Отображение в реальном времени видов сосудистой сети для оптимального перемещения устройства
Иллюстрации
Показать всеГруппа изобретений относится к медицинской технике, а именно к средствам перемещения в сосудистой сети. Устройство для помощи в перемещении устройства в сети трубчатых структур содержит модуль ввода для приема текущего опорного проекционного изображения, полученного в первом направлении проекции в то время, когда устройство размещается в сети трубчатых структур, при этом проекционное изображение при отображении показывает отпечаток устройства, процессор, сконфигурированный с возможностью использовать текущую позицию в изображении отпечатка и модель сети для того, чтобы извлекать, без использования полученных данных трехмерных изображений сети, вспомогательное проекционное изображение из последовательности ранее полученных двумерных проекционных изображений, причем такое извлеченное вспомогательное изображение при отображении показывает, по меньшей мере, частичный отпечаток сети, при этом такое извлеченное вспомогательное изображение предоставляет вид вдоль второго направления проекции для сети в исследуемом участке и формирователь графических отображений. Способ помощи в перемещении осуществляется посредством устройства. Система рентгеновской визуализации для помощи в перемещении устройства в сети трубчатых структур содержит модуль рентгеновской визуализации, базу данных, устройство для помощи в перемещении устройства, причем используемые в нем проекционные изображения извлекаются из базы данных, экран и машиночитаемый носитель. Использование группы изобретений позволяет расширить арсенал технических средств перемещений в сети трубчатых структур. 4 н. и 11 з.п. ф-лы, 2 ил.
Реферат
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к устройству для помощи в перемещении устройства в сети трубчатых структур, к способу для помощи в перемещении устройства в сети трубчатых структур, к медицинской системе поддержки рентгеновской визуализации, к компьютерному программному элементу и к машиночитаемому носителю.
УРОВЕНЬ ТЕХНИКИ
В ходе PCI (чрескожного коронарного вмешательства) направляющий провод вводится и продвигается вдоль сосудов сердца, чтобы поддерживать лечение кардиального стеноза.
При перемещении по сосудам врач основывается на статическом изображении сосудистой сети, показанном рядом с передаваемым "вживую" флуороскопическим изображением.
Изображение сосудистой сети типично иллюстрирует сосуды с перспективы, идентичной перспективе флуороскопического изображения. Тем не менее, трехмерная геометрия сосудистой сети является сложной и иногда трудной при представлении.
WO 2011/086475 описывает систему для перемещения хирургического инструмента.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Следовательно, может возникать потребность в другой системе для того, чтобы помогать врачу во время вмешательства.
Цель настоящего изобретения достигается посредством объекта изобретения по независимым пунктам формулы изобретения, при этом дополнительные варианты осуществления включаются в зависимые пункты формулы изобретения.
Следует отметить, что следующие описанные аспекты изобретения в равной степени применимы к способу помощи в перемещении устройства в сети трубчатых структур, к медицинской системе поддержки рентгеновской визуализации, к компьютерному программному элементу и к машиночитаемому носителю.
Согласно одному аспекту настоящего изобретения, предусмотрено устройство для помощи в перемещении устройства в сети трубчатых структур. Устройство содержит:
- модуль ввода, сконфигурированный с возможностью принимать текущее опорное или "ведущее" проекционное изображение, полученное в первом направлении проекции в то время, когда устройство размещается в сети трубчатых структур, при этом проекционное изображение при отображении показывает отпечаток устройства;
- процессор, сконфигурированный с возможностью использовать текущую позицию в изображении отпечатка и модель сети для того, чтобы извлекать, по меньшей мере, одно вспомогательное проекционное изображение из последовательности ранее полученных двумерных проекционных изображений. Такое извлеченное вспомогательное изображение показывает, при отображении, по меньшей мере, частичный отпечаток сети, и такое извлеченное вспомогательное изображение предоставляет вид вдоль второго направления проекции для сети в исследуемом участке, в котором в данный момент размещается устройство;
- формирователь графических отображений, сконфигурированный с возможностью формировать для отображения на экране графическую панель, включающую в себя текущее проекционное изображение и вспомогательное проекционное изображение. Устройство сконфигурировано с возможностью обновлять графическую панель при приеме нового проекционного изображения в модуле ввода, при этом обновленная панель в таком случае включает в себя новое проекционное изображение и новое или последующее извлеченное вспомогательное проекционное изображение.
Согласно одному варианту осуществления, сеть трубчатых структур является кардиальной сосудистой сетью, и опорное проекционное изображение является (передаваемым вживую) флуороскопическим ("флюорографическим") изображением из множества флуороскопических изображений, получаемых по одному за раз в ходе PCI (чрескожного коронарного вмешательства). Устройство может быть направляющим проводом, продвигаемым через сосудистую сеть врачом, с тем чтобы перемещаться к патологическому изменению в конкретной ветви сосудистой сети.
Согласно одному варианту осуществления, последовательность вспомогательных проекционных изображений представляет собой ангиографии ("ангиографии") сосудистой сети, каждая из которых кодирует различный отпечаток сосудистой сети. Ангиографии получены перед вмешательством и/или работой устройства. Информация двумерных изображений, кодированная в ангиографиях, используется для того, чтобы дополнять в реальном времени каждое из флюорографических изображений, полученных во время вмешательства.
Другими словами, устройство работает с возможностью отображать определенное число видов сосудистой сети, выбранных таким образом, что они обеспечивают наилучшую визуализацию трехмерной структуры сегмента сосуда, в котором в данный момент перемещается устройство. Виды автоматически адаптируются таким образом, что текущий исследуемый участок сосуда для цели перемещения также задается в любое время в ходе вмешательства. Иными словами, устройство сопоставляет и подготавливает к отображению для врача релевантную пространственную информацию, чтобы за счет этого способствовать лучшему пониманию трехмерной структуры локали, в которой в данный момент перемещается сосуд. Выбор видов основан или направляется посредством вида позиции на месте направляющего провода согласно текущему флюорографическому изображению, получение которого врач запрашивает в соответствии с целесообразностью в ходе вмешательства.
В заключение, устройство определяет перемещаемое устройство во флуороскопическом изображении и вычисляет позицию устройства в сосудистой сети, чтобы за счет этого идентифицировать текущий исследуемый участок сосудистой сети. После того, как получается текущий исследуемый участок сосудистой сети, выбираются оптимальные виды, которые дают возможность оценки локальной трехмерной геометрии в точке в сосудистой сети, в которой в данный момент размещается устройство.
Устройство при работе базируется исключительно на информации двумерных изображений. Вычисления трехмерных изображений в рабочей среде не вовлекаются, что помогает уменьшать процессорное время, в силу этого обеспечивая быстроту реагирования и повышенную производительность в реальном времени. В частности, не требуется получение объема трехмерных изображений (CT), что помогает сокращать как время вмешательства, так и выделение рентгеновского излучения, в силу этого принося пользу пациенту. Это также упрощает поток обработки, поскольку не должны получаться интраоперационные трехмерные данные.
Согласно одному варианту осуществления, модель является общей, так что она не вычисляется из рассматриваемой конкретной трубчатой сети.
Согласно одному варианту осуществления, модель сосудистой сети представляет собой одну модель из совокупности различных моделей, соответствующих одной из фаз сердечной деятельности. Процессор сконфигурирован с возможностью выбирать сетевую модель в соответствии с формой сосудистой сети в течение времени получения текущего проекционного изображения. Это допускает учет динамики сердечной деятельности, поскольку сосудистая сеть, которая окружает сердечную мышцу, изменяет свою форму или деформируется по мере того, как мышца попеременно сжимается и разжимается.
Согласно одному варианту осуществления, множество (ранее полученных) двумерных проекционных изображений получено вдоль различных направлений проекции. Второе направление проекции вспомогательного изображения предоставляет лучший вид для сети в исследуемом участке по сравнению с другим проекционным изображением из последовательности при измерении касательно одного из множества различных стандартов добротности вида или комбинации множества различных стандартов добротности вида.
Стандарт или множество стандартов учитывают любое из следующего либо их комбинацию или среднее:
(i) низкая степень перекрытий в части отпечатка, представляющего исследуемый участок,
(ii) низкая степень сокращения в перспективе части отпечатка, представляющего исследуемый участок,
(iii) высокая степень извилистости части отпечатка, представляющего исследуемый участок. Процессор сконфигурирован с возможностью вычислять, на основе сетевой модели, количественный показатель для стандарта добротности вида. "Лучший" вид может представлять собой лучшую из всех ангиографий в последовательности ("наилучший вид") либо может представлять собой лучшую по сравнению с истинным поднабором ангиографий из последовательности, причем второе имеет место, в частности, при извлечении ангиографии, имеющей количественный показатель, превышающий регулируемый пользователем пороговый количественный показатель или значение. "Низкие" или "высокие" количественные показатели стандартов добротности вида означают либо то, что конкретный количественный показатель одной ангиографии выше количественного показателя другой ангиографии, либо то, что количественный показатель конкретной ангиографии выше или ниже порогового количественного показателя.
Использование взвешенного среднего для того, чтобы комбинировать различные стандарты перекрытия, сокращения в перспективе и извилистости, дает возможность нахождения компромисса или достижения правильного баланса между этими стандартами просмотра, чтобы лучше учитывать потребности врача при выполнении вмешательства. Также рассматриваются другие способы комбинирования, такие как максимум, среднее, нелинейное смешивание.
Согласно одному варианту осуществления, процессор сконфигурирован с возможностью извлекать вместе со вспомогательным изображением опорное вспомогательное изображение. Опорное вспомогательное изображение имеет направление проекции, практически идентичное направлению проекции текущего опорного проекционного изображения, и вспомогательное проекционное изображение вычисляется, чтобы предоставлять лучший вид для сети в исследуемом участке по сравнению с опорным вспомогательным изображением при измерении касательно первого/выбираемого пользователем стандарта добротности вида. Другими словами, вспомогательное изображение и опорное вспомогательное изображение вместе предоставляют дополнительные виды исследуемого участка. Таким образом, совокупность направлений проекции извлеченных вспомогательных проекционных изображений формирует более информативную выборку видов вокруг исследуемой области, поскольку может учитываться перспектива, выбранная оперирующим врачом относительно устройства. Это способствует лучшему пониманию трехмерной структуры сосудистой сети, в силу этого помогая врачу быстрее перемещаться по сосудистой сети.
Согласно одному варианту осуществления, дополнительные виды достигаются посредством извлечения посредством процессора вместе со вспомогательным изображением, по меньшей мере, одного дополнительного вспомогательного изображения, так что извлекается группа вспомогательных проекционных изображений. Дополнительное вспомогательное изображение предоставляет лучший вид для сети в исследуемом участке по сравнению со вспомогательным изображением при измерении касательно второго стандарта добротности вида, отличающегося от первого стандарта добротности вида. В одном варианте осуществления, группа включает в себя опорное вспомогательное изображение, и предусмотрено, по меньшей мере, одно вспомогательное изображение, которое предоставляет лучший вид по сравнению с опорным вспомогательным изображением относительно, по меньшей мере, одного из множества стандартов.
Согласно одному варианту осуществления, опорное вспомогательное проекционное изображение включается в одну область графической панели рядом с комплементарным вспомогательным проекционным изображением, показанным в дополнительной области. В одном варианте осуществления, существует настройка по умолчанию так, что каждый раз, когда получается опорное проекционное изображение, вспомогательная опорная проекция извлекается автоматически.
Согласно одному варианту осуществления, процессор сконфигурирован с возможностью извлекать новое или последующее вспомогательное проекционное изображение из изображений в пределах задаваемого пользователем допустимого углового запаса текущего отображаемого вспомогательного проекционного изображения направления проекции. В одном варианте осуществления, извлечение в пределах этого предварительно заданного допустимого углового запаса реализуется посредством использования дополнительного количественного показателя стандарта добротности вида ("угловой близости") наряду со стандартами, упомянутыми выше. Аналогичный стандарт добротности вида на основе угловой близости также может быть принудительно активирован для вспомогательных проекционных изображений в группе. Вспомогательные проекционные изображения в группе или последующие вспомогательные проекционные изображения сконфигурированы с возможностью оставаться в пределах задаваемого пользователем допустимого углового запаса направлений проекции ранее извлеченного вспомогательного проекционного изображения или изображений в группе. Этот количественный показатель угловой близости может быть задан посредством убывающей функции углового отклонения между вспомогательными проекционными изображениями в группе или между текущим вспомогательным проекционным изображением или изображениями и последующим вспомогательным проекционным изображением или изображениями, которые должны быть извлечены. Чем ниже угловое отклонение, тем выше соответствующий количественный показатель угловой близости, за счет этого поддерживая угловую близость в количественном показателе при комбинировании с другими количественными показателями добротности вида. Это дает возможность предоставления для пользователя усовершенствованного визуального впечатления с плавными переходами от текущего извлеченного (и отображаемого) вспомогательного проекционного изображения и последующего вспомогательного проекционного изображения, извлеченного (и отображаемого) в ходе вмешательства.
Согласно другому варианту осуществления, вместо ограничения извлечения/оптимизации допустимым угловым запасом вокруг направления проекции текущего изображения, плавность перехода достигается посредством краткого постепенного появления и затем исчезновения одного изображения за раз из последовательности субоптимальных проекционных изображений до того, как в конечном счете отображается проекционное изображение с наилучшим или лучшим количественным показателем. Субоптимальные изображения, определенные во время оптимизации, имеют количественные показатели, меньшие наилучшего или лучшего изображения, и последовательность, в которой постепенно появляются изображения, определяется согласно их количественному показателю, начиная с более низкого количественного показателя, постепенно повышаясь через более высокие количественные показатели вплоть до лучшего или наилучшего изображения, имеющего наивысший количественный показатель или количественный показатель выше порогового значения оптимизации. Субоптимальные изображения сохраняются в порядке их количественного показателя в буфере, так что к ним может осуществляться доступ в этом порядке посредством формирователя графических отображений, чтобы осуществлять их соответствующее постепенное появление в графической панели. Число таких сохраненных субоптимальных изображений и длительность их соответствующих постепенных появлений являются задаваемыми пользователем, чтобы за счет этого обеспечивать настройку устройства для наилучшего визуального впечатления для отдельного врача.
Согласно одному варианту осуществления, процессор включает в себя оптимизатор, сконфигурированный с возможностью вычислять количественные показатели добротности вида, на которых затем основывается извлечение. Вычисление либо выполняется заранее на подготовительной фазе до работы устройства (оффлайновый режим), либо проводится в реальном времени после извлечения (онлайновый режим).
Согласно одному варианту осуществления, формирователь графических отображений сконфигурирован с возможностью использовать текущую позицию в изображении устройства, чтобы накладывать графическое представление устройства в соответствующей позиции во вспомогательном проекционном изображении, включенном в графическую панель, или сконфигурирован с возможностью накладывать на опорное проекционное изображение графическое представление исследуемой области, как показано во вспомогательном проекционном изображении.
В одном варианте осуществления, вспомогательное проекционное изображение отображается на гладком фоне.
Согласно одному варианту осуществления, формирователь графических отображений сконфигурирован с возможностью задавать цветовой код для исследуемой области во вспомогательном проекционном изображении, включенном в графическую панель. Другими словами, по мере того, как устройство продвигается через сосудистую сеть, виды конфигурируются так, чтобы ярко выделять исследуемый участок сосудистой сети в каждом из извлеченных вспомогательных изображений.
Согласно одному варианту осуществления, формирователь графических отображений сконфигурирован с возможностью формировать информацию примечаний для отображения на панели, причем информация примечаний включает в себя вычисленный количественный показатель для стандарта добротности вида вспомогательного изображения и/или включает в себя один или более параметров, используемых для вычисления количественного показателя. Дополнительно, специалисты в данной области техники должны понимать, что могут использоваться двумерные изображения, отличные от ангиографий и/или флюорографических изображений.
Изобретение может быть применено не только в медицинском контексте вмешательств в сосудистую сеть, но также и для других органов, либо может быть применено в неразрушающем тестировании материалов объектов, имеющих сложную сеть полостей. В таком случае зонды могут быть позиционированы посредством надлежащего направляющего оборудования в требуемом местоположении в объекте, недоступном иными средствами.
ОПРЕДЕЛЕНИЯ
Ангиографии являются двумерными проекционными изображениями, снятыми после того, как контрастное вещество помещается в сеть трубчатой структуры, за счет этого обеспечивая непрозрачность трубчатой структуры в ходе получения рентгеновских изображений. Во флуороскопических двумерных проекционных изображениях, контрастное вещество не помещается в сеть трубчатой структуры, так что, в общем, только направляющий провод (и другой непрозрачный для излучения материал, такой как кости, толстая мышечная ткань и т.д.) является видимым, когда отображается флуороскопическое изображение, тогда как мягкая ткань сосудистой сети неразличима, когда отображается флуороскопическое изображение.
"Перекрытие" в проекционном изображении, снятом вдоль направления проекции, представляет собой часть изображения (обычно различимую как помеха), которая получается в результате двух или более из трубчатых структур, имеющих соответствующие отпечатки, пересекающиеся в плоскости изображений. Другими словами, по меньшей мере, одна или из двух или более трубчатых структур пространственно размещается до или позади другой или других при просмотре в этом направлении проекции.
"Вид" и направление "проекции" используются взаимозаменяемо в данном документе.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Далее описываются примерные варианты осуществления изобретения в отношении следующих чертежей, на которых:
Фиг. 1 показывает блок-схему устройства для помощи в перемещении устройства в сети трубчатых структур;
Фиг. 2 показывает блок-схему последовательности операций способа для помощи в перемещении устройства в сети трубчатых структур.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Слева на фиг. 1 показан модуль 100 рентгеновской визуализации с C-образным штативом. Модуль 100 рентгеновской визуализации используется на фазе подготовительного планирования для того, чтобы получать последовательность проекционных рентгеновских изображений 170a-c исследуемого органа, чтобы поддерживать вмешательство на последующей фазе.
В одном варианте осуществления, исследуемый орган представляет собой сердце пациента 110, в частности, его коронарную сосудистую сеть 115.
На фазе планирования, пациент размещается на диагностическом столе 115. Модуль 100 визуализации содержит жесткую конструкцию 140 C-образного штатива, опирающуюся на подшипник 160. Шарнирная опора обеспечивает вращение C-образного штатива 140 вокруг первой оси, проходящей через шарнирную опору 160. Конструкция 140 C-образного штатива за счет этого может быть позиционирована под различными углами α поворота вокруг сосудистой сети 115.
C-образный штатив 140 дополнительно вращается вокруг оси, перпендикулярной первой оси, чтобы за счет этого допускать различные углы β установки, так что C-образный штатив 140 применяет, по меньшей мере, 2 степени свободы.
C-образный штатив 140 переносит на одном из концов источник 130 рентгеновского излучения, а на другом конце - детектор 120 в противоположном пространственном взаимном расположении относительно источника 130 рентгеновского излучения. Детектор 120 включает в себя матрицу ячеек детектора (не показана).
Рентгеновские лучи испускаются из источника 130 рентгеновского излучения. Рентгеновские лучи проходят через сосудистую сеть 115 и затем определяются в детекторе 120. Рентгеновские лучи формируются из остронаправленных пучков p рентгеновских лучей.
Каждый пучок p рентгеновских лучей ослабляется по мере того, как он проходит через сосудистую сеть 115 и воздействует на нее. Именно этот ослабленный пучок рентгеновских лучей определяется в детекторе 120.
Угол падения ("направление проекции"), под которым пучок рентгеновских лучей воздействует на сосудистую сеть 115, задается посредством пары (α, β) из угла α поворота и угла β установки. Степень ослабления, испытываемого посредством каждого отдельного пучка p рентгеновских лучей, зависит от типа и количества ткани, через которую проходит луч p. Каждый ослабленный пучок p рентгеновских лучей падает на ячейку детектора и формирует электрический сигнал, антипропорциональный степени ослабления. Электрический сигнал, сформированный в каждой ячейке детектора для падающего пучка p рентгеновских лучей, затем транслируется через устройство 105 сбора данных в пиксельное значение, кодирующее соответствующее значение полутонов. Пиксельные значения затем сохраняются в матричной структуре, формирующей проекционное изображение, снятое в конкретном направлении (α, β) проекции.
Последовательность проекционных изображений 170a-c получается в период получения изображений, при этом каждое отдельное проекционное изображение 170 a, b или c получается, в общем, вдоль различных направлений проекции. Последовательность 170a-c проекционных изображений сосудистой сети 115 затем сохраняется в базе 175 данных. Проекционные изображения 170a-c могут быть сохранены в DICOM-формате. DICOM-формат включает в себя метаданные, кодирующие для каждого проекционного изображения направление проекции, в котором оно получено, наряду со временем t получения.
Сосудистая сеть 115 сама по себе не имеет непрозрачности для излучения, что означает то, что проекция ("отпечаток") сосудистой сети 115 нормально не должна быть видимой в проекционных изображениях 170a-c. Чтобы исправить это, пациенту 110 назначается контрастное вещество до получения изображений. Контрастное вещество накапливается в сосудистой сети 115 и за счет этого обеспечивает непрозрачность сосудистой сети. Вследствие контрастного вещества, в каждом проекционном изображении 170a, b или c (также известны как ангиографии) кодирует проекционный вид или отпечаток 115a сосудистой сети 115 вдоль различного направления проекции. Контрастное вещество, переносящее кровь, протекает через эти сосуды и точки ветвления, в силу этого рассеивая контрастное вещество по сосудистой сети вплоть до ветвей и подветвей.
На последующей фазе вмешательства пациент по-прежнему или снова размещается на диагностическом столе 115, но в этом случае контрастное вещество не назначается. Одно обоснование для изобретения может состоять в лечении сосудистого стеноза, т.е. стриктуры в инфицированном сосуде из множества сосудов, составляющих кардиальную сосудистую сеть 115. В ходе изобретения, направляющий провод 117 вводится в сосудистую сеть и продвигается по ней. Цель состоит в том, чтобы позиционировать направляющий провод 117 в инфицированном сосуде, при этом наконечник располагается удаленно от стриктуры, так что баллоны или стенты могут плавно перемещаться вдоль направляющего провода таким образом, что они в дальнейшем позиционируются удаленно от стеноза. После размещения направляющего провода, баллонный катетер затем может вестись вдоль направляющего провода и размещаться в стриктуре, чтобы после этого проводить ее лечение. При вмешательстве, в то время как оперирующий врач продвигает направляющий провод 117 через сосудистую сеть, модуль 100 визуализации используется для того, чтобы получать в реальном времени (передаваемые "вживую") флуороскопические изображения 190a-c (по одному за раз) сосудистой сети 115, при этом направляющий провод 117 размещается в ней. Оперирующий врач активирует джойстик, предоставленный в консоли 150 оперирующего врача, чтобы позиционировать C-образный штатив 140 модуля 100 визуализации в требуемом направлении или под требуемым углом проекции, и нажимает кнопку или педаль, чтобы получать флуороскопическое ("флюорографическое") проекционное изображение 190a-c в этом требуемом направлении проекции. Поскольку контрастное вещество не используется в течение фазы вмешательства, каждое из флюорографических изображений 190a-c кодирует отпечатки 117a направляющего провода 117, но не кодирует отпечатки сосудистой сети 115. Другими словами, когда отображаются флюорографические изображения 190a-c, отпечаток 117a направляющего провода является видимым, тогда как отпечаток 115a сосудистой сети является невидимым (или практически невидимым).
Чтобы помогать или выполнять помощь хирургу при трехмерном перемещении через сосудистую сеть 115, используется устройство 200, как показано в нижней правой части на фиг. 1.
Устройство 200 содержит процессор 201. Процессор 201 содержит определенное число компонентов: предусмотрены модуль 205 ввода, модуль 210 детектора, регистратор 220, локализатор 230, идентификатор 240, оптимизатор 260 (видов), запоминающее устройство 250 и формирователь 270 графических отображений.
Компоненты устройства показаны размещенными в процессоре 210.
Тем не менее, это представляет собой только примерный вариант осуществления. Устройство вместо этого может компоноваться в распределенной архитектуре и соединяться по надлежащей сети связи. В проиллюстрированном варианте осуществления, компоненты выполняются в качестве программных процедур в процессоре 201. Компоненты также могут компоноваться в качестве специализированных FPGA или в качестве автономных аппаратных кристаллов. Компоненты могут программироваться на надлежащей научной вычислительной платформе, такой как Matlab® или Simulink®, и затем транслироваться в процедуры C++ или C, поддерживаемые в библиотеке и подключаемые при вызове посредством процессора 201.
Вообще говоря, устройство 200 предоставляет визуальную поддержку для перемещения направляющего провода 117 через сосудистую сеть 115 посредством дополнения двумерного контента визуальной информации текущих полученных флуороскопических изображений 190a-c посредством использования дополнительной информации двумерных изображений из выбранных двумерных ангиографий 170a-c, записанных заранее.
Текущее флуороскопическое изображение 190a-c наряду с выбранной ангиографией 170a-c подготавливается посредством рендеринга для отображения посредством формирователя 270 графических отображений и отображается в окне 280 с двумя областями на экране 119. В опорной области 280a показывается текущее полученное флюорографическое изображение, например, флюорографическое изображение 190a, а во вспомогательной области 280b показывается выбранная ангиография 170a, скажем, из ранее полученных ангиографических изображений 170a-c.
Извлеченная ангиография 170a заранее установлена посредством устройства 200, чтобы предоставлять лучший вид сосудистой сети 115 по сравнению с некоторыми или всеми остальными ангиографиями 170b-c, хранимыми в устройстве 175 хранения данных. Оптимизированный или лучший вид измеряется касательно одного или более предварительно определенных, но выбираемых стандартов добротности вида.
По мере того, как оперирующий врач продвигает направляющий провод 117a, получается новое флюорографическое изображение 190b. Устройство 200 регистрирует изменение и затем извлекает соответствующую обновленную ангиографию 170b и осуществляет ее отображение рядом с новым флюорографическим изображением 190b.
Таким образом, формируется динамически обновленная последовательность отображаемых ангиографий 170i-k, при этом каждая такая отображаемая ангиография дополняет информацию двумерных изображений, как показано в текущем флюорографическом изображении 190a-c.
Далее подробнее поясняется работа устройства 200.
РАБОТА
Устройство 200 поддерживает связь через надлежащую сеть связи с системой 105 сбора данных модуля 100 визуализации. Текущее просматриваемое флюорографическое изображение 190a перехватывается посредством устройства 200 и вводится в устройство 200 через интерфейсный модуль 205 ввода.
Интерфейсный модуль 205 или другой интерфейсный модуль дает возможность осуществления доступа через эту или другую сеть связи к последовательности ангиографий 170a-c, хранимых в базе 175 данных.
Перехваченное текущее опорное флюорографическое изображение 190a затем передается в локализатор 210. Локализатор 210 определяет отпечаток 117a направляющего провода в изображении посредством использования подходящей технологии сегментации, например, пороговой обработки пиксельных значений. Локализатор 210 затем устанавливает позицию в изображении отпечатка 117a направляющего провода и записывает позицию посредством набора координат позиции в изображении. Для установления позиции направляющего провода следует понимать, что используется опорная точка на отпечатке 117a направляющего провода, например, его конечная часть, представляющая наконечник направляющего провода 117. Конечная часть может обнаруживаться посредством отслеживания пиксельных значений и повторяемой пороговой обработки пиксельного значения.
Перехваченное флюорографическое изображение 190a затем передается в регистратор 220. После этого регистратор 220 осуществляет доступ к метаданным, ассоциированным с последовательностью ангиографий 170a-c в базе 175 данных, и использует метаданные для того, чтобы регистрировать перехваченное опорное флюорографическое изображение в последовательности ангиографий 170a-c. Регистрация приводит к совмещению флюорографического изображения 190a и последовательности ангиографий 170a-c вдоль общей системы координат.
В одном варианте осуществления, текущее флюорографическое изображение регистрируется в ангиографии, имеющей идентичное (в пределах выбираемого допустимого запаса) направление проекции относительно текущего флюорографического изображения. Регистрация может осуществляться посредством сопоставления или подбора направляющего провода 117a во флюорографическом изображении 190 на отпечатке 115a сосудистой сети в ангиографии 170a.
В одном варианте осуществления, регистрация, осуществляемая посредством регистратора 220, также учитывает деятельность сердца, которая сообщает движение сосудистой сети 115. С этой целью, устройство 200 может компоноваться надлежащим интерфейсным средством для того, чтобы принимать ECG-сигнал, чтобы устанавливать текущую фазу сердечной деятельности во время получения текущего флюорографического изображения 190a.
В других вариантах осуществления, деятельность сердца может учитываться без ECG. Например, при отслеживании формы и движения наконечника направляющего провода по всей последовательности флюорографических изображений 190-a-c, можно фильтровать пространственную позицию этого наконечника, с тем чтобы получать кардиальный компонент, который является компонентом "биения", аппроксимирующим частоту сердцебиения человека. Из этого отфильтрованного компонента биения может логически выводиться цикл сердечной деятельности, и, в частности, может логически выводиться фаза сердечной деятельности для изображения 190a. В частности, конечная диастола и конечная систола представляют собой только две точки в цикле сердечной деятельности, при этом компонент указывает нуль, т.е. движение со сменой направления. Идентичный способ может применяться к ангиографиям 170a-c, с использованием отличительных характерных точек на сосудистой сети (например, точек бифуркации сосуда и т.п.). Помимо этого, в ангиографиях 170a-c, общая форма сосудистой сети обеспечивает упрощение различения между систолой (сжатием общего дерева сосудов) и диастолой (разжатием общего дерева сосудов).
Процесс регистрации заключает в себе вычисление пространственного преобразования, которое осуществляет совмещение последовательности ангиографий 170a-c с текущим флюорографическим изображением 190a. Контуры отпечатка 117a направляющего провода из одной из ангиографий 170a-c затем проецируются на совмещенное флюорографическое изображение 190a, чтобы за счет этого получать пиксельную область, представляющую сосудистую сеть 115 во флюорографическом изображении 190a. Координаты в изображении, описывающие эту пиксельную область, затем выводятся, чтобы за счет этого формировать "опорный отпечаток сосудистой сети".
Согласно одному варианту осуществления, вычисляется графический символ присоединения, представляющий контуры опорного отпечатка сосудистой сети. Символ затем накладывается на флуороскопическое изображение, чтобы за счет этого осуществлять то, что известно как составление двумерной кардиальной маршрутной карты.
Координаты опорного отпечатка сосудистой сети и координаты отпечатка 117 направляющего провода далее передаются из регистратора 220 в локализатор 230.
Локализатор 230 использует координаты позиции в изображении отпечатка 117a направляющего провода и опорного отпечатка сосудистой сети для того, чтобы получать позицию отпечатка 117a провода относительно и внутри опорного отпечатка сосудистой сети. Эта позиция внутри опорного отпечатка сосудистой сети затем дает возможность установления того, в какой анатомической части сосудистой сети в данный момент размещается устройство 117. После этого локализатор 230 осуществляет доступ к медицинской базе данных (не показана) и использует общую двумерную (согласно текущему направлению проекции) или трехмерную модель рассматриваемой анатомии, чтобы транслировать позицию отпечатка направляющего провода в опорном отпечатке сосудистой сети в идентификационную метку, идентифицирующую часть анатомической сосудистой сети, например, главную бифуркацию между стволом левой коронарной артерии, LAD (левой передней нисходящей артерией) и огибающей артерией. Поскольку идентификационные данные не имеют разрешения, идентичного разрешению данных изображений (при этом идентичная метка совместно используется посредством множества пикселов), общая модель, которая является не конкретным для пациента описанием анатомии, является достаточной для трансляции. Ниже подробнее поясняется общая трехмерная модель относительно работы оптимизатора 260.
Позиция отпечатка направляющего провода в опорном отпечатке сосудистой сети может упоминаться в качестве отпечатка исследуемого участка (SOI) (сосудистой сети). SOI-отпечаток представляет собой такую часть отпечатка 117a сосудистой сети, которая представляет участок сосудистой сети 115, в котором размещен направляющий провод 117 в то время, когда получается текущее флюорографическое изображение 190a. Другими словами, SOI-отпечаток представляет собой отпечаток идентифицированной части.
Идентификационная метка такой идентифицированной анатомической части затем передается в к