Стереоскопический когерентный доплеровский локатор

Иллюстрации

Показать все

Изобретение относится к области измерительной техники и приборостроению и может быть использовано как лазерный локатор для обнаружения и измерения координат и скорости низколетящих ракет морского базирования в интересах ВМФ страны. Заявленный стереоскопический когерентный доплеровский локатор содержит одночастотный газовый лазер непрерывного действия, связанный с лоцируемым объектом, и гетеродинным фотоприемным устройством через светоделительный элемент и приемно-передающий объектив. Также содержит многоканальный блок обработки информации, соединенный с выходом гетеродинного фотоприемного устройства, блок сканирования по азимуту зондирующего излучения, сформированного приемно-передающим объективом в форме веерообразного излучения - широкоугольного по углу места и узкоугольного по азимуту, и связанный с последним блок топографической привязки. При этом гетеродинное фотоприемное устройство выполнено в виде матрицы из набора фоточувствительных элементов, выходы которых подключены к соответствующим входам многоканального блока обработки информации, состоящего из последовательно включенных канальных преобразователей частоты входных сигналов с сигналом линейно-частотно-модулированного гетеродина, канальных широкополосных усилителей, многоканального согласованного фильтра «сжатия» на основе дисперсионных линий задержки, канальных компенсирующих усилителей, канальных амплитудных детекторов, связанных с ограничителями по минимуму. Локатор также включает параллельно подключенные к выходам многоканального блока обработки информации многоканальный блок определения угловых координат на лоцируемый объект и бликующие элементы морской поверхности и многоканальный блок измерения доплеровских сдвигов частоты принимаемых переотражений лоцируемым объектом зондирующего излучения для него самого и соответствующих бликующих элементов морской поверхности, причем выходы многоканальных блоков определения угловых координат и измерения доплеровских сдвигов частоты для соответствующих принятых излучений подключены соответственно к первому и второму входам вычислителя характеристик лоцируемого объекта - его высоты полета, наклонной дальности и вектора скорости, третий вход которого соединен с блоком топографической привязки. Выходы вычислителя характеристик лоцируемого объекта соединены со статистическим усреднителем измеряемых характеристик в текущем времени, причем прием отраженных излучений осуществлен как непосредственно от лоцируемого объекта, так и от морских бликов, образованных рассеянием зондирующего излучения поверхностью лоцируемого объекта под разными углами рассеяния. В состав локатора введен дополнительно одночастотный газовый лазер непрерывного действия, снабженный пьезокорректором настройки его оптического резонатора, образующий передающий стереоканал на основе дополнительного передающего объектива со стереобазой h, при коллинеарности оптических осей обоих передающих и приемного объективов. Выходы обоих лазеров дополнительно связаны через слабо отражающие зеркала с высоким пропусканием с фотосмесителем, выход которого включен к последовательно связанной цепи из фазочувствительного детектора (дискриминатора), интегратора и управляющего усилителя постоянного тока, выходом включенного к пьезокорректору дополнительного лазера. При этом на второй вход фазочуствительного детектора подключен выход опорного кварцевого генератора разностной частоты настройки основного и дополнительного лазеров непрерывного действия, кроме того, этот же выход опорного кварцевого генератора подключен к третьему входу вычислителя характеристик лоцируемого объекта - низколетящей ракеты морского базирования. Технический результат - повышение вероятности правильного измерения координат лоцируемого объекта. 7 ил.

Реферат

Изобретение относится к области измерительной техники и приборостроения и может быть использовано в качестве лазерного локатора для обнаружения и измерения координат и скорости низколетящих ракет морского базирования в интересах ВМФ страны.

Традиционно измерение скорости полета дифракционно ограниченных объектов осуществляют применением доплеровских локаторов с непрерывным режимом немодулированного излучения, однако решение задачи измерения наклонной дальности требует применения модуляции излучения (импульсной, частотной и др.), что существенно снижает предельную дальность проведения этих измерений, вносит потери излучения модулятором [1-4]. Триангуляционные методы измерения наклонной дальности с использованием немодулированного излучения, обеспечивающего наивысший энергетический потенциал локатора при заданной рабочей мощности излучающего лазера, связаны с необходимостью рассредоточения на море группы локаторов, образующих триангуляционную сеть, что снижает эффективность работы такой сети на кораблях из-за требования жесткой взаимной привязки координат кораблей в условиях их движения в боевой обстановке.

Известно применение согласованной фильтрации локационных сигналов на основе дисперсионных линий задержки для повышения отношения сигнал/шум [5-21], а также использование средств стабилизации лазерного излучения для повышения обнаружительной способности лазерных локаторов с непрерывным режимом излучения [22-26].

Автором также предложены различные варианты построения лазерных доплеровских локаторов по низколетящим ракетам морского базирования и средства имитации бликовых переотражений лазерного рассеянного ракетой излучения от морской поверхности для отработки и натурных испытаний таких доплеровских локаторов [27-36].

Ближайшим техническим решением заявляемого локатора (прототипом) следует считать «Лазерный когерентный локатор» [28], содержащий одночастотный газовый лазер непрерывного действия, например СО2-лазер, связанный с лоцируемым объектом, например низколетящей крылатой ракетой морского базирования, и гетеродинным фотоприемным устройством через светоделительный элемент и приемно-передающий объектив, а также многоканальный блок обработки информации, соединенный с выходом гетеродинного фотоприемного устройства, блок сканирования по азимуту зондирующего излучения, сформированного приемно-передающим объективом в форме веерообразного излучения - широкоугольного по углу места и узкоугольного по азимуту, и связанный с последним блок топографической привязки, отличающийся тем, что гетеродинное фотоприемное устройство выполнено в виде матрицы из набора фоточувствительных элементов, например, на основе охлаждаемых жидким азотом элементов KdHgTl-соединения, выходы которых подключены к соответствующим входам многоканального блока обработки информации, состоящего из последовательно включенных канальных преобразователей частоты входных сигналов с сигналом линейно-частотно-модулированного гетеродина, канальных широкополосных усилителей, многоканального согласованного фильтра «сжатия» на основе дисперсионных линий задержки, канальных компенсирующих усилителей, канальных амплитудных детекторов, связанных с ограничителями по минимуму, а также включает параллельно подключенные к выходам многоканального блока обработки информации многоканальный блок определения угловых координат на лоцируемый объект и бликующие элементы морской поверхности и многоканальный блок измерения доплеровских сдвигов частоты принимаемых переотражений лоцируемым объектом зондирующего излучения для него самого и соответствующих бликующих элементов морской поверхности, причем выходы многоканальных блоков определения угловых координат и измерения доплеровских сдвигов частоты для соответствующих принятых излучений подключены соответственно к первому и второму входам вычислителя характеристик лоцируемого объекта - его высоты полета, наклонной дальности и вектора скорости, третий вход которого соединен с блоком топографической привязки, а выходы вычислителя характеристик лоцируемого объекта соединены со статистическим усреднителем измеряемых характеристик в текущем времени, при этом прием отраженных излучений осуществлен как непосредственно от лоцируемого объекта, так и от морских бликов, образованных от рассеяния зондирующего излучения поверхностью лоцируемого объекта под разными углами рассеяния.

К числу недостатков устройства-прототипа следует отнести высокую сложность обработки информации о мгновенных координатах обнаруженной ракеты, что связано с возможным значительным множеством бликовых переотражений рассеянного ракетой лазерного излучения морской поверхностью, регистрируемых на матричном фотоприемнике локатора, при сниженной эффективности переотражающих бликов морской поверхности, что снижает вероятность правильного измерения координат лоцируемого объекта.

Эти недостатки устранены в заявляемом техническом решении.

Целью изобретения является увеличение вероятности правильного определения мгновенных координат низколетящей ракеты морского базирования.

Указанная цель достигается в стереоскопическом когерентном доплеровском локаторе, содержащем одночастотный газовый лазер непрерывного действия, например СО2-лазер, связанный с лоцируемым объектом, например низколетящей крылатой ракетой морского базирования, и гетеродинным фотоприемным устройством через светоделительный элемент и приемно-передающий объектив, а также многоканальный блок обработки информации, соединенный с выходом гетеродинного фотоприемного устройства, блок сканирования по азимуту зондирующего излучения, сформированного приемно-передающим объективом в форме веерообразного излучения - широкоугольного по углу места и узкоугольного по азимуту, и связанный с последним блок топографической привязки, при этом гетеродинное фотоприемное устройство выполнено в виде матрицы из набора фоточувствительных элементов, например, на основе охлаждаемых жидким азотом элементов KdHgTl-соединения, выходы которых подключены к соответствующим входам многоканального блока обработки информации, состоящего из последовательно включенных канальных преобразователей частоты входных сигналов с сигналом линейно-частотно-модулированного гетеродина, канальных широкополосных усилителей, многоканального согласованного фильтра «сжатия» на основе дисперсионных линий задержки, канальных компенсирующих усилителей, канальных амплитудных детекторов, связанных с ограничителями по минимуму, а также включает параллельно подключенные к выходам многоканального блока обработки информации многоканальный блок определения угловых координат на лоцируемый объект и бликующие элементы морской поверхности и многоканальный блок измерения доплеровских сдвигов частоты принимаемых переотражений лоцируемым объектом зондирующего излучения для него самого и соответствующих бликующих элементов морской поверхности, причем выходы многоканальных блоков определения угловых координат и измерения доплеровских сдвигов частоты для соответствующих принятых излучений подключены соответственно к первому и второму входам вычислителя характеристик лоцируемого объекта - его высоты полета, наклонной дальности и вектора скорости, третий вход которого соединен с блоком топографической привязки, а выходы вычислителя характеристик лоцируемого объекта соединены со статистическим усреднителем измеряемых характеристик в текущем времени, причем прием отраженных излучений осуществлен как непосредственно от лоцируемого объекта, так и от морских бликов, образованных рассеянием зондирующего излучения поверхностью лоцируемого объекта под разными углами рассеяния, отличающимся тем, что в состав локатора введен дополнительно одночастотный газовый лазер непрерывного действия, например СО2-лазер, снабженный пьезокорректором настройки его оптического резонатора, образующий передающий стереоканал на основе дополнительного передающего объектива со стереобазой h, при коллинеарности оптических осей обоих передающих и приемного объективов, выходы обоих лазеров дополнительно связаны через слабо отражающие зеркала с высоким пропусканием с фотосмесителем, выход которого включен к последовательно связанной цепи из фазочувствительного детектора (дискриминатора), интегратора и управляющего усилителя постоянного тока, выходом включенного к пьезокорректору дополнительного лазера, при этом на второй вход фазочуствительного детектора подключен выход опорного кварцевого генератора разностной частоты настройки основного и дополнительного лазеров непрерывного действия, кроме того, этот же выход опорного кварцевого генератора подключен к третьему входу вычислителя характеристик лоцируемого объекта.

Достижение указанных целей изобретения объясняется облучением ракеты стереоскопической излучающей системой, что повышает представительность бликующих элементов морской поверхности.

Действие заявляемого технического решения поясняется следующими рисунками.

На рис. 1 представлена функциональная схема устройства. Оно содержит:

1 - одночастотный газовый лазер непрерывного действия, например СО2-лазер,

2 - приемно-передающий объектив,

3 - отражательную пластину с малым коэффициентом пропускания для образования гетеродинного канала,

4 - рассеивающий отражатель, корректирующий гетеродинный поток на гетеродинное фотоприемное устройство;

5 - гетеродинное фотоприемное устройство (ФПУ) в виде матрицы элементов, например, на основе элементов KdHgTl-соединения, охлаждаемых жидким азотом,

6 - блок обработки информации (рассмотренный ниже на рис. 2),

7 - многоканальный определитель угловых координат,

8 - многоканальный измеритель доплеровских сдвигов частоты,

9 - вычислитель характеристик лоцируемого объекта,

10 - статистический усреднитель измеряемых характеристик, работающий в текущем времени, на выходе которого формируются уточненные данные о высоте полетав (Н), наклонной дальности (D) и вектора скорости (V) лоцируемого объекта,

11 - блок сканирования по азимуту зондирующего излучения, сформированного приемно-передающим объективом в форме веерообразного излучения - широкоугольного по углу места и узкоугольного по азимуту,

12 - связанный с блоком 11 блок топографической привязки,

13 - лоцируемый объект создающий переотражения от его облученной зондирующим излучением поверхности как в направлении локатора, так и на поверхность моря 14,

14 - поверхность моря, образующая бликовые переотражения лазерного излучения, бликующая поверхность которого позволяет реализовать триангуляционный принцип измерения местоопределения лоцируемого объекта,

15 - дополнительный одночастотный газовый лазер непрерывного действия, например СО2-лазер, снабженный пьезокорректором оптического резонатора для перестройки частоты излучения,

16 - дополнительный передающий объектив, оптическая ось которого коллинеарна оптической оси приемо-передающего объектива с горизонтальной базой h к последнему,

17 и 18 - светоделительные пластинки с малой отражающей способностью и большим пропусканием,

19 - фотосмеситель, выделяющий разностную частоту излучений обоих лазеров 1 и 15,

20 - фазочуствительный детектор (дискриминатор),

21 - опорный кварцевый генератор разностной частоты настройки основного и дополнительного лазеров непрерывного действия 1 и 15,

22 - интегратор,

23 - управляющий усилитель постоянного тока, подключенный к пьезокорректору дополнительного лазера непрерывного действия 15.

Элементы 19-23 образуют систему автоматической подстройки частоты (АПЧ) излучения дополнительного лазера 15 на частотную разность с частотой излучения основного лазера 1, равную частоте опорного кварцевого генератора 21.

На рис. 2 показана структура многоканального блока обработки информации 6, который состоит из канальных преобразователей частоты (смесителей) 24, 25, 26, …27, канальных широкополосных усилителей 28, 29, 30, …31, многоканального согласованного фильтра «сжатия» из дисперсионных линий задержки 32, 33, 34, …35, канальных компенсирующих усилителей 36, 37, 38,... 39, канальных амплитудных детекторов 40, 41, 42, …43 с соответствующими ограничителями по минимуму 44, 45, 46, …47. В блоке используется гетеродин линейно-частотно-модулированных колебаний 48, выходом связанный с вторыми входами смесителей 24, 25, 26, …27 и запускаемый на частотный сканинг с выхода импульсного генератора 49.

На рис. 3 представлена блок-схема многоканального определителя 7 угловых координат на лоцируемый объект и бликующие элементы морской поверхности - их азимут β и угол места ε. Схема содержит матрицу двоичных запоминающих элементов (триггеров) 50, 51, 52, …53 - по числу элементов в матрице гетеродинного фотоприемного устройства 5 с такой же топологией расположения элементов, то есть с тем же числом строк и столбцов в матрицах. Элементы первой строки этой матрицы триггеров 50, 51, 52, …53 образуют общий выход первой строки, элементы 54, 55, 56, …57 образуют выход второй строки матрицы, элементы 58, 59, 60, …61 - общий вывод третей строки матрицы, а элементы 62, 63, 64, …65 - образуют выход последней строки матрицы. Элементы первого столбца матрицы 50, 54, 58, …62 образуют общий выход первого столбца, элементы 51, 55, 59, …63 образуют общий выход второго столбца, элементы 52, 56, 60, …64 - общий выход третьего столбца матрицы, а элементы 53, 57, 61, …65 - образуют общий выход последнего столбца матрицы триггеров. Все k общих выходов столбцов матрицы соединены с первым запоминающим регистром сдвига 66, образующий информационный канал об азимутах β, а все m общих выходов строк матрицы соединены со вторым запоминающим регистром сдвига 67, образующим информационный канал об углах места ε. Матрица триггеров размерностью km элементов соединена с соответствующими km выходами многоканального блока обработки информации 6 и ее элементы последовательно опрашиваются с помощью генератора-дешифратора 68, тактируемого импульсной последовательностью - сигналом «Цикл опроса».

На рис. 4 приведена блок-схема многоканального измерителя доплеровских сдвигов частоты 8, которая включает km элементов «И» (схем совпадения) 60, 61, 62, …63, первые входы которых соединены с соответствующими выходами многоканального блока обработки информации 6, а ко вторым их входам подключен высокочастотный тактовый генератор импульсов 64. Выходы элементов «И» соединены с управляющими записью бинарных кодов многоразрядных запоминающих элементов 65, 66, 67, …68, на информационные входы которых одновременно подаются последовательно изменяющиеся во времени бинарные коды с пересчетной схемы 69 (двоичного счетчика), на счетный вход которой подаются импульсные сигналы с выхода высокочастотного тактового генератора импульсов 64. Темп цикла записи-считывания этих кодов в многоразрядных запоминающих элементах определяется импульсным сигналом «Сброс цикла» с выхода импульсного генератора 40, находящегося в многоканальном блоке обработки информации 6. Этим же сигналом «Сброс цикла» перезаписываются коды с многоразрядных запоминающих элементов 65, 66, 67, …68, сложенные с кодами номеров для соответствующих ячеек матрицы ФПУ 5 в двоичных сумматорах 70, 71, 72, …73, производится переброс совокупной кодовой информации по завершению данного цикла в ячейки памяти 74, 75, 76, …77, обработка которой проводится в течение следующего цикла «записи-считывания», но результаты обработки приписываются к тому временному интервалу, в котором проведена запись данных. С помощью генератора опроса 78 с ячеек памяти 74, 75, 76, …77, в которых содержится «ненулевая информация» эти данные последовательно переписываются в регистр сдвига-шифратор 79, формирующий информацию о доплеровских сдвигах частоты для всех ячеек матрицы ФПУ 5, которые в данном цикле «записи-считывания» были облучены отраженным от лоцируемого объекта и переотраженных от бликов морской поверхности излучением. В выходном сигнале регистра сдвига-шифратора 79 в каждом цикле «записи-считывания» содержится последовательно выдаваемая информация в кодовом представлении о номерах ячеек матрицы ФПУ 5, подвергнувшихся облучению, и соответствующих им доплеровских сдвигах частоты. Информация о номерах ячеек здесь дублируется с данными от многоканального определителя 7 угловых координат, рассмотренного на рис. 3, с целью повышения достоверности отсчета номеров облученных ячеек матрицы ФПУ 5.

На рис. 5 приведены диаграммы, показывающие процедуру измерения доплеровского сдвига частоты в принятом сигнале в той или иной ячейке матрицы ФПУ 5, в процессе его «сжатия» согласованным фильтром на дисперсионной линии задержки (рис. 2) с примером для одного из типов локационных задач. На рис. 5а представлена последовательность синхроимпульсов, определяющих период цикла записи-считывания и называемых как импульсы «Цикла сброса», формируемые в импульсном генераторе 40 (рис. 2). На рис. 5б показан процесс периодически воспроизводимого ЛЧМ-сканинга в гетеродине линейно-частотно-модулированных колебаний 48 (рис. 2) с диапазоном изменения частоты от 80 до 130 МГц. На рис. 5в прямой жирной горизонтальной линией показан сигнал с выхода соответствующей ячейки матрицы ФПУ 5 в координатах «частота-время», например, с частотой 53 МГц (из предполагаемого возможного диапазона частот 50-60 МГц), жирной пилообразной линией изображен ЛЧМ-эквивалент, образованный на соответствующем выходе смесителя из числа смесителей 24, 25, 26, …27 (рис. 2), частота в котором изменяется от 80-53=27 МГц до 130-53=77 МГц. Параллельно пилообразному изменению частоты в ЛЧМ-эквиваленте пунктиром показаны пределы вариации последнего при изменении частоты входного сигнала в диапазоне 50-60 МГц (этот диапазон обозначен как ΔFΣ), а крайними горизонтальными пунктирными линиями указана полоса пропускания согласованного фильтра на одной из дисперсионных линий задержки (ДЛЗ) 32, 33, 34, …35, в данном примере она равна 40 МГц. На рис. 5г даны два графика, на первом из которых указан жирной вертикальной линией импульсный отклик на выходе соответствующего ограничителя по минимуму из числа используемых в многоканальном блоке обработки информации 6 (с номерами 44, 45, 46, …47 на рис. 2), а именно в одном из них для соответствующей ячейки матрицы ФПУ 5. На этом же графике пунктирными вертикальными линиями показаны границы вариации по времени возникновения импульсных откликов при изменении частоты входного сигнала в диапазоне частот доплеровских сдвигов от 50 до 60 МГц. Видно, что доплеровский сдвиг частоты преобразуется во временной сдвиг импульса-отклика относительно запускающего синхроимпульса, указанного на рис. 5а. Это обстоятельство отражено на втором графике рис. 5г, который представляет собой прямоугольный импульс с длительностью τзад, равной разности моментов времени появления импульса-отклика и предшествующего ему синхроимпульса. Отметим, что эта длительность импульса затем кодируется в многоканальном измерителе доплеровского сдвига частоты 8 (рис. 1), в частности, в одном из многоразрядных запоминающих элементов 74, 75, 76, …77 (рис. 4) для соответствующей ячейки матрицы ФПУ 5.

На рис. 6 поясняется триангуляционный принцип действия локатора по заявленному ранее автором способу. Рассматривается для простоты плоская задача, когда раскрыв локатора 89 (точка А), блики морской поверхности (точки С и D) и дифракционно ограниченный объект 90 (точка В - лоцируемый объект 13 на рис. 1) находятся на одной плоскости OABCDG. Отметим, что в такой постановке упрощенной задачи возможно построение локатора с одностолбцовым ФПУ 5, вместо матрицы, однако это снижает вероятностные характеристики производимых измерений, и использование матричного ФПУ 5 все же предпочтительно, хотя и существенно увеличивает объем оборудования.

На рис. 6 выделены три направления рассеяния дифракционно ограниченным объектом 90 зондирующего излучения от локатора 89 - прямое отраженное 91 и два рассеянных под разными углами к прямому - 92 и 93, которые бликуют на морской поверхности в точках С и D. Высота раскрыва локатора 89 обозначена как h0=АО - известная величина, высота полета объекта 90 над уровнем моря обозначена как H(t)=BG в функции текущего времени t, вектор горизонтальной скорости объекта и его радиальная скорость обозначены соответственно как V* и V.

На рис. 7 указана схематически последовательность операций известного способа-прототипа, а именно: способ локации отличающийся тем, что когерентному приему и обработке дополнительно и одновременно подвергают (94) отраженные от нескольких бликов морской поверхности излучения, поступающие на фотоприемную матрицу с разных произвольно распределенных угловых направлений, определяют (95) в соответствующих каналах, связанных с матричным фотоприемным устройством, доплеровские сдвиги частоты в принятых излучениях для переотраженных от бликов морской поверхности сигналов и соответствующие им угловые координаты на эти блики, вычисляют (96) текущие координаты местоположения объекта и его истинную скорость, а также статистически усредняют (97) полученные результаты вычислений всей совокупности совместных измерений указанных параметров.

Рассмотрим теоретические основы действия заявляемого технического решения.

Известно, что при движении отражателя со скоростью V в направлении излучения лазерного локатора с частотой ν0 (такая скорость называется радиальной) в прямом отраженном от объекта излучении возникает приращение частоты - доплеровский сдвиг - Δν00(1+2V/с)-ν0=2ν0V/с, где с - скорость света. По величине этого сдвига Δν0 определяют радиальную скорость V объекта, что тривиально. Если падающее на объект излучение переотражается от него под некоторым углом θ относительно линии указанного направления облучения объекта от локатора, то частота доплеровского сдвига выражается по формуле Δν(θ)=Δν0cosθ в предположении, что объект не является релятивистским, то есть 2V/с<<1, что всегда выполняется применительно к локации. Поскольку лоцируемый объект рассматривается как дифракционно ограниченный, можно считать, что переотраженное им излучение является квазисферическим в силу принципа Гюйгенса, то есть происходит по всем направлениям, не затененным самим телом объекта. Реально головная часть ракеты имеет форму, создающую переотражения, в частности, в направлениях к морской поверхности даже более сильные, чем переотражение в направлении непосредственно к локатору (особенно если ракета летит прямо на локатор). В зависимости от того, под каким углом θ компонента переотраженного от движущегося объекта излучения освещает тот или иной морской блик, создающий зеркальное (то есть сильное) отражение в сторону локатора, в принятом от таких бликов сигналах доплеровские сдвиги частоты будут различаться между собой и доплеровским сдвигом (наибольшим по величине) для прямого отражения от объекта Δν0. Это и позволяет по известной геометрии приходящих на фотоприемную матрицу излучений от объекта и от серии морских бликов расчетным путем определить интересующие параметры объекта - его радиальную скорость, наклонную дальность и высоту полета над уровнем моря. Угловые координаты объекта при его обнаружении определяются по данным угловых датчиков сканирующей системы, привязанной к заданному местоположению локатора, а также по номеру ячейки матрицы ФПУ 5, в которой фиксируется сигнал от прямого переотражения излучения от лоцируемого объекта.

Сканирующая по угловым координатам система локатора, работающая в автоматическом режиме подстройки при захвате обнаруженного объекта, всегда приводит прием в ФПУ прямого переотраженного от объекта излучения на центральный канал фотоприемной матрицы ФПУ, условно принимаемый за нулевой. По отношению к этому нулевому номеру центрального канала фотоприемной матрицы, размещенной в плоскости изображений приемного объектива локатора, появление сигналов от бликовых переотражений в других ячейках фотоприемной матрицы с известными номерами позволяет определить (по разности номеров ячеек по отношению к центральной ячейке) угловое направление на данный морской блик по отношению к направлению непосредственно на объект. При этом возникает неопределенность в определении положения данного морского блика, связанная с априорным отсутствием сведений о наклонной дальности до объекта (и высоте его полета над поверхностью моря, что однозначно связано с величиной наклонной дальности до объекта). Раскрытие этой неопределенности достигается на основе совместного решения системы трех (как минимум) независимых уравнений, одно из которых связано с прямым переизлучением, а два (или более) других - с бликовыми переотражениями.

Обратимся к рассмотрению рис. 6, на котором локатор 89 с заведомо известным местоположением в заданной системе координат обнаруживает в режиме сканирования движущийся объект 90, захватывает его в режиме автосопровождения по угловым координатам и измеряет радиальную скорость V объекта по величине доплеровского сдвига частоты Δν0. При этом считаются известными угловые координаты на объект по отношению к реперной точке локатора 89 (его раскрыву), координаты которой (в частности, ее высота h0 над уровнем моря) известны - Х0, Y0 и Z0=h0. Полагаем, что линия направления прямого переизлучения 91 от лоцируемого объекта проходит через данную реперную точку А. Указанная линия 91 имеет известные угловые координаты - азимут α0(t) и угол места ε0(t), величины которых во времени t могут непрерывно изменяться за счет движения объекта, но всегда остаются известными функциями времени. Поэтому для определения текущих координат объекта X(t), Y(t) и Z(t) необходимо лишь определять текущую наклонную дальность D(t) до объекта 90 вдоль линии 91, и тогда по известным правилам координаты объекта могут быть легко вычислены (при этом считаем для простоты локатор неподвижным в заданной системе координат):

В случае, если движение объекта происходит не точно в направлении линии 91 к локатору, а под каким-то произвольным углом, то вычисление горизонтальной скорости объекта V*(t) может быть найдено по правилам сложения взаимно ортогональных векторов, модули которых - суть производные соответствующих координат:

причем очевидно, что радиальная скорость V как вектор, совпадающий с линией 91, вдоль которой изменяется наклонная дальность D(t), также является, вообще говоря, функцией времени V=V(t) и выражается простой формулой:

Отметим, что скорости - горизонтальная V*(t) и радиальная V(t) в общем случае неодинаковы по величине и различны по направлению, |V*(t)|≥|V(t)|. Изменение величины радиальной скорости происходит как результат маневрирования объекта в пространстве, при этом также меняется величина доплеровского сдвига частоты Δν0=Δν0(t). Знание скорости движения объекта V*(t) необходимо для проведения идентификациионного анализа типа этого объекта, поскольку эта скорость объекта является его важным признаком. Если выражение (2) решить с учетом системы уравнений (1), то окажется, что скорость V*(t) объекта является функцией не только известной радиальной скорости, азимута и угла места на объект, но и неизвестной наклонной дальности до него, то есть V*(t)=F[Δν0(t), α0(t), ε0(t), D(t)], что означает невозможность определения этой скорости объекта без измерения наклонной дальности до него. Из этого следует, что на этапе обнаружения объекта и измерения его радиальной скорости (без измерения текущей наклонной дальности) могут быть допущены ошибки в распознавании типа объекта и приняты неверные решения на предмет его дальнейшего автосопровождения по угловым координатам по критерию существенного различия измеренной радиальной скорости и горизонтальной (пока неизвестной) скорости интересующего нас объекта. Поэтому задача одновременного измерения наклонной дальности D(t) является весьма актуальной уже на ранних стадиях обнаружения объекта.

Рассмотрим вопрос измерения наклонной дальности D(t), величина которой на рис. 6 представлена отрезком АВ (где точка А - есть реперная точка локатора, а точка В - есть точка переотражения объекта, представляющегося для оптической локационной системы как дифракционно ограниченного). Высота реперной точки с координатами Х0, Y0, Z0 равна h0=Z0. Пусть, для простоты рассуждений, будем полагать, что морские блики в точках С и D, подсвечиваемые вторичным излучением от объекта 90 вдоль прямых ВС и BD соответственно лежат в одной плоскости (плоскости чертежа) с линией АВ прямого переотражения от объекта, то есть азимуты для всех трех переотражений от объекта - одного прямого и двух бликовых - одинаковы, что позволяет их в данном упрощенном варианте геометрического построения не рассматривать. Все три приходящих к локатору 89 направления переизлучения вдоль прямых ВА, DA и СА (непосредственно от объекта и от бликов в точках D и С морской поверхности) определены соответствующими углами места ε0(t) - для прямого отражения от объекта 90, ε1(t) - для переотражения от блика в точке С вдоль прямой СА и ε2(t) - для переотражения от блика в точке D вдоль прямой DA. Поскольку высота реперной точки АО=h0 известна, то находятся расстояния ОС и OD (дальности до бликовых точек морской поверхности С и D от проекции реперной точки локатора А на линию поверхности моря). Поскольку отсчет углов места ведется от линии горизонта, проходящей через реперную точку А, то нетрудно понять, что указанные расстояния находятся из простых выражений:

Однако пока остается неизвестным местоположение объекта 90, поэтому неясно, под какими углами на бликовые точки С и D приходит вторичное излучение от объекта, поскольку угловая ориентация бликовых поверхностей априори неизвестна. Существует бесчисленное множество комбинаций при известном угле места ε0(t) (то есть для определенно известного направления видения объекта локатором) для положения точки В на прямой АВ, в которой могут пересекаться прямые СВ (позиция 92) и DB (позиция 93 на рис. 6) при вариации высоты H(t) объекта над морской поверхностью (линией OG), которая пока не определена, но явно связана с величиной наклонной дальности соотношением:

Из геометрических построений на рис. 6 видно, что высота объекта H(t) над уровнем моря может быть иначе выражена из прямоугольных треугольников ΔBCG и ΔBDG (в которых угол OGB - прямой) через углы соответственно между прямыми АВ и ВС - для ΔBCG и прямыми АВ и BD для ΔBDG. Обозначив углы и , зная, что угол по определению, легко находим углы при вершинах указанных прямоугольных треугольников, в частности, угол при вершине треугольника ΔBCG равен , а угол при вершине ΔBDG равен . При этом высота H(t)=BG вычисляется как

В выражении (6) отрезок CG можно выразить через известную величину отрезка CD=OD-ОС=h0[ctgε2(t)-ctgε1(t)]. Тогда выражение (6) можно записать в вид

из которого можно выразить неизвестный отрезок DG через известные и измеряемые величины как

Подставляя (8) в (7), получим выражение для высоты объекта в форме:

Согласно (9) для вычисления высоты H(t) следует измерить все три угла места с помощью угломестных определителей для соответствующих трех ячеек матрицы ФПУ и датчика угла места системы сканирования по угловым координатам, а также определить два априори неизвестных угла θ1 и θ2. Эти неизвестные углы находятся из измеренных доплеровских смещений частоты, пользуясь общим выражением для доплеровского смещения частоты в зависимости от угла переотражения от движущегося объекта относительно направления прямого переотражения:

откуда легко находим искомые углы по измеренным в соответствующих каналах тракта обработки информации значениям доплеровских сдвигов частоты Δν(θ1) и Δν(θ2):

Подставляя в (9) вычисленные значения углов из (11), получим искомую величину высоты объекта H(t) над поверхностью моря, а затем и значение наклонной дальности D(t), воспользовавшись выражением (5) и с учетом равенства Δν0=2ν0(V/с), значение которого вычисляется в центральном канале ФПУ по результатам прямого переотражения излучения от объекта. Подставляя полученное значение для D(t) в систему уравнений (1), находим текущие координаты объекта X(t), Y(t) и Z(t), а вычисляя соответствующие производные от текущих координат, находим истинную скорость движения V*(t) объекта согласно выражения (2). В силу громоздкости вычислений конечных величин координат и истинной скорости объекта мы их опускаем в данном описании, но эти вычисления легко осуществляются с помощью вычислителя характеристик 9 (рис. 1) лоцируемого объекта.

Нетрудно видеть, что полное решение локационной задачи местоопределения движущегося объекта и его вектора скорости (важнейшего признака его типа) достигается измерением азимутов и углов места, как минимум, по трем направлениям переизлучения - прямому и двум бликовым, а также измерением трех доплеровских сдвигов частоты по этим же направлениям. Такое решение задачи получено, как выше описано, когда все три направления лежат в одной плоскости, то есть дают отклик в ячейках матрицы ФПУ, расположенных в одном и том же столбце. При этом матрица может быть вырожденной - состоять из одного столбца фоточувствительных ячеек, а само излучение в передающем лазерном канале иметь «веерообразную» форму диаграммы излучения - узкую по азимуту и широкую по углу места. Однако при этом снижается вероятность одновременной организации двух действующих бликовых каналов по сравнению со случаем использования матрицы ФПУ с несколькими столбцами, когда должны будут учитываться в аналогичном приведенному расчете азимутальные составляющие α0(t), α1(t) и α2(t), что дополнительно усложнит алгоритм расчетных операций.

Блики морской поверхности существуют на море практически всегда - как в бурю и шторм, так и в штиль. Размеры переотражающих бликов могут существенно различаться, но все они являются дифракционно ограниченными (точечными) источниками вторичных излучений. При когерентном приеме согласно теореме Цернике-Ван-Циттера [27] радиус когерентности rког, характеризующий размер объекта d и дальность L до него связаны выражением rког≈λL/d, где λ - длина волны лазерного излучения (λ=С/ν0), поэтому при вынужденном уменьшении L при условии, что площадка ячейки ФПУ σ удовлетворяет неравенству σ>>π(λF/Dоб)2/2, возникает опасность приема излучения от объекта и бликов, которые рассматриваются как протяженные, а не точечные, если на апертуре приемного объектива размещается одновременно или последовательно в течение времени интегрирования сигнала в тракте обработки несколько зон когерентности (их число равно (Dоб/2rког)2). Это указывает на целесообразность выполнения ячеек фотоприемной матрицы малых размеров. Это же обстоятельство следует учитывать при оценке разрешающей способности локатора по угловым координатам Δγ≈σ1/2/F (здесь Dоб - диаметр приемного объектива, F - его фокусное расстояние, а ячейка ФПУ полагается имеющей форму квадрата с пренебрежимо малыми зазорами между смежными ячейками).

Увеличение обнаружительной способности лазерного когерентного лока