Фторпиколиноилфториды и способы их получения

Иллюстрации

Показать все

Изобретение относится к соединениям формулы I:

,

в которой R выбран из группы, состоящей из галогена; алкила; циклоалкила; алкенила; алкинила; алкокси и арила, замещенного от 0 до 5 заместителями, независимо выбранными из группы, состоящей из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси; m представляет собой 0, 1, 2 или 3 и n представляет собой 0, 1, 2, 3 или 4; в которой сумма m и n представляет собой от 1 до 4, и способам их получения. 3 н. и 26 з.п. ф-лы, 19 пр.

Реферат

ПРИТЯЗАНИЕ НА ПРИОРИТЕТ

Данная заявка испрашивает приоритет к предварительной заявке на патент США № 61/675229, озаглавленной «Фторпиколиноилфториды и способы их получения», поданной 24 июля 2012 года. Вышеуказанная заявка включена в настоящее описание в полном объеме посредством ссылки.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

В настоящем описании обеспечивают фторпиколиноилфториды и способы их получения. В некоторых вариантах осуществления в настоящем описании обеспечивают способ получения 5-фтор-6-арил-пиколиноилфторидов из хлорпиколиноилхлоридов.

УРОВЕНЬ ТЕХНИКИ

Патент США 6297197 B1 описывает, в частности, определенные соединения 6-(алкокси или арилокси)-4-амино-3-хлор-5-фторпиколината и их применение в качестве гербицидов. Патенты США 6784137 В2 и 7314849 В2 описывают, в частности, определенные соединения 6-(арил)-4-амино-3-хлор-5-фторпиколината и их применение в качестве гербицидов. Патент США 7432227 В2 описывает, в частности, определенные соединения 6-(алкил)-4-амино-3-хлор-5-фторпиколината и их применение в качестве гербицидов. Каждый из данных патентов описывает получение исходных материалов 4-амино-3-хлор-5-фторпиколината с помощью фторирования соответствующих 5-незамещенных пиридинов 1-(хлорметил)-4-фтор-1,4-диазониабицикло[2.2.2]октана бис (тетрафторборатом). Было бы предпочтительно обеспечить более прямые и эффективные способы получения 4-амино-5-фтор-3-галогено-6-(замещенных)пиколинатов и родственных соединений, например, с помощью использования реагентов и/или химических интермедиатов, которые обеспечивают сокращение времени и экономическую эффективность.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В настоящем описании обеспечивают фторпиколиноилфториды и способы их получения. В одном варианте осуществления в настоящем описании обеспечивают способ получения соединения Формулы I:

,

в которой

R выбран из группы, состоящей из галогена; алкила; циклоалкила; алкенила; алкинила; алкокси и арила, замещенного от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси;

m представляет собой 0, 1, 2 или 3; и

n представляет собой 1, 2, 3 или 4;

в которой сумма m и n представляет собой менее или равную 4;

который включает фторирование соединения Формулы А:

,

в которой R, m и n представляют собой, как определено выше;

источником фторид-иона для получения соединения Формулы I.

Фторпиколиноилфториды, представленные в настоящем описании, могут быть получены из хлорпиколиноилхлоридов, как показано на Схеме 1 ниже.

На Схеме 1 «M-F» представляет собой соль фторида металла, включая, но не ограничиваясь ими, фторид натрия, фторид калия или фторид цезия. В некоторых вариантах осуществления растворитель представляет собой сульфолан или ацетонитрил.

В других вариантах осуществления в настоящем описании обеспечивают способ получения фтор-6-арил-пиколиноилфторидов из хлор-6-арил-пиколиноиловой кислоты хлоридов, как показано на Схеме 2 ниже.

На Схеме 2 «M-F» представляет собой соль фторида металла, включая, но не ограничиваясь ими, фторид натрия, фторид калия или фторид цезия. В некоторых вариантах осуществления растворитель представляет собой сульфолан или ацетонитрил. «Ar» представляет собой арильную группу.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

В настоящем описании обеспечивают фторпиколиноилфториды и способы их получения. В одном варианте осуществления в настоящем описании обеспечивают способ получения соединения Формулы I:

,

в которой

R выбран из группы, состоящей из галогена; алкила; циклоалкила; алкенила; алкинила; алкокси и арила, замещенного от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси;

m представляет собой 0, 1, 2 или 3; и

n представляет собой 1, 2, 3 или 4;

в которой сумма m и n представляет собой менее или равную 4;

который включает фторирование соединения Формулы А:

,

в которой R, m и n представляют собой, как определено выше;

источником фторид-иона для получения соединения Формулы I.

В некоторых вариантах осуществления в настоящем описании обеспечивают способ получения соединения Формулы I, в которой m представляет собой 0. В других вариантах осуществления m представляет собой 1.

В некоторых вариантах осуществления в настоящем описании обеспечивают способ получения соединения Формулы I, в которой n представляет собой 1, 2 или 3. В некоторых вариантах осуществления n представляет собой 2 или 3. В других вариантах осуществления n представляет собой 2. В других вариантах осуществления n представляет собой 3.

В некоторых вариантах осуществления соединение Формулы I представляет собой:

,

в которой R представляет собой арил, замещенный от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси; и

n представляет собой 1, 2 или 3.

В некоторых вариантах осуществления соединение Формулы I представляет собой:

,

в которой R представляет собой фенил, замещенный от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси.

В некоторых вариантах осуществления способ включает катализатор, выбранный из краун-эфира, галогенида фосфония, полиэфира, соли фосфазения и галогенида тетра-замещенного аммония. В некоторых вариантах осуществления катализатор представляет собой краун-эфир. В одном варианте осуществления краун-эфир представляет собой 18-краун-6.

В некоторых вариантах осуществления источник фторид-иона представляет собой фторид металла. В некоторых вариантах осуществления фторид металла выбран из фторида натрия, фторида калия и фторида цезия. В одном варианте осуществления фторид металла представляет собой фторид калия.

В некоторых вариантах осуществления способ включает растворитель. В некоторых вариантах осуществления растворитель выбран из алкилнитрила или алкилсульфона. В некоторых вариантах осуществления растворитель представляет собой ацетонитрил или сульфолан.

В одном варианте осуществления в настоящем описании обеспечивают способ получения соединения формулы:

,

в которой

R представляет собой фенил, замещенный от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси; и

n представляет собой 1 или 2;

который включает взаимодействие соединения Формулы А:

,

в которой R представляет собой фенил, замещенный от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси; и

n представляет собой 1 или 2;

с фторидом калия в присутствии краун-эфира и растворителя.

В одном варианте осуществления растворитель представляет собой ацетонитрил или сульфолан.

В настоящем описании также обеспечивают соединение Формулы I:

,

в которой

R выбран из группы, состоящей из галогена; алкила; циклоалкила; алкенила; алкинила; алкокси и арила, замещенного от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси;

m представляет собой 0, 1, 2 или 3; и

n представляет собой 0, 1, 2, 3 или 4;

в которой сумма m и n представляет собой от 1 до 4.

В одном варианте осуществления m представляет собой 0 и n представляет собой 1, 2, 3 или 4.

В другом варианте осуществления соединение представляет собой формулу:

.

В другом варианте осуществления соединение представляет собой формулу:

,

в которой R представляет собой арил, замещенный от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси; и

n представляет собой 1, 2 или 3. В одном варианте осуществления n представляет собой 1 или 2.

В другом варианте осуществления соединение представляет собой формулу:

.

В другом варианте осуществления в настоящем описании обеспечивают способ получения соединения Формулы II:

,

в которой

R выбран из группы, состоящей из галогена; алкила; циклоалкила; алкенила; алкинила; алкокси и арила, замещенного от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси;

R1 выбран из группы, состоящей из Н; алкила; циклоалкила; алкенила; алкинила; и арила, замещенного от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси;

m представляет собой 0, 1, 2 или 3; и

n представляет собой 0, 1, 2, 3 или 4;

в которой сумма m и n представляет собой от 1 до 4;

который включает (а) фторирование соединения Формулы А:

источником фторид-иона для получения соединения Формулы I

,

в которой R выбран из группы, состоящей из галогена; алкила; циклоалкила; алкенила; алкинила; алкокси и арила, замещенного от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси;

m представляет собой 0, 1, 2 или 3; и

n представляет собой 0, 1, 2, 3 или 4;

который дополнительно включает (b) взаимодействие соединения Формулы I с источником R1OH для получения соединения Формулы II.

В другом варианте осуществления в настоящем описании обеспечивают способ получения соединения Формулы II:

,

в которой

R выбран из группы, состоящей из галогена; алкила; циклоалкила; алкенила; алкинила; алкокси и арила, замещенного от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси;

R1 выбран из группы, состоящей из Н; алкила; циклоалкила; алкенила; алкинила; незамещенного или замещенного С711арилалкила; и арила, замещенного от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси;

m представляет собой 0, 1, 2 или 3; и

n представляет собой 0, 1, 2, 3 или 4;

в которой сумма m и n представляет собой от 1 до 4;

который включает (а) фторирование соединения Формулы А:

источником фторид-иона для получения соединения Формулы I:

,

в которой R выбран из группы, состоящей из галогена; алкила; циклоалкила; алкенила; алкинила; алкокси и арила, замещенного от 0 до 5 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси и C1-C4галогеналкокси;

m представляет собой 0, 1, 2 или 3; и

n представляет собой 0, 1, 2, 3 или 4;

который дополнительно включает (b) взаимодействие соединения Формулы I с источником R1OH для получения соединения Формулы II.

В некоторых вариантах осуществления реакция стадии (b) дополнительно содержит основание. В некоторых вариантах осуществления основание представляет собой основание триалкиламина, например, триэтиламин.

Фторпиколиноилфториды, представленные в настоящем описании, могут быть получены из хлорпиколиноилхлоридов, как показано на Схеме 1 ниже.

На Схеме 1 «M-F» представляет собой соль фторида металла, включая, но не ограничиваясь ими, фторид натрия, фторид калия или фторид цезия. В некоторых вариантах осуществления растворитель представляет собой сульфолан или ацетонитрил.

В других вариантах осуществления в настоящем описании обеспечивают способ получения фтор-6-арил-пиколиноилфторидов из хлор-6-арил-пиколиноиловой кислоты хлоридов, как показано на Схеме 2 ниже. «Ar» представляет собой арильную группу.

На Схеме 2 «M-F» представляет собой соль фторида металла, включая, но не ограничиваясь ими, фторид натрия, фторид калия или фторид цезия. В некоторых вариантах осуществления растворитель представляет собой сульфолан или ацетонитрил. «Ar» представляет собой арильную группу.

Фторпиколиноилфториды, представленные в настоящем описании, могут быть использованы в качестве интермедиатов при получении пиколинатных кислот и сложных эфиров, которые, в свою очередь, могут быть использованы в качестве интермедиатов при получении 4-амино-5-фтор-3-галоген-6-арил-пиколинатов, таких как 4-амино-3-хлор-5-фтор-6-(4-хлор-2-фтор-3-метоксифенил)пиридин-2-карбоновая кислота.

Схемы 3 и 4 представляют собой неограничивающие примеры способов, представленных в настоящем описании. Производные карбоновой кислоты или сложного эфира пиколиноилфторидов, представленные в настоящем описании, могут быть получены в соответствии со Схемами 3 и 4 в качестве желаемых продуктов или к дополнительной характеристике пиколиноилфторидов, поскольку в некоторых случаях пиколиноилфториды не являются стабильными при некоторых стандартных способах очистки. В большинстве случаев пиколиноилфториды были охарактеризованы с помощью анализа ГХ/МС и 19F ЯМР без очистки. 4,5,6-Трифторпиколиноилфторид был выделен с помощью дистилляции и был охарактеризован с помощью методов ГХ/МС и ЯМР. Сложные эфиры и карбоновые кислоты, представленные ниже, очищали и охарактеризовывали с помощью методов ГХ/МС и ЯМР.

Схемы 3 и 4 обеспечивают прямой доступ к ди-, три- и тетра-фторпиколиноилфторидам с хорошими выходами. Предыдущие способы, как показано на Схеме 5, приводили к сложным смесям нежелательных продуктов. Таким образом, способы, обеспеченные в настоящем описании, представляют и улучшают способ доступа к ди-, три- и тетра-фторпиколинатам.

Моно-, ди-, три- и тетра-хлорпиколиноилхлорид и/или 6-арил-пиколиноилхлорид исходные материалы, представленные в настоящем описании, являются известными соединениями и/или могут быть получены из известных хлорпиколинатов с помощью использования стандартных методов, известных в данной области техники. См., например, патент США 6784137 В2. Высшие сложные эфиры, включая незамещенные или замещенные С7-C11арилалкильные эфиры, могут быть получены с помощью реакций прямой этерификации или переэтерификации с использованием методов, которые хорошо известны в данной области техники. Примерная схема для получения 6-арил-пиколиноилхлорида показана ниже:

Источники фторид-ионов, которые могут быть использованы в способах, представленных в настоящем описании, включают фториды щелочных металлов («М-F»), которые включают фторид натрия (NaF), фторид калия (KF) и фторид цезия (CsF). Также могут быть использованы соли фторида, такие как фторид тетрабутиламмония (n-Bu4NF).

В некоторых вариантах осуществления реакции проводят в растворителе или реакционной среде, такой как ацетонитрил, сульфолан, алкилнитрилы, полиэфиры или алкилсульфоны, включая их смеси. В некоторых вариантах осуществления используемый растворитель представляет собой алкилнитрил или алкилсульфон. В некоторых вариантах осуществления используемый растворитель представляет собой ацетонитрил или сульфолан.

Также могут быть использованы катализаторы, такие как краун-эфиры или агенты фазового переноса, которые, как известно, увеличивают скорость обмена фторида. В некоторых вариантах осуществления катализатор представляет собой краун-эфир, галогенид фосфония, полиэфир, соль фосфазения и галогенид тетра-замещенного аммония. В некоторых вариантах осуществления катализатор представляет собой краун-эфир, например, 18-краун-6.

Температура, при которой проводится реакция, не является определяющей. В некоторых вариантах осуществления температура представляет собой от приблизительно 50°С до приблизительно 200°С и в некоторых вариантах осуществления от приблизительно 80°С до приблизительно 140°С. В зависимости от того, какой растворитель используют в определенной реакции, оптимальная температура будет варьироваться. В общем случае, чем ниже температура, тем медленнее будет протекать реакция. Типичные реакции проводят при интенсивном перемешивании, достаточном для поддержания по существу равномерно диспергированной смеси реагентов.

При проведении реакции ни скорость, ни порядок добавления реагентов не являются определяющими. В некоторых вариантах осуществления растворитель, и фторид щелочного металла, и необязательно катализатор смешивают до добавления пиколиноилхлорида к реакционной смеси. В некоторых вариантах осуществления реакция занимает от приблизительно 2 до приблизительно 100 часов и проводится при атмосферном давлении. В некоторых вариантах осуществления реакцию проводят при давлении включительно до 500 фунт/кв. дюйм.

В то время как точное количество реагентов не является определяющим, в некоторых вариантах осуществления обеспечивают количество фторида щелочного металла, которое будет предоставлять, по меньшей мере, приблизительно эквимолярное количество атомов фтора, основываясь на количестве атомов хлора, которое будет меняться в исходном материале, то есть, по меньшей мере, эквимолярное количество фторида щелочного металла.

Продукты, полученные с помощью любого из способов, представленных в настоящем описании, могут быть восстановлены с помощью стандартных средств, таких как испарение или экстракция, и могут быть очищены с помощью стандартных методик, таких как дистилляция, перекристаллизация или хроматография.

Определения:

Используемые в настоящем описании термины «алкил», «алкенил» и «алкинил», также как производные термины, такие как «алкокси», «ацил», «алкилтио» и «алкилсульфонил», включают в своем объеме с прямой цепью, с разветвленной цепью и циклические фрагменты и включают фрагменты, содержащие от одного до двенадцати атомов углерода. В некоторых вариантах осуществления «алкил», «алкокси», «ацил», «алкилтио» и «алкилсульфонил», каждый, содержат от одного до шести атомов углерода или альтернативно от одного до четырех атомов углерода. В некоторых вариантах осуществления «алкенил» и «алкинил», каждый, содержат от двух до шести атомов углерода или альтернативно от двух до четырех атомов углерода.

Если определенно не указано иначе, каждый из «алкила», «алкенила» и «алкинила», также как производных терминов, таких как «алкокси», «ацил», «алкилтио» и «алкилсульфонил», может быть незамещенным или замещенным одним или более заместителями, выбранными из, но не ограничиваясь ими, галогена, гидрокси, С1-C6алкокси, С1-C6алкилтио, С1-C6ацила, формила, циано, арилокси или арила при условии, что заместители являются стерически совместимыми и правила химической связи и энергии деформации соблюдаются. Термины «алкенил» и «алкинил» предназначены включить одну или более ненасыщенных связей.

Используемый в настоящем описании термин «арил» относится к 6-14-членной ароматической карбоциклической группе, например, фенил или нафтил. Арильная группа может быть незамещенной или замещенной одним или более заместителями, независимо выбранными из галогена, нитро, циано, С1-C6алкила, С1-C6алкокси, галогенированного С1-C6алкила, галогенированного С1-C6алкокси, С1-C6алкилтио, C(О)OС1-C6алкила, или где два соседних заместителя взяты вместе, как -O(CH2)nO-, в которой n представляет собой 1 или 2.

Используемый в настоящем описании термин «арилалкил» относится к фенилу, замещенному алкильной группой, содержащему всего от 7 до 11 атомов углерода, такому как бензил (-CH2C6H5), 2-метилнафтил (-CH2C10H7) и 1- или 2-фенэтил (-CH2CH2C6H5 или -CH(CH3)C6H5). Фенильная группа сама по себе может быть незамещенной или замещенной одним или более заместителями, независимо выбранными из галогена, нитро, циано, С1-C6алкила, С1-C6алкокси, галогенированного С1-C6алкила, галогенированного С1-C6алкокси, С1-C6алкилтио, C(О)OС1-C6алкила, или где два соседних заместителя взяты вместе, как -O(CH2)nO-, в которой n представляет собой 1 или 2, при условии, что заместители являются стерически совместимыми и правила химической связи и энергии деформации соблюдаются.

6-арильные группы, представленные в настоящем описании, могут быть замещены от 1 до 4 заместителями, независимо выбранными из галогена, C1-C4алкила, C1-C4галогеналкила, C1-C4алкокси или C1-C4галогеналкокси. В некоторых вариантах осуществления схема замещения выбрана из 4-замещенного фенила, 2,4-дизамещенного фенила, 2,3,4-тризамещенного фенила, 2,4,5-тризамещенного фенила и 2,3,4,6-тетразамещенного фенила.

Если не указано иначе, термин «галоген», также как производные термины, такие как «гало», относится к фтору, хлору, брому и йоду.

ПРИМЕРЫ

Пример 1: 4,5,6-трифторпиколиноилфторид

1-литровую трехгорлую круглодонную колбу продували N2 и снабжали конденсатором/барботером N2, механической мешалкой и пробкой. В реактор добавляли безводный CsF (172 г, 1,13 моль), сухой ацетонитрил (400 мл), 18-краун-6 (6,0 г, 0,023 моль) и 4,5,6-трихлорпиколиноилхлорид (55 г, 0,23 моль). Смесь нагревали с обратным холодильником и выдерживали в течение 20 ч. Суспензию охлаждали до комнатной температуры и соли отфильтровывали под давлением N2. Отфильтрованный осадок соли промывали сухим ацетонитрилом (100 мл) с получением янтарной жидкости (372 г). Трехгорлую продуваемую N2 круглодонную колбу емкостью 250 мл с термокарманом снабжали двумя пробками, магнитной мешалкой и дистилляционной колонной с вакуумной рубашкой Vigruex (15 см × 1 см) с коллектором фракций, подключенным к барботеру N2. В сосуд добавляли 140 г раствора ацетонитрила сверху. Дистилляционный сосуд нагревали до 82-85°С, в то время как прозрачный бесцветный дистиллят (ацетонитрил) собирали сверху при 80-83°С. Когда температура кубового остатка дистилляции начинала расти и температура головного погона начинала падать, дистилляцию прекращали и оставляли охлаждаться до комнатной температуры в атмосфере N2. Кубовый остаток дистилляции быстро переносили в продуваемую N2 двухгорлую 25 мл круглодонную колбу. Колбу снабжали термометром, магнитной мешалкой и устанавливали такую же дистилляцию, описанную выше. Данная система дистилляции могла продуваться вакуумом или N2. Устанавливали вакуум (приблизительно 70 мм рт.ст.) и затем начинали нагревание дистилляционного сосуда. Продукт собирали в виде прозрачной бесцветной жидкости (6,7 г, т. кип. 55-60°C при 55-60 мм рт.ст.). Процентный состав площади ГХ показал, что материал имеет 99,1% чистоту: 1H ЯМР (CDCl3, 400 МГц, ч./млн) δ 8,08 (ддд, J=8,4, 4,4, 0,4 Гц); 13C ЯМР (101 МГц, CDCl3, ч./млн) δ 157,71 (дт, J=269,0, 6,5 Гц), 152,96 (дд, J=246,1, 13,4 Гц), 152,49 (д, J=348,6 Гц), 138,69 (ддд, J=275,3, 30,2, 12,9 Гц), 135,44 (дддд, J=74,6, 15,1, 7,8 Гц), 117,00 (дт, 18,2, 4,2 Гц); МС (ГХ, 70 эВ электронный удар) 179 (М+, 100%), 160 (8%), 151 (100%), 132 (80%), 82 (63%).

В другом эксперименте, как описано выше, после фильтрования и промывания отфильтрованного осадка соли получали 366 г янтарного раствора. Процентный состав площади ГХ показал, что смесь представляла собой 86,4% 4,5,6-трифторпиколиноилфторида и 13,6% 18-краун-6. Метод внутреннего стандарта при анализе ГХ был разработан с использованием диметилфталата в качестве внутреннего стандарта и материала, полученного выше, в качестве чистого компонента. ГХ-анализ янтарного раствора показал, что он представлял собой 9,8% масс. продукта, что коррелировало с выходом 89%.

Пример 2: 4,5,6-трифторпиколиновая кислота

4,5,6-трифторпиколиноилфторид (300 мг) оставляли на воздухе в течение шести дней, обеспечивая карбоновую кислоту (250 мг) в виде белого твердого вещества: т. пл. 81-82°С; 1H ЯМР (400 МГц, ацетон-d6) δ 8,07 (дд, J=9,2, 4,8 Гц); 13C ЯМР (101 МГц, ацетон-d6) δ 163,4 (д, J=3,2 Гц), 158,6 (ддд, J=263,8, 9,0, 5,8 Гц), 152,9 (ддд, J=237,2, 12,1, 4,7 Гц), 142,2 (м), 138,2 (ддд, J=267,2, 31,4, 13,5 Гц), 115,2 (дд, J=17,6, 5,2 Гц); МС (ГХ, 70 эВ ЭУ) 177 (М+, 1%), 160 (5%), 133 (100%), 132 (40%), 106 (40%), 82 (30%).

Пример 3: Изопропил-3,4,5,6-тетрафторпиколинат

Реакцию проводили в перчаточном боксе в атмосфере азота. В стеклянный сосуд, снабженный магнитной мешалкой, добавляли 3,4,5,6-тетрахлорпиколиноилхлорид (1,117 г, 4 ммоль), 18-краун-6 (0,106 г, 0,4 ммоль), KF (1,859 г, 32 ммоль) и сульфолан (предварительно высушенный, 15 г). Смесь нагревали до 130°С на нагревательном блоке в течение 21 часа. Образец отбирали и анализировали с помощью ГХ, ГХ/МС и 19F ЯМР. ГХ показала, что данная реакция была завершена. Результаты ГХ/МС находились в соответствии с химической формулой 3,4,5,6-тетрафторпиколиноилфторида: 70 эВ ЭУМС (ГХ) m/z=197 (М+, 91%), 169 (100%), 150 (51%), 100 (100%). 19F ЯМР (376 МГц, CD3CN) δ 26,57 (д, J=38,1 Гц), -81,71 (дд, J=44,1, 24,4 Гц), -133,00 или -134,26 (м), -136,54 или -136,69 (м), -145,62 или -145,77 (м).

Безводный 2-пропанол (0,361 г, 6 ммоль) и безводный триэтиламин (0,405 г, 4 ммоль) добавляли по каплям при комнатной температуре к 3,4,5,6-тетрафторпиколиноилфториду, полученному выше. Смесь перемешивали при комнатной температуре в течение ночи, выливали в делительную воронку с водой и экстрагировали этиловым эфиром. Органическую фазу затем промывали водой и высушивали над MgSO4. Растворитель удаляли на роторном испарителе. Концентрированный неочищенный продукт очищали с помощью колоночной хроматографии (силикагель) смесью этилацетат/гексан (1/10) в качестве элюента с получением 0,454 г (48% выход, 96% чистота ГХ, 93% чистота ЖХ) желаемого продукта в виде бледно-желтой жидкости. Результаты ГХ/МС находились в соответствии с химической формулой изопропил-3,4,5,6-тетрафторпиколината: 70 эВ ЭУМС (ГХ) m/z=196 (31%), 178 (100%), 150 (45%), 100 (26%), 43 (34%). 1H ЯМР (400 МГц, CDCl3) δ 5,32 (гепт., J=6,3 Гц, 1H), 1,42 (д, J=6,3 Гц, 6H). 13C ЯМР (101 МГц, CDCl3) δ 159,81 или 159,74 (м), 149,22 или 148,78 (м), 148,04 или 147,86 (м), 146,49 или 146,10 (м), 145,65 или 145,47 (м), 138,53 (дд, J=34,3, 11,2 Гц), 135,79 (дд, J=34,4, 11,2 Гц), 129,02 или 128,74 (м), 70,97 (c), 21,60 (c). 19F ЯМР (376 МГц, CDCl3) δ -80,31 или - 80,49 (м), -136,04 или -136,18 (м), -137,10 или -137,25 (м), -149,81 или -149,95 (м).

Альтернативно, вышеуказанную реакцию проводили в ацетонитриле, а не в сульфолане. 100 мл реактор Parr (Hastelloy C конструкция) очищали, высушивали и проверяли на герметичность в атмосфере азота. В сосуд добавляли 3,4,5,6-тетрахлорпиколиноилхлорид (5,587 г, 20 ммоль), 18-краун-6 (0,529 г, 2 ммоль), KF (10,458 г, 180 ммоль) и безводный ацетонитрил (45 г). Всю систему продували азотом. Реакционную смесь перемешивали при 135°С в течение 20 часов и затем оставляли охлаждаться до температуры ниже 45°С. Из системы постепенно выпускали газ. Образец отбирали и анализировали с помощью ГХ, ГХ/МС и 19F ЯМР. ГХ показала, что данная реакция была завершена. Результаты ГХ/МС находились в соответствии с химической формулой 3,4,5,6-тетрафторпиколиноилфторида: 70 эВ ЭУМС (ГХ) m/z=197 (М+, 86%), 169 (98%), 150 (51%), 100 (100%). 19F ЯМР (376 МГц, CD3CN) δ 26,34 (д, J=38,3 Гц), -81,98 (дд, J=44,2, 23,6 Гц), -134,35 или -134,57 (м), -136,94 или -137,09 (м), -146,02 или -146,17 (м).

Безводный 2-пропанол (1,803 г, 30 ммоль) и безводный триэтиламин (2,024 г, 20 ммоль) добавляли по каплям при 5-10°C к раствору 3,4,5,6-тетрафторпиколиноилфторида, полученного выше. Смесь перемешивали при комнатной температуре в течение ночи. Смесь выгружали из сосуда, и соли удаляли с помощью фильтрования, и промывали небольшим количеством ацетонитрила. Растворитель удаляли на роторном испарителе. Неочищенную смесь повторно растворяли в этиловом эфире. Органическую фазу затем промывали водой и высушивали над MgSO4. Растворитель удаляли на роторном испарителе. Концентрированный неочищенный продукт очищали с помощью колоночной хроматографии (силикагель) смесью этилацетат/гексан (4/50) в качестве элюента с получением 3,77 г (79% выход, 99% чистота ГХ, 97% чистота ЖХ) желаемого продукта в виде бледно-желтой жидкости. Результаты ГХ/МС находились в соответствии с химической формулой изопропил-3,4,5,6-тетрафторпиколината: 70 эВ ЭУМС (ГХ) m/z=196 (32%), 178 (100%), 150 (49%), 100 (33%), 43 (75%). 1H ЯМР (400 МГц, CDCl3) δ 5,32 (гепт., J=6,3 Гц, 1H), 1,42 (д, J=6,3 Гц, 6H). 13C ЯМР (101 МГц, CDCl3) δ 159,82 или 159,74 (м), 149,22 или 148,85 (м), 148,02 или 147,89 (м), 146,47 или 146,17 (м), 145,63 или 145,47 (м), 138,54 (дд, J=34,3, 11,2 Гц), 135,79 (дд, J=34,3, 11,4 Гц), 129,03 или 128,74 (м), 70,98 (c), 21,61 (c). 19F ЯМР (376 МГц, CDCl3) δ -80,26 или -80,44 (м), -135,99 или -136,13 (м), -137,07 или -137,22 (м), -149,77 или -149,91 (м).

Пример 4: Изопропил-5-фторпиколинат

Реакцию проводили в перчаточном боксе в атмосфере азота. В стеклянный сосуд, снабженный магнитной мешалкой, добавляли 5-хлорпиколиноилхлорид (0,704 г, 4 ммоль), 18-краун-6 (0,106 г, 0,4 ммоль), KF (0,744 г, 12,8 ммоль) и сульфолан (предварительно высушенный, 8 г). Смесь нагревали до 130°С на нагревательном блоке в течение 19 часов. Образец отбирали и анализировали с помощью ГХ. Результаты показали, что реакция не была завершена, поэтому добавляли дополнительное количество KF (0,232 г, 4 ммоль) и смесь нагревали до 130°С в течение дополнительных 22 часов. Образец анализировали с помощью ГХ, ГХ/МС и 19F ЯМР. ГХ показала, что данная реакция была завершена. Результаты ГХ/МС находились в соответствии с химической формулой 5-фторпиколиноилфторида: 70 эВ ЭУМС (ГХ) m/z=143 (М+, 100%), 115 (55%), 96 (90%), 76 (46%). 19F ЯМР (376 МГц, CD3CN) δ 16,01 (c), -117,57 (c).

Безводный 2-пропанол (0,361 г, 6 ммоль) и безводный триэтиламин (0,405 г, 4 ммоль) добавляли по каплям при комнатной температуре к 5-фторпиколиноилфториду, полученному выше. Смесь перемешивали при комнатной температуре в течение ночи, выливали в делительную воронку с водой и экстрагировали этиловым эфиром. Органическую фазу затем промывали водой и высушивали над MgSO4. Растворитель удаляли на роторном испарителе. Концентрированный неочищенный продукт очищали с помощью колоночной хроматографии (силикагель) смесью этилацетат/гексан (1/10) в качестве элюента с получением 0,17 г (23% выход, 96% чистота ЖХ) желаемого продукта в виде белого с желтоватым или сероватым оттенком твердого вещества. Результаты ГХ/МС находились в соответствии с химической формулой изопропил-5-фторпиколината: 70 эВ ЭУМС (ГХ) m/z=142 (43%), 124 (100%), 97 (97%), 96 (93%), 43 (59%). 1H ЯМР (400 МГц, CDCl3) δ 8,60 (д, J=2,8 Гц, 1H), 8,18 (дд, J=8,8, 4,4 Гц, 1H), 7,52 (ддд, J=8,7, 7,9, 2,9 Гц, 1H), 5,34 (гепт., J=6,3 Гц, 1H), 1,43 (д, J=6,3 Гц, 6H). 13C ЯМР (101 МГц, CDCl3) δ 163,63 (c), 162,32 (c), 159,71 (c), 144,84 (д, J=3,8 Гц), 138,46 (д, J=24,8 Гц), 126,78 (д, J=5,4 Гц), 123,31 (д, J=18,5 Гц), 69,71 (c), 21,81 (c). 19F ЯМР (376 МГц, CDCl3) δ -120,51.

Пример 5: Изопропил-3,6-дифторпиколинат

Реакцию проводили в перчаточном боксе в атмосфере азота. В стеклянный сосуд, снабженный магнитной мешалкой, добавляли 3,6-дихлорпиколиноилхлорид (0,842 г, 4 ммоль), 18-краун-6 (0,106 г, 0,4 ммоль), KF (1,394 г, 24 ммоль) и сульфолан (предварительно высушенный, 9 г). Смесь нагревали до 130°С на нагревательном блоке в течение 22 часов. Образец отбирали и анализировали с помощью ГХ. Результаты показали, что реакция не была завершена, поэтому добавляли дополнительное количество KF (0,348 г, 6 ммоль) и смесь нагревали до 130°С в течение дополнительных 22 часов. Образец анализировали с помощью ГХ, ГХ/МС и 19F ЯМР. ГХ показала, что данная реакция была завершена. Результаты ГХ/МС находились в соответствии с химической формулой 3,6-дифторпиколиноилфторида: 70 эВ ЭУМС (ГХ) m/z=161 (М+, 73%), 133 (100%), 114 (44%), 64 (60%). 19F ЯМР (376 МГц, CD3CN) δ 26,30 (д, J=36,4 Гц), -70,56 (д, J=25,9 Гц), -119,36 (дд, J=36,4, 26,0 Гц).

Безводный 2-пропанол (0,361 г, 6 ммоль) и безводный триэтиламин (0,405 г, 4 ммоль) добавляли по каплям при комнатной температуре к 3,6-дифторпиколиноилфториду, полученному выше. Смесь перемешивали при комнатной температуре в течение 6 часов, выливали в делительную воронку с водой и экстрагировали этиловым эфиром. Органическую фазу затем промывали водой и высушивали над MgSO4. Растворитель удаляли на роторном испарителе. Концентрированный неочищенный продукт очищали с помощью колоночной хроматографии (силикагель) смесью этилацетат/гексан (1/10) в качестве элюента с получением 0,39 г (48% выход, 99% чистота ГХ, 98% чистота ЖХ) желаемого продукта в виде бледно-желтой жидкости. Результаты ГХ/МС находились в соответствии с химической формулой изопропил-3,6-дифторпиколината: 70 эВ ЭУМС (ГХ) m/z=160 (41%), 142 (100%), 115 (43%), 114 (66%), 64 (31%), 43 (51%). 1H ЯМР (400 МГц, CDCl3) δ 7,69 или 7,63 (м, 1H), 7,16 или 7,12 (м), 5,33 (гепт., J=6,3 Гц, 1H), 1,41 (д, J=6,3 Гц, 6H). 13C ЯМР (101 МГц, CDCl3) δ 161,41 (д, J=6,3 Гц), 158,80 (д, J=1,2 Гц), 158,26 (д, J=4,3 Гц), 156,41 (д, J=1,2 Гц), 155,62 (д, J=4,4 Гц), 134,05 (т, J=13,5 Гц), 131,06 (дд, J=23,9, 8,3 Гц), 114,86 (дд, J=41,7, 5,9 Гц), 70,34 (c), 21,71 (c). 19F ЯМР (376 МГц, CDCl3) δ -69,40 (д, J=26,9 Гц), -122,76 (д, J=27,4 Гц).

Пример 6: Изопропил-4,5-дифтор-6-(4-хлорфенил)пиколинат

К раствору 4,5-дихлор-6-(4-хлорфенил)пиколиноилхлорида (2,0 г, 6,23 ммоль) в сульфолане (40 мл, высушенный через 4 Å молекулярные сита, 100 ч./млн H2O) добавляли фторид калия (2,2 г, 37,4 ммоль). Реакционную смесь нагревали при 130°С в течение 24 ч. Реакционную смесь анализировали с помощью ГХ-МС и 19F ЯМР. (Данные для 6-(4-хлорфенил)-4,5-дифторпиколиноилфторида, ГХ-МС: m/z=271, 223; 19F ЯМР (376 МГц, Толуол-d8) δ 17,05 (c), -123,81 (д, J=19,1 Гц), -140,17 (д, J=19,1 Гц)). Реакционную смесь охлаждали до комнатной температуры и добавляли триэтиламин (1,1 мл, 7,8 ммоль) и изопропанол (0,7 мл, 9,4 ммоль). После перемешивания в течение 1,5 ч реакционную смесь разбавляли водой (100 мл) и переносили в делительную воронку. Реакционную смесь экстрагировали метил-трет-бутиловым эфиром (МТБЭ, 2×50 мл). Объединенные органические экстракты промывали водой (3×50 мл) и насыщенным водным раствором NaCl (50 мл) и концентрировали при пониженном давлении с получением коричневого масла. Неочищенный продукт масло очищали с помощью флэш-хроматографии на силикагеле (гексан/этилацетат градиент, 100% гексан → 20% гексан/этилацетат) с получением 0,93 г (48% выход) изопропил-6-(4-хлорфенил)-4,5-дифторпиколината в виде белого твердого вещества. 1H ЯМР (400 МГц, CDCl3) δ 8,04-7,98 (м, 2H), 7,90 (дд, J=9,4, 5,3 Гц, 1H), 7,51-7,45 (м, 2H), 5,31 (гепт., J=6,3 Гц, 1H), 1,43 (д, J=6,3 Гц, 6H). 13C ЯМР (101 МГц, CDCl3) δ 162,72 (д, J=3,5 Гц), 158,12 (д, J=12,6 Гц), 155,49 (д, J=12,4 Гц), 149,41 (д, J=11,0 Гц), 147,16 (дд, J=7,9, 1,0 Гц), 146,73 (д, J=10,9 Гц), 136,51 (д, J=0,9 Гц), 130,34 (д, J=6,6 Гц) 128,93 (c), 113,80 (д, J=16,1 Гц), 70,25 (c), 21,85 (c). 19F ЯМР (376 МГц, CDCl3) δ -124,73 (дд, J=17,7, 9,5 Гц), -144,38 (дд, J=17,7, 5,4 Гц). МСНР: вычисл. C16H15F2NO3: 307,10. Найдено: m/z=307 (М+), 221, 206. Т. пл. 73-74°С.

Пример 7: Изопропил-4,5-дифтор-6-фенилпиколинат

К раствору 4,5-дихлор-6-фенилпиколиноилхлорида (1,76 г, 6,14 ммоль) в сульфолане (40 мл, высушенный через 4 Å молекулярные сита, ~100 ч./млн H2O) добавляли фторид калия (2,14 г, 36,9 ммоль). Реакционную смесь нагревали при 130°С в течение 24 ч. Реакционную смесь анализировали с по