, сохраняющим свои защитные свойства при этой температуре, и требуемые упругофрикционные характеристики системы «лопатка - демпфирующее устройство» получают должным подбором следующих параметров: числа гофров m гофрированного пакета, толщины гладких лент hг, глубины или глубин выемок h и радиусов выемок R лент - вставок, а сама лопатка изготовлена по способам п. 9, или п. 10, или п. 11 формулы изобретения.
Изготовление лонжерона из титанового сплава объясняется тем, что композиционный высокомодульный материал, из которого изготовлены остальные несущие элементы лопатки, хрупок и тверд и плохо механически обрабатывается. При этом несколько ухудшается массовая характеристика лопатки и снижается ее прочность, так как удельный вес композиционного высокомодульного материала меньше удельного веса титанового сплава, a σв материала больше σв титанового сплава (см. патент РФ 2296246, МПК F04D 29/38. Способ получения широкохордной пустотелой лопатки вентилятора). Однако эти ухудшения для длинных пустотелых широкохордных лопаток, по нашему мнению, во многих случаях будут полностью компенсированы, и даже при той же массе лопатки за счет момента инерции пустотелого лонжерона и гашения колебаний лопатки демпфером максимальное главное напряжение лопатки может оказаться ниже, чем у лопатки с несущими элементами из композиционного высокомодульного материала, а в некоторых практически важных случаях предлагаемая лопатка может оказаться не только целесообразным, но и безальтернативным решением.
Выполнение условия δ>Y∂ исключает отрыв вершин гофров пакета от лент, на которые он опирается, в процессах деформирования лопатки.
В работе (см. Эскин И.Д. Циклическое сжатие многослойного многопролетного гофрированного пакета / И.Д. Эскин, Р.И. Алкеев, В.И. Иващенко // Вестник СГАУ. - №1 (39), 2013. - С. 178-191) показано, что нагрузочные процессы при циклическом сжатии многослойного, многопролетного, гофрированного пакета идентичны (при решении задачи методом Галеркина) соответствующим им нагрузочным процессам однослойного, многопролетного гофра с таким же числом гофров, но с жесткостью
С0=2nπ4ΕΙ/t3,
где n - число гофрированных лент в многослойном пакете, EI - изгибная жесткость одного слоя гофра, t - шаг гофра.
Этот результат физически, прежде всего, объясняется тем, что энергия, рассеиваемая пакетом при его циклическом сжатии, рассеивается в основном за счет работы сил сухого трения на проскальзываниях гофров внешних лент пакета по жестким плитам, а энергия, рассеиваемая внутри пакета, мала по сравнению с этой энергией, а также использованием приближенного аналитического метода решения задачи (метода Галеркина).
Этот результат позволяет к классификации систем конструкционного демпфирования, разработанной в работе (см. Эскин И.Д. Исследование обобщенных упругофрикционных характеристик демпферов и амортизаторов авиационных двигателей: дис… канд. тех. наук/ И.Д. Эскин. - Куйбышев: КуАИ, 1973. - 150 с. ), добавить еще один класс этих систем, а именно класс систем конструкционного демпфирования, у которых энергия, рассеиваемая внутри упругогистерезисного элемента, мала по сравнению с энергией, рассеиваемой на его границах. Системы конструкционного демпфирования, принадлежащие к этому классу, будут обладать вышеописанным свойством.
Использование этого свойства в предлагаемом демпфере позволяет определить количество лент в пакете из условия получения минимально возможной массы пакета при обеспечении его прочности и требуемых УДХ и позволило нам определиться с заявляемым количеством лент этого пакета.
Выполнение требований сохранения упругих свойств гладкими лентами, лентами - вставками и гофрированными лентами при температуре 600°С и их износоустойчивости при этой температуре необходимо потому, что диффузионную сварку лопатки проводят с установленным демпфером при температуре 550±20°С и при давлении 0,5 МПа (см. патент РФ 2296246, МПК F04D 29/38. Способ получения широкохордной пустотелой лопатки вентилятора).
Широко известно, что титан плохо работает на трение. Установка в щелях стальных гладких лент и лент - вставок исключает работу на трение лонжерона, изготовленного из титанового сплава, и организует контакты вершин гофров пакета с лентами «сталь по стали». Покрытие контактирующих поверхностей лент износостойким покрытием, например, серебрением обеспечивает высокую износостойкость этих элементов при рабочих температурах до 250°С.
Стержень лонжерона выполнен с жесткостью на изгиб, равной или меньшей (но такого же порядка) жесткости на изгиб в этом же поперечном сечении оболочки, подкрепленной жестко соединенными несущими силовыми элементами. При такой жесткости стержня лонжерона пакет будет не только изгибаться, но его гофры будут циклически сжиматься. Жесткость пакета на изгиб невелика и ее значение далеко от оптимального. Жесткость. же пакета (вершин гофров) на сжатие при должном подборе параметров пакета может обеспечить ему оптимальную жесткостную характеристику, а должный подбор величины начального натяга по вершинам гофров пакета и работа гофров на циклическое сжатие при колебаниях лопатки обеспечивали проскальзывания с сухим трением вершин гофров по контактирующим с ними лентами и при этом обеспечивалась высокая эффективность демпфера, способного не только снизить динамические напряжения в лопатке при ударе и вибрации до безопасного уровня на всех рабочих режимах авиадвигателя, но и повысить ресурс и надежность вентилятора ГТД.
Наличие у лент - вставок выемок, выполненных по дуге окружности, во - первых, улучшает УФХ демпфера и, следовательно, лопатки в целом за счет того, что при деформации лопатки гофры пакета циклически сжимаются, при этом происходит проскальзывание их вершин по цилиндрической поверхности выемки, отчего гофры дополнительно сжимаются и при этом, естественно, увеличиваются и проскальзывания вершин гофров. В результате энергия, рассеиваемая демпфером, увеличивается, как за счет дополнительного увеличения суммарной величины проскальзываний вершин гофров, так и за счет дополнительного увеличения сил трения на контактных поверхностях демпфера.
Во - вторых, наличие выемок у лент - вставок фиксирует смещение пакета под действием центробежных сил, создаваемых его массой, а наличие - полок у стержня лонжерона, в которые упираются гладкие ленты и ленты - вставки, обеспечивает восприятие центробежных сил, создаваемых суммарной массой пакета, гладких лент и лент - вставок, стержнем лонжерона.
Заглубление щелей в замочную часть лонжерона позволяет фиксировать пакет от смещения в направлении ширины щели с помощью силовых несущих элементов, контактирующих с замковой частью лонжерона.
Применение предлагаемых способов изготовления длинной пустотелой широкохордной лопатки обеспечивает высокую прочность и статическую жесткость, сохраняющиеся или нарастающие в процессе технологического цикла (см. ниже).
УФХ демпфера, а, следовательно, и системы «пустотелая лопатка -демпфер» можно изменять в широких пределах без изменения конструктивно сложных деталей лопатки, например, лонжерона и технологического оборудования - штампов для изготовления гофрированных лент и приспособлений для сборки демпфера и установки его в лопатку. Величину Начального натяга δ можно изменить, как подбором гладких лент нужной толщины hг, так и подбором лент - вставок с нужной глубиной h выемок. Возможно подобрать требуемый закон распределения начального натяга по длине лопатки, установив ленты - вставки с нужным законом изменения глубин выемок. Возможно также подобрать требуемый закон распределения дополн