Способ и устройство для автоматического генерирования рекомендаций
Иллюстрации
Показать всеИзобретение относится к средствам создания списков рекомендаций элементов контента пользователю. Технический результат заключается в повышении точности выдачи рекомендаций. Генерируют набор данных первоначального профиля пользователя для этого конкретного пользователя исходя из извлеченных идентификационных данных. Генерируют с использованием извлеченных идентификационных данных из набора данных первоначального профиля пользователя по меньшей мере два запроса, семантически отличающиеся друг от друга, которые должны быть направлены в по меньшей мере один репозиторий контента. Выдают сгенерированные запросы в по меньшей мере один репозиторий контента. Принимают из по меньшей мере одного репозитория контента в ответ на запрос относящиеся к контенту ответные данные, содержащие соответствующие списки совпадений, имеющие по меньшей мере один соответствующий идентификатор размещения контента, указывающий место хранения соответствующего элемента контента. Генерируют из разных извлеченных списков совпадения единый список рекомендаций посредством перемежения друг с другом идентификаторов размещения контента, содержащихся в разных списках совпадений из упомянутых списков совпадений. 4 н. и 11 з.п. ф-лы, 2 ил.
Реферат
Настоящее изобретение относится к рекомендательному модулю для рекомендации элементов контента пользователю, репозиторию контента, способу эксплуатации рекомендательного модуля для рекомендации элементов контента пользователю и к компьютерно-читаемому носителю информации.
Автоматические рекомендательные системы часто используются для помощи пользователям при выборе элементов, которые соответствуют их вкусу. Из большого набора элементов, из которых человек может выбрать, рекомендательная система делает выбор, который соответствует вкусу данного пользователя.
Прежде чем рекомендательная система сможет дать действительно персонализованные рекомендации, она сначала должна изучить вкус пользователя. Для этого, пользователь обычно должен присвоить рейтинг некоторому числу элементов, например, точно определить степень, в которой ему нравится или не нравится некоторое число элементов.
Рекомендательные системы могут быть грубо разделены на две категории, а именно, рекомендательные системы, основанные на контенте, и рекомендатели, основанные на совместной фильтрации. Для первого типа, элементы должны характеризоваться некоторым числом признаков. Например, кинофильм может характеризоваться названием, жанром, режиссером, списком актеров и т.д. История рейтинга пользователя (описание симпатий и антипатий некоторого числа элементов) может быть затем использована для оценки взаимосвязи между парами признак-значение и вероятностью, что пользователю понравится элемент с этими парами признак-значение. И наоборот, рекомендательная система, использующая совместную фильтрацию, использует рейтинги огромного сообщества пользователей, чтобы извлечь из этого сходство между пользователями (так как им нравятся/не нравятся одни и те же элементы) или сходство между элементами (так как они нравятся/не нравятся одним и тем же пользователям). Эта информация затем используется, чтобы либо рекомендовать элементы, которые схожи с элементами, которые пользователь точно определил как нравящиеся, либо рекомендовать элементы, которые нравятся пользователям, которые схожи с данным пользователем (и еще не просмотрены или куплены данным пользователем). Подходы совместной фильтрации не требуют определения характеристик элементов в том, что касается пар признак-значение.
За последние годы значительно увеличилась популярность служб социальных сетей, таких как Facebook и LinkedIn. Эти службы помогают пользователю легко обмениваться идеями, интересами и т.д. с друзьями, семьей и коллегами. Эти службы также предлагают пользователям возможность выражения их интересов, посредством выражения «симпатий» («лайков») к субъектам, таким как кинофильмы, музыка, знаменитости, организации, продукты и т.д. Каждый из этих субъектов точно определяется веб-страницей, которая дает дополнительные подробности о конкретном субъекте. Например, Facebook имеет обширную коллекцию этих субъектов, которые могут искать пользователи.
Предполагается, что пользователь хочет выразить его или ее интересы для данного субъекта. Если веб-страница уже существует для этого субъекта, то пользователь может просто нажать на соответствующую кнопку "нравится", и ссылка на эту веб-страницу будет добавлена в профиль пользователя. Если нет подходящей веб-страницы, которая выражает субъект, представляющий его или ее интерес, пользователь может создать такую веб-страницу посредством дополнительного добавления текстовой информации о субъекте. Для многих субъектов, эта информация извлекается из Wikipedia или других ресурсов, предоставляющих подробную высококачественную информацию.
Для обеих категорий рекомендательных систем, упомянутых выше, пользователь, который является новым для рекомендательной системы, сначала должен присвоить рейтинг некоторому числу элементов, прежде чем рекомендательная система сможет сгенерировать полезные персонализированные рекомендации. Это может помешать широкому распространению использования рекомендательной системы, так как пользователи могут не всегда желать первоначально вкладывать время и силы в "объяснение" системе своего вкуса. Все равно пользователи ожидают незамедлительных рекомендаций. Рекомендательная система будет иметь возможность изучить вкус пользователя со временем, но в этом случае рекомендации изначально не будут оптимально настроены для конкретного пользователя.
Одним путем для решения этой проблемы является позволить рекомендательной системе первоначально рекомендовать элементы, которые понравились многим пользователям. Однако, критически настроенный пользователь может не оценить эти рекомендации как очень значимые, и он или она может прекратить использование рекомендательной системы, пока не будет иметься возможность настройки своих рекомендаций.
Другой подход обнаружен в Chumki Basu ET AL: "Technical paper recommendation: A study in combining multiple information sources", журнал исследования искусственного интеллекта 1, 1 января 2001 (2001-01-01), стр.231-252. В этой статье для извлечения совпадений из множественных источников информации предлагается использование системы WHIRL.
Согласно первому аспекту настоящего изобретения, рекомендательный модуль для рекомендации элементов контента пользователю содержит:
- блок генерирования профиля, имеющий блок ввода предварительного профиля, который выполнен с возможностью приема из базы данных, которая является внешней для рекомендательного модуля, данных предварительного профиля, содержащих текстовые данные предварительного профиля, подходящие для идентификации субъектов, представляющих интерес для данного пользователя, и имеющий блок анализа предварительного профиля, который соединен с блоком ввода предварительного профиля и выполнен с возможностью извлечения из данных предварительного профиля идентификационных данных, идентифицирующих субъекты, представляющие интерес, и генерирования набора данных первоначального профиля пользователя для данного пользователя исходя из извлеченных идентификационных данных;
- блок генерирования запросов, который соединен с блоком генерирования профиля и выполнен с возможностью генерирования, с использованием извлеченных идентификационных данных из набора данных первоначального профиля пользователя, по меньшей мере двух запросов, семантически отличающихся друг от друга, которые должны быть направлены в по меньшей мере один репозиторий контента;
- блок извлечения контента, который соединен с блоком генерирования запросов и выполнен с возможностью выдачи сгенерированных запросов по меньшей мере одному репозиторию контента и который выполнен с возможностью приема из по меньшей мере одного репозитория контента, в ответ на запрос, ответных данных, относящихся к контенту, содержащих соответствующие списки совпадений, имеющие по меньшей мере один соответствующий идентификатор размещения контента, указывающий место хранения соответствующего элемента контента; и
- блок перемежения, который соединен с блоком извлечения контента и который выполнен с возможностью генерирования из разных списков совпадения единого списка рекомендаций посредством перемежения друг с другом идентификаторов размещения контента, содержащихся в разных списках совпадений из данных списков совпадений.
Блок перемежения объединяет списки совпадений, возникающие в результате по меньшей мере двух явных запросов, которые семантически отличаются друг от друга. Другими словами, по меньшей мере перемежаются два списка совпадений, чтобы сгенерировать списки рекомендаций, в отличие от использования одиночного дизъюнктивного запроса. Явное создание многочисленных, семантически разных запросов, которые приводят к отличным спискам совпадений, создает возможность применения усовершенствованных алгоритмов перемежения в отношении отдельных списков, например, для достижения достаточной степени разнообразия в результирующих списках.
Рекомендательный модуль согласно первому аспекту данного изобретения основан на концепции обеспечения возможности генерирования рекомендаций элементов контента для нового пользователя посредством автоматического создания первоначального профиля пользователя на основании данных, относящихся к пользователю, называемых здесь данными предварительного профиля, которые приняты из внешней базы данных. Новый пользователь рекомендательного модуля может, например, предоставить доступ к данным под ее или его учетной записью в базе данных электронной социальной сети, примеры которых известны под товарными знаками Facebook или LinkedIn. Существуют многие другие такие электронные социальные сети.
Электронная социальная сеть содержит пользовательские данные, в отношении субъектов, таких как люди, артисты, группы людей, города, страны, клубы, политические партии, компании, идеи, теории, наука, всевозможные вещи, игры, произведения искусства, например, фрагменты музыки, кинофильмов, пьес, статей, книг, фотографий, распечаток, картин, стилей искусства, событий, активности, спорта и т.д. Термин "субъект" используется в настоящей заявке для ссылки на любой такой идентифицируемый интерес данного пользователя.
Соответственно, рекомендательный модуль по настоящему изобретению сильно ускоряет процесс изучения вкуса пользователя посредством обеспечения возможности рекомендаций на основании задокументированной активности пользователя в среде, внешней для рекомендательного модуля, такой как электронная социальная сеть. В то же время, данное изобретение распознает и преодолевает другую важную проблему раннего использования рекомендательного модуля пользователем, посредством перемежения рекомендаций из разных списков контента, называемых здесь списками совпадений, извлеченных рекомендательным модулем. Это перемежение повышает разнообразие рекомендаций, которое является важным требованием функциональности рекомендательного модуля, в частности для верхней области списка рекомендаций, как может быть измерено посредством общей частоты использования сгенерированных рекомендаций. Рекомендательному модулю по настоящему изобретению, таким образом, обеспечена возможность представления пользователю рекомендаций в едином списке, не только тех, что пользователю уже известны, но и разнообразного набора рекомендаций, за счет перемежения рекомендаций, возникающих в результате двух семантически разных запросов.
Таким образом, посредством объединения автоматической оценки импортированных данных предварительного профиля и перемежения рекомендаций из разных списков совпадения контента для данного пользователя, рекомендательный модуль по настоящему изобретению достигает тесного сцепления рекомендаций с действительными интересами и ожиданиями пользователя от рекомендательной системы прямо сначала, не требуя редакционного ввода или первоначального взаимодействия с пользователем касательно его или ее вкуса. Обе меры, таким образом, совместно ускоряют зависящий от конкретного пользователя процесс изучения рекомендательного модуля, сразу после первого взаимодействия с конкретным пользователем. Для заинтересованного пользователя, кому предоставлены рекомендации, близкие к ее или его интересам, сразу после начала взаимодействий, более часто и, таким образом, быстрее предоставляется информация, требуемая для корректирования набора данных первоначального профиля пользователя. Это, в свою очередь, повышает общее восприятие качества и адекватности рекомендаций и обеспечивает более высокое качество пользования продуктом для пользователя.
В нижеследующем будут описаны варианты осуществления рекомендательного модуля по первому аспекту данного изобретения. Дополнительные признаки разных вариантов осуществления могут быть объединены друг с другом для образования дополнительных вариантов осуществления, пока не будут явно исключены в настоящем описании.
Предпочтительно, рекомендательный модуль сортирует рекомендации согласно релевантности. Для этого, блок извлечения контента в одном варианте осуществления дополнительно выполнен с возможностью извлечения текстовых данных контента, связанных с соответствующими идентификаторами размещения контента, в ответ на запросы. Таким образом, текстовая связанность между данными предварительного профиля и текстовыми данными контента может быть использована, чтобы автоматически оценивать релевантность. Для этого, один вариант осуществления содержит блок присваивания рейтинга, который соединен с блоком извлечения контента и который выполнен с возможностью
- назначения идентификаторам размещения контента, которые были приняты в ответ на каждый из по меньшей мере двух запросов, показателей релевантности, основанных на критерии сходства, оценивающем текстовую связанность между текстовыми данными предварительного профиля и текстовыми данными контента,
- сортировки списков совпадений согласно релевантности, которая выражена показателями релевантности, и
- предоставления отсортированных списков совпадений блоку перемежения.
Таким образом блок присваивания рейтинга отличается от других подходов присваивания в том, что присваивание рейтинга основано не на профиле пользователя (как в предшествующем уровне техники), а на данных предварительного профиля, например, на основании данных, относящихся к пользователю, которые могут быть извлечены, например, из социальных сетей.
В другом варианте осуществления, блок генерирования профиля содержит классификационную базу данных, которая присваивает соответствующий класс субъектов, согласно по меньшей мере одному критерию классификации, соответствующему набору из по меньшей мере одного ключевого слова, которое должно быть включено в запрос
- при этом блок генерирования профиля выполнен с возможностью присваивания по меньшей мере одного класса извлеченным идентификационным данным, идентифицирующим соответствующий субъект, представляющий интерес, в соответствии с классификационной базой данных, и
- при этом блок генерирования запросов выполнен с возможностью генерирования запросов, с использованием соответствующих идентификационных данных и по меньшей мере одного из ключевых слов, присвоенных соответствующему классу идентификационных данных в соответствии с классификационной базой данных.
Преимущества этого варианта осуществления проиллюстрированы посредством следующего примера применения: знание того, что субъект, идентифицированный в данных предварительного профиля, является человеком, может повлечь за собой, при посредстве рекомендательного модуля настоящего варианта осуществления, запрос, в котором имя человека объединено с ключевым словом "интервью" или "биография". Выданные в репозиторий контента поставщика контента, такого как YouTube или Wikipedia, эти запросы могут повлечь за собой рекомендации видео, содержащего интервью с человеком, или веб-сайта, содержащего биографический материал о данном человеке.
В дополнительном варианте осуществления, блок анализа предварительного профиля дополнительно выполнен с возможностью классификации текстовых данных предварительного профиля по их языку и предоставления на свой выход по меньшей мере одного идентификатора языка, указывающего соответствующий язык, используемый в текстовых данных предварительного профиля. Классификационная база данных рекомендательного модуля согласно этому варианту осуществления содержит ключевые слова на разных языках. Блок генерирования запросов выполнен с возможностью генерирования запросов с использованием ключевых слов на языке, соответствующем идентификатору языка. Например, если субъект имеет отношение к французскому автору, то имя автора объединяется с "écrit par" вместо "written by" в запросе для поиска книг, которые он или она написала. В разновидности этого варианта осуществления, блок генерирования запросов дополнительно выполнен с возможностью генерирования запросов с использованием ключевых слов на заданном по умолчанию языке, если для соответствующего класса в классификационной базе данных не присутствуют ключевые слова на точно определенном другом языке.
Чтобы дополнительно улучшить разнообразие сгенерированного списка рекомендаций, блок генерирования запросов в одном варианте осуществления выполнен с возможностью включения в запросы извлеченных идентификационных данных по меньшей мере двух субъектов, представляющих интерес.
В другом варианте осуществления, блок генерирования профиля выполнен с возможностью детектирования в данных предварительного профиля ссылки ресурса на ресурс контента в сетевом месте в глобальной сети данных, осуществления доступа к ресурсу контента и добавления текстовых данных, доступных из ресурса контента, к текстовым данным предварительного профиля. Такие ссылки обычно ссылаются на субъекты, которые семантически относятся к исходному "понравившемуся" субъекту. Например, если исходным "понравившимся" субъектом является режиссер фильма, то ссылки обычно точно определяют названия фильмов, которые он или она срежиссировала. Для автора, могут точно определить названия книг, которые он или она написала. Ссылки могут также ссылаться на родственных артистов или тип направления искусства, с которым обычно связан "понравившийся" субъект. Следовательно, посредством генерирования конкретных запросов, которые объединяют эти части с возможно разными дополнительными направляющими ключевыми словами, такими как "written by", "influenced by" и т.д., и посредством выдачи этих запросов в конкретные репозитории контента, широкий диапазон возвращенных результатов получается с использованием различных потенциальных ссылок, которые могут быть обнаружены в текстовом описании.
В разновидности этого варианта осуществления, блок генерирования профиля либо в качестве альтернативы, либо дополнительно выполнен с возможностью сканирования данных предварительного профиля на предмет сегментов, выделенных посредством типов тегов разметки, отличных от типов тегов разметки, идентифицирующих ссылку, как, например, внешний вид, соответствующий выделению жирным и т.д., и включения таких сегментов в запросы, как описано ранее.
Для того, чтобы дополнительно усовершенствовать генерирование рекомендаций, блок генерирования профиля по одному варианту осуществления рекомендательного модуля выполнен с возможностью извлечения из данных предварительного профиля разных поднаборов текстовых данных предварительного профиля, которые отличаются друг от друга своей датой генерирования, которая назначена внешней базой данных, и извлечения из поднаборов соответствующих дат генерирования поднаборов. Это обеспечивает возможность фильтрации поднаборов, согласно их дате генерирования. Блок присваивания рейтинга по этому варианту осуществления, в свою очередь, предпочтительно выполнен с возможностью применения взвешивания к показателю релевантности, причем взвешивание увеличивает показатель релевантности тем больше, чем более поздней является дата генерирования соответствующего одного из наборов, относящихся к данному размещению контента, принадлежащему данному субъекту, представляющему интерес.
В дополнительном варианте осуществления, блок анализа предварительного профиля выполнен с возможностью детектирования из текстовых данных предварительного профиля присутствия ключевых слов, указывающих, что данному пользователю или некоторому другому субъекту (обычно человеку), связанному с данным пользователем согласно внешней базе данных, нравится субъект/элемент, и назначения указателя "нравится" этому соответствующему субъекту/элементу в наборе данных первоначального профиля пользователя. Блок присваивания рейтинга по этому варианту осуществления предпочтительно выполнен с возможностью применения взвешивания к показателю релевантности, причем взвешивание увеличивает показатель релевантности, если данный субъект/элемент, представляющий интерес, имеет связанный указатель "нравится".
В дополнительном варианте осуществления рекомендательного модуля, блок присваивания рейтинга выполнен с возможностью оценивания значения текстовой связанности между текстовыми данными предварительного профиля и текстовыми данными контента. Предпочтительно, текстовая связанность оценивается с использованием вычисления веса «частота термина - на - обратную частоту документа, в дальнейшем в этом документе вес tf-idf. Реализация этого варианта осуществления может основывать оценку на наборе слов, содержащихся в текстовых данных предварительного профиля и в текстовых данных контента. Например, слова, превышающие предварительно заданный вес tf-idf, могут быть идентифицированы и сравнены для текстовых данных предварительного профиля с одной стороны и в текстовых данных контента с другой стороны. Дополнительно или в качестве альтернативы, математически предварительно заданный критерий сходства весов td-idf для слов, встречающихся в обоих типах текстовых данных, может быть использован для оценки текстовой связанности.
Дополнительный или альтернативный подход к взвешиванию релевантности совпадений реализован в варианте осуществления, в котором блок присваивания рейтинга выполнен с возможностью взвешивания показателей релевантности на основе критерия сходства, оценивающего текстовую связанность между текстовыми данными контента разных элементов контента, найденными в запросах. В этом варианте осуществления, взвешивание уменьшает показатель релевантности, если элемент контента, который должен быть оценен на предмет релевантности, имеет текстовую связанность с элементом контента, оцененным непосредственно перед ним, причем текстовая связанность превышает предварительно определенное значение. Этот вариант осуществления дополнительно повышает разнообразие сгенерированного списка рекомендаций при том, что результаты запросов, имеющие высокое взаимное сходство согласно их текстовой связанности, оцениваются как релевантные не в равной степени, таким образом автоматически делая избранным только один из взаимно сходных результатов запросов для единого списка рекомендаций, который должен быть сгенерирован.
В дополнительном варианте осуществления, рекомендательный модуль дополнительно содержит блок аутентификации, который выполнен с возможностью приема через интерфейс пользовательского ввода аутентификационных данных пользователя, подходящих для осуществления доступа к внешней базе данных. Блок генерирования профиля выполнен с возможностью осуществления доступа к внешней базе данных для извлечения данных предварительного профиля.
Для того, чтобы продолжить адаптацию профиля пользователя, другой вариант осуществления рекомендательного модуля дополнительно содержит блок обслуживания профиля в дополнение к блоку генерирования профиля. Блок обслуживания профиля выполнен с возможностью извлечения дополнительных идентификационных данных для дополнительного субъекта из извлеченных текстовых данных контента. Блок обслуживания профиля предпочтительно дополнительно выполнен с возможностью добавления извлеченных дополнительных идентификационных данных к набору данных профиля пользователя после детектирования значения текстовой связанности между текстовыми данными предварительного профиля и текстовыми данными контента, которое превышает предварительно определенное пороговое значение. Профиль пользователя в этом варианте осуществления таким образом дополнительно адаптирован посредством дополнительного обслуживания первоначально сгенерированного профиля пользователя.
Второй аспект настоящего изобретения образован репозиторием контента, содержащим
- базу данных контента, содержащую элементы контента в виде файлов данных, хранящихся в размещениях контента;
- рекомендательный модуль согласно первому аспекту настоящего изобретения или согласно одному из вариантов его осуществления, раскрытых в настоящем описании, включая формулу изобретения.
В репозитории контента согласно второму аспекту второго изобретения, блок извлечения контента из состава рекомендательного модуля выполнен с возможностью выдачи сгенерированных запросов базе данных контента. Это делается не для того, чтобы принципиально исключить выдачу сгенерированных запросов другим, внешним базам данных контента, не содержащимся в репозитории контента настоящего аспекта данного изобретения. Однако, в варианте осуществления, выдача запросов фактически ограничена самой базой данных контента репозитория контента.
Варианты осуществления репозитория контента содержат по меньшей мере один из вариантов осуществления рекомендательного модуля согласно первому аспекту данного изобретения. Преимущества репозитория контента по второму аспекту данного изобретения и вариантов его осуществления таким образом соответствуют преимуществам, описанным выше в соответствующем контексте первого аспекта данного изобретения, и не будут повторяться в настоящем контексте.
Согласно третьему аспекту данного изобретения, способ функционирования рекомендательного модуля для рекомендации элементов контента пользователю содержит этапы, на которых
- принимают из базы данных, которая является внешней для рекомендательного модуля, данные предварительного профиля, содержащие текстовые данные предварительного профиля, подходящие для идентификации субъектов, представляющих интерес для конкретного пользователя;
- извлекают из данных предварительного профиля идентификационные данные, идентифицирующие субъекты, представляющие интерес;
- генерируют набор данных первоначального профиля пользователя для этого конкретного пользователя исходя из извлеченных идентификационных данных;
- генерируют, с использованием извлеченных идентификационных данных из набора данных первоначального профиля пользователя, по меньшей мере два запроса, семантически отличающиеся друг от друга, которые должны быть направлены в по меньшей мере один репозиторий контента;
- выдают сгенерированные запросы в этот по меньшей мере один репозиторий контента;
- принимают из данного по меньшей мере одного репозитория контента, в ответ на запрос, ответные данные, относящиеся к контенту, содержащие соответствующие списки совпадений, имеющие по меньшей мере один соответствующий идентификатор размещения контента, указывающий место хранения соответствующего элемента контента;
- генерируют из разных извлеченных списков совпадения единый список рекомендаций посредством перемежения друг с другом идентификаторов размещения контента, содержащихся в разных списках совпадений из данных списков совпадений.
Способ согласно третьему аспекту непосредственно соответствует функциональности рекомендательного модуля по первому аспекту данного изобретения. Вследствие этого, для описания его преимуществ и вариантов осуществления, делается ссылка на описание рекомендательного модуля по первому аспекту данного изобретения и его различные варианты осуществления в настоящем описании и пунктах формулы изобретения.
Четвертый аспект настоящего изобретения образован компьютерно-читаемым носителем информации, хранящим исполняемый компьютером код, причем компьютерный код реализует способ для управления функционированием рекомендательного модуля для рекомендации элементов контента пользователю, согласно третьему аспекту данного изобретения или одному из его вариантов осуществления.
Предпочтительные варианты осуществления данного изобретения также заданы в зависимых пунктах формулы изобретения. Вышеупомянутые и другие аспекты данного изобретения будут очевидны и разъяснены со ссылкой на варианты осуществления, описанные в дальнейшем. На нижеследующих чертежах:
фиг.1 показывает блок-схему рекомендательного модуля и репозитория контента согласно одному варианту осуществления;
фиг.2 показывает схему последовательности операций способа эксплуатации рекомендательного модуля согласно дополнительному варианту осуществления.
Фиг.1 показывает блок-схему рекомендательного модуля согласно одному варианту осуществления. Фиг.1 будет также использована дополнительно ниже, чтобы разъяснить вариант осуществления репозитория контента.
Рекомендательный модуль 100 по фиг.1 в основном служит для рекомендации элементов контента пользователю. Пользователь эксплуатирует устройство 102 отображения контента. Рекомендательный модуль 100 настоящего варианта осуществления эксплуатируется как устройство, которое физически отделено от устройства 102 отображения. Другими словами, в настоящем варианте осуществления устройство отображения является внешним для рекомендательного модуля 100. В другом полезном варианте осуществления, рекомендательный модуль интегрирован с устройством 102 отображения контента. В любом из этих вариантов осуществления, рекомендательный модуль 100 и устройство 102 отображения контента коммуникативно соединены друг с другом.
Коммуникационное соединение может также быть создано между рекомендательным модулем 100 и устройством 104 пользовательского терминала, который обычно является некоторой формой компьютера, таким как настольный компьютер, мобильный компьютер подобный ноутбуку, или интеллектуальный телефон. Устройство 104 терминала и устройство 102 отображения контента во многих случаях применения интегрированы в единое устройство. Однако, по соображениям ясности по отношению к функциональности при их взаимодействии с рекомендательным модулем 100, фиг.1 показывает их как отдельные блоки, также для указания, что они могут фактически быть реализованы на физически отдельных устройствах.
Устройство 104 терминала выполнено с возможностью обмена информацией с базой данных 106 электронной социальной сети. Как хорошо известно, пользователь может использовать устройство 104 терминала для ввода и таким образом осуществлять передачу в социальную сеть, то есть в целях настоящего описания: в базу данных 106, его персональную информацию, комментарии, избранные элементы ("симпатии"), ссылки на веб-сайты и т.д., и приема аналогичного ввода от других пользователей (его "друзей") социальной сети.
Устройство 104 терминала может также быть использовано для взаимодействия с рекомендательным модулем 100, как будет описано дополнительно ниже.
Рекомендательный модуль 100 содержит блок 108 генерирования профиля. Блок 108 генерирования профиля разделен на блок 110 ввода предварительного профиля, который коммуникационно соединяется с базой данных 106 или (не показано на фиг.1) устройством 104 терминала, или с обоими. Блок ввода предварительного профиля выполнен с возможностью приема данных предварительного профиля, содержащих текстовые данные предварительного профиля, подходящие для идентификации субъектов, представляющих интерес для данного пользователя. Например, данные предварительного профиля могут содержать персональную страницу "симпатий", т.е. код, обычно на языке разметки наподобие html или xml, который точно определяет субъекты, представляющие интерес для пользователя, посредством публикаций, комментариев, других типов текста или текстовых фрагментов, ссылок для отображения с использованием программного обеспечения веб-браузера, и который обслуживается пользователем посредством его вводов в базу данных 106 также с использованием интерфейса веб-браузера, представляемого пользователю поставщиком социальной сети.
Блок 108 генерирования профиля дополнительно содержит блок 112 анализа предварительного профиля, который соединен с блоком 110 ввода предварительного профиля и выполнен с возможностью извлечения из данных предварительного профиля идентификационных данных, идентифицирующих субъекты, представляющие интерес, и генерирования набора данных первоначального профиля пользователя для данного пользователя исходя из идентификационных данных. Например, веб-страница, которая точно определяет субъект, который "понравился" данному пользователю, обычно содержит некоторое число признаков, которые присутствуют почти всегда, такие как категория, изображение субъекта и число пользователей, которым "понравился" субъект. Текст, который точно определяет категорию, обычно является произвольным текстом, т.е. он может быть любым текстовым фрагментом, но могут быть распознаны наиболее встречающиеся категории, такие как, например, "музыкант/группа" или "публичная фигура". В дополнение, извлекаются части страницы "симпатий", которые содержат большие фракции текста. Они обычно обозначены как "описание", "о" и т.д. Эти текстовые фрагменты сканируются на предмет конкретных тегов разметки, указывающих ссылки, выделенные, жирные и т.д. части. Эти части обычно ссылаются на субъекты, которые семантически относятся к исходному "понравившемуся" субъекту. Например, если исходным "понравившимся" субъектом является режиссер фильма, то эти части могут точно определить названия фильмов, которые он или она срежиссировала. Для автора, могут точно определить названия книг, которые он или она написала. Но эти конкретные части могут также ссылаться на родственных артистов или тип направления искусства, с которым обычно связан "понравившийся" субъект. Дополнительно, многие социальные среды, такие как Facebook, YouTube и Twitter, обеспечивают пользователям возможность "публикации" комментариев и информации в социальных средах, также относящихся к элементам, для оповещения друзей об их активности или интересах. Информация, содержащаяся в публикации или комментарии, и "симпатия" (необязательно принадлежащая пользователю, публикующему комментарий, но скорее другу), с которой связаны эти публикации и комментарии, могут также быть использованы как данные предварительного профиля блоком анализа предварительного профиля в процессе генерирования набора данных первоначального профиля пользователя, который должен быть использован для генерирования первых рекомендаций для пользователя.
Чтобы идентифицировать, должен ли комментарий друга в отношении "понравившегося" субъекта быть интерпретирован как положительный или отрицательный, чувство относительно комментария может быть проанализировано в варианте настоящего варианта осуществления, например, посредством блока 112 анализа предварительного профиля, ищущего наличие слов, которые обычно связаны с положительным чувством, и слова, которые обычно связаны с отрицательным чувством.
Опцией для получения данных предварительного профиля является оборудовать рекомендательный модуль блоком аутентификации, который выполнен с возможностью приема через интерфейс пользовательского ввода аутентификационных данных пользователя, подходящих для осуществления доступа к базе данных 106. Таким образом, пользователь раскрывает свою информацию аутентификации пользователя, требуемую для осуществления доступа к базе данных 106, рекомендательному модулю 100 рекомендаций через блок 114 аутентификации. В этом случае, блок 108 генерирования профиля выполнен с возможностью осуществления доступа к внешней базе данных 106 для извлечения данных предварительного профиля, с использованием аутентификационных данных пользователя.
Однако, обеспечение блока 112 аутентификации является необязательным признаком рекомендательного модуля 100. Данные предварительного профиля могут быть предоставлены самим пользователем посредством его или ее устройства 104 терминала. Например, пользователь может сначала скачать копию персональных данных из соответствующей социальной сети и затем предоставить копию в качестве данных предварительного профиля рекомендательному модулю посредством блока 110 ввода предварительного профиля.
Блок 112 анализа профиля блока 108 генерирования профиля рекомендательного модуля 100 дополнительно выполнен с возможностью присвоения по меньшей мере одного класса извлеченным идентификационным данным, идентифицирующим соответствующий субъект, представляющий интерес, в соответствии с классификационной базой данных 116. Классы субъектов могут, например, различать субъекты посредством назначения атрибута, такого как человек, а