Управление контурным формованием

Иллюстрации

Показать все

В настоящем изобретении описаны способы и устройство для реализации процесса сведения для приближения к конфигурации линзы, причем предыдущая ЦМУ-демонстрация может быть модифицирована для следующей итерации. В предпочтительных вариантах осуществления итерационный цикл может быть инициирован во время процесса сведения, при котором может быть реализовано одно или более из различных методик, технологий и способов коррекции толщины. Изобретение обеспечивает повышение точности изготавливаемых изделий. 2 н. и 32 з.п. ф-лы, 13 ил., 7 табл.

Реферат

ОБЛАСТЬ ПРИМЕНЕНИЯ ИЗОБРЕТЕНИЯ

Настоящее изобретение представляет способы и устройство для управления производством изделия при помощи устройства контурного формования. Более конкретно, управление устройством контурного формования на основе процесса сведения может осуществляться для производства контурно формованных линз до тех пор, пока конфигурация линзы не будет соответствовать критерия приемлемости.

ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Соответственно, один аспект настоящего изобретения представляет реализацию процесса сведения для создания контурно формованной контактной линзы, соответствующей критериям приемлемости, предъявляемым к конфигурации линзы. Например, использование ЦМУ-демонстрации может привести к созданию линзы, не соответствующей критериям приемлемости, причем процесс сведения может быть применен в следующей итерации. В процессе сведения можно использовать одну или более из различных методик маскирования, технологии сведения и способа коррекций толщины.

Методика маскирования может включать одну или более из методики радиального маскирования, методики секторного маскирования, методики сегментного маскирования и методики областного маскирования, причем при необходимости можно использовать связующие зоны. Технология может включать одну или более из технологии одностороннего сведения и технологии двустороннего сведения. Соответственно, при использовании одной или обеих из технологии одностороннего сведения и технологии двустороннего сведения можно применять одну или обе из методики фиксации верхушки и методики поршневого смещения.

Более того, способ коррекции толщины может включать одно или более из коррекции толщины процентным способом, коррекции толщины арифметическим способом и коррекции толщины способом секущей. При использовании способа коррекции толщины может применяться либо способ равномерного пространственного усиления, либо способ неравномерного пространственного усиления. Может существовать множество типов способа неравномерного пространственного усиления, включая способ неравномерного пространственного усиления на основе функции и способ неравномерного пространственного усиления с прямым картированием.

Настоящее изобретение представляет способ управления производством офтальмологического устройства при помощи устройства контурного формования, содержащий стадии, на которых:

(a) подают инструкцию на устройство контурного формования для изготовления офтальмологического устройства;

(b) изготавливают офтальмологическое устройство при помощи устройства контурного формования на основе инструкции;

(c) измеряют офтальмологическое устройство;

(d) определяют, соответствует ли офтальмологическое устройство критериям приемлемости, предъявляемым к конфигурации линзы; и причем

(e) при выявлении несоответствия офтальмологического устройства критериям приемлемости способ дополнительно содержит стадию, на которой

(f) выполняют процесс сведения для приближения офтальмологического устройства к конфигурации линзы.

Процесс сведения может содержать стадию (g), на которой модифицируют предыдущую инструкцию для создания следующей инструкции, позволяющей получить следующее офтальмологическое устройство.

Способ может дополнительно содержать стадию (h), на которой изготавливают новое офтальмологическое устройство при помощи устройства контурного формования на основе следующей инструкции.

Способ может дополнительно содержать повторение стадий (g) и (h), пока не будет определено, что офтальмологическое устройство соответствует критериям приемлемости, предъявляемым к конфигурации линзы.

Устройство контурного формования может содержать цифровое микрозеркальное устройство (ЦМУ), и каждая инструкция может представлять собой инструкцию ЦМУ-демонстрации.

Процесс сведения может содержать методику сводящего маскирования.

Методика сводящего маскирования может содержать определение выбранного участка маскирования и избирательное выполнение процесса сведения внутри выбранного участка маскирования.

Методика сводящего маскирования может содержать определение выбранного участка маскирования и избирательное выполнение процесса сведения за пределами выбранного участка маскирования.

Выбранный участок маскирования может содержать один или более из радиуса сектора, сегмента и области.

Методика сводящего маскирования может содержать одну или более связующих зон.

Связующая зона может содержать одну или более указанных зон, соединяющих указанный выбранный участок маскирования с одним или более немаскированными участками.

Процесс сведения может содержать технологию сведения.

Технология сведения может содержать модификацию предыдущей инструкции на участках измеренного офтальмологического устройства, которые имеют слишком большую толщину по сравнению с целевой толщиной, и модификацию предыдущей инструкции на участках измеренного офтальмологического устройства, которые имеют слишком малую толщину по сравнению с целевой толщиной.

Технология сведения может содержать модификацию предыдущей инструкции только на тех участках измеренного офтальмологического устройства, которые являются слишком тонкими по сравнению с целевой толщиной.

Модификация предыдущей инструкции может содержать инструкцию увеличения значения на участках измеренного офтальмологического устройства, которые являются слишком тонкими по сравнению с целевой толщиной.

Технология сведения может содержать модификацию предыдущей инструкции только на тех участках измеренного офтальмологического устройства, которые являются слишком толстыми по сравнению с целевой толщиной.

Модификация предыдущей инструкции может содержать инструкцию уменьшения значения на участках измеренного офтальмологического устройства, которые являются слишком толстыми по сравнению с целевой толщиной.

Технология сведения может содержать методику поршневого смещения.

Методика поршневого смещения может содержать выполнение равномерного смещения на равную величину одной или более выбранных частей инструкции предыдущей ЦМУ-демонстрации.

Технология сведения может содержать методику фиксации верхушки.

Методика фиксации верхушки может содержать фиксированное значение ICT, причем указанному ICT присваивают указанное значение, которое остается постоянным в ходе следующей итерации.

Процесс сведения может содержать способ коррекции толщины.

Способ коррекции толщины может содержать один или более из процентного способ, арифметического способа и способа секущей.

Способ коррекции толщины может содержать процесс фильтрации одной или более точек данных.

Процесс фильтрации может содержать одно или более из определения, обнаружения, удаления и коррекции ошибок в указанных данных.

Способ коррекции толщины может содержать процесс подбора поверхности одной или более указанных точек данных.

Процесс подбора поверхности может содержать построение одной или обеих из поверхности и математической функции, наилучшим образом соответствующей серии указанных точек данных посредством реализации либо интерполяции, либо сглаживания.

Способ коррекции толщины может содержать способ равномерного пространственного усиления.

Способ равномерного пространственного усиления может обеспечивать применение одного или более одинаковых указанных способов коррекции толщины по всему указанному формируемому участку, причем величина коэффициента усиления одинакова для положения каждого пикселя.

Способ коррекции толщины может содержать способ неравномерного пространственного усиления.

Способ неравномерного пространственного усиления может содержать применение одного или более одинаковых указанных способов коррекции толщины по всему указанному формируемому участку, причем величина коэффициента усиления может быть разной для положения каждого пикселя.

Способ неравномерного пространственного усиления может представлять собой метод неравномерного пространственного усиления на основе функции.

Способ неравномерного пространственного усиления на основе функции может содержать соотнесение указанной величины коэффициента усиления с радиальным положением данного пикселя.

Способ неравномерного пространственного усиления может представлять собой метод неравномерного пространственного усиления с прямым картированием.

Способ неравномерного пространственного усиления с прямым картированием может содержать соответствующие данные из формируемого участка, полученные из одной или более из предыдущих ЦМУ-демонстраций, указанной измеренной линзы и указанной конфигурации линзы, причем необходимую указанную величину коэффициента усиления можно вычислить для положения каждого пикселя.

Настоящее изобретение дополнительно представляет устройство для модификации демонстрации цифрового микрозеркального устройства для создания контурно формованной офтальмологической линзы, приближающейся к конфигурации линзы, содержащее:

компьютерный процессор, сообщающийся по цифровой связи с устройством контурного формования; и

устройство хранения цифровых данных, сообщающееся с компьютерным процессором, причем на устройстве хранения цифровых данных хранится исполняемый программный код, выполняемый по требованию для реализации способа, описанного в настоящем изобретении.

На устройстве хранения цифровых данных необязательно хранятся цифровые данные, описывающие перечень данных, причем указанные данные содержат данные об одной или обеих из конфигурации линзы и ЦМУ-демонстрации.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На фиг. 1 представлены стадии способов, которые можно использовать для реализации настоящего изобретения.

На фиг. 2a представлен пример методики радиального маскирования, которую можно использовать для реализации настоящего изобретения.

На фиг. 2b представлен пример методики секторного маскирования, которую можно использовать для реализации настоящего изобретения.

На фиг. 2c представлен пример методики сегментного маскирования, которую можно использовать для реализации настоящего изобретения.

На фиг. 2d представлен пример методики областного маскирования, которую можно использовать для реализации настоящего изобретения.

На фиг. 2e представлен пример связующих зон, которые можно использовать для реализации настоящего изобретения.

На фиг. 3 показано графическое представление на плоском пространстве технологии двустороннего сведения, которую можно использовать для реализации настоящего изобретения.

На фиг. 4 показано графическое представление на плоском пространстве технологии одностороннего сведения с использованием способа утолщающего храпового механизма, который можно использовать для реализации настоящего изобретения.

На фиг. 5 показано графическое представление на плоском пространстве технологии одностороннего сведения с использованием способа утончающего храпового механизма, который можно использовать для реализации настоящего изобретения.

На фиг. 6 и фиг. 7 показаны графические представления на плоском пространстве методики фиксации верхушки, которые можно использовать для реализации настоящего изобретения.

На фиг. 8 показано графическое представление на плоском пространстве методики поршневого смещения, которую можно использовать для реализации настоящего изобретения.

На фиг. 9 изображен процессор, который можно использовать для реализации настоящего изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение представляет способы и устройство для одного или обоих из создания и модификации ЦМУ-демонстраций для создания линзы, приближающейся к конфигурации линзы. В следующих разделах будет приведено подробное описание вариантов осуществления настоящего изобретения. Приведенные описания как предпочтительных, так и альтернативных вариантов осуществления, несмотря на детальность, представляют собой лишь примеры возможных вариантов осуществления, и подразумевается, что для специалиста в данной области будет очевидна возможность вариаций, модификаций и изменений. Таким образом, необходимо понимать, что указанные примеры возможных вариантов осуществления не ограничивают широту аспектов описываемого изобретения. Стадии способов, описанные в настоящем документе, перечислены в данном описании в логической последовательности, однако данная последовательность никоим образом не ограничивает порядок, в котором они могут быть реализованы, если особо не указано другое.

ОПРЕДЕЛЕНИЯ

В приведенном описании и пунктах формулы, относящихся к настоящему изобретению, могут быть использованы различные термины, для которых будут приняты следующие определения.

В настоящем документе «критерии приемлемости» обозначают один или оба из указанного диапазона параметров и указанных значений параметров таким образом, что если измеренные параметры изготовленной линзы или предшественника линзы находятся в диапазоне или совпадают со значениями одного или обоих из конфигурации линзы и необходимого целевого файла, то изготовленный продукт можно считать приемлемым.

В настоящем документе «связующая зона» обозначает смежную область, связывающую одну или обе из части линзы с другой смежной частью линзы и частью ЦМУ-демонстрации с другой смежной частью ЦМУ-демонстрации. Связующая зона представляет собой область, в которой свойства одной части линзы смешиваются со свойствами другой смежной части линзы.

В настоящем документе «элемент каталога» обозначает файл, элемент, компонент, конфигурацию, данные или дескриптор, которые могут временно или постоянно храниться, например, в библиотеках или базах данных и могут вызываться для использования без повторного создания.

В настоящем документе «устройство контурного формования» обозначает оборудование и способы производства одного или более из формы предшественника линзы, предшественника линзы и линзы, причем устройство может включать, например, использование актиничного излучения, реакционной смеси и ЦМУ-устройств.

В настоящем документе «сведение» (также иногда называемое в настоящем документе «процессом сведения» или «сближением» с тем же значением, что и «процесс сведения») обозначает процесс модификации инструкции и использования модифицированной инструкции в итерационном цикле. Итерации могут продолжаться до тех пор, пока параметры следующей изготовленной линзы не станут соответствовать одному или обоим из критериев приемлемости и необходимого целевого файла. Инструкция может представлять собой файл ЦМУ или файлы ЦМУ.

В настоящем документе «изогнутое пространство» обозначает пространство координатного отображения (например, декартово, полярное, сферическое и т.п.), где кривизна конфигурации не была устранена.

В настоящем документе «специализированный продукт» обозначает продукт, включающий один или более параметров, которые могут быть доступны помимо шагов приращения. Параметры специализированного продукта предусматривают большую точность сферической силы, цилиндрической силы и оси цилиндра (например, -3,125 дптр/-0,47 дптр ×18°), чем параметры стандартного продукта, и могут включать параметры базовой кривизны, диаметров, профилей стабилизации и профилей толщины, связанные с конкретной областью применения предлагаемого продукта.

В настоящем документе «необходимый целевой файл» или «целевой файл» обозначает данные, представляющие один или более из конфигурации линзы, карты толщины, конфигурации предшественника линзы, конфигурации формы предшественника линзы, конфигурации элемента предшественника линзы и их комбинаций. Необходимый файл может быть представлен или в гидратированном, или негидратированном состоянии в плоском или изогнутом пространстве, в двухмерном или трехмерном пространстве и способами, включающими, без ограничений, геометрические чертежи, профиль оптической силы, форму, характеристики, толщину и т.д. Необходимые целевые файлы могут содержать данные с решеткой, имеющей регулярные или нерегулярные интервалы.

В настоящем документе «раздел цифровой основы» обозначает диапазон продуктов, где выбранные элементы предшественника линзы или управляющие параметры или другие элементы могут быть идентичны и оставаться постоянными в указанном диапазоне продуктов.

В настоящем документе ЦМУ (цифровое микрозеркальное устройство) обозначает бистабильный пространственный модулятор света, состоящий из матрицы микрозеркал, выполненных с возможностью перемещения, установленных на чип КМОП-памяти. Каждое зеркало может по отдельности управляться путем загрузки данных в ячейку памяти под зеркалом для направления отраженного света, позволяя пространственно отображать пиксель видеоданных на пиксель экрана. Данные электростатически управляют углом наклона зеркала, которое может находиться в двух состояниях: под углом +X градусов («включено») и под углом - X градусов («выключено»). Например, в указанных устройствах X может составлять либо 10 градусов, либо 12 градусов (номинал); будущие устройства могут содержать различные углы наклона. Свет, отраженный от зеркал, находящихся во «включенном» состоянии, проходит через проектирующую линзу и направляется на экран. Свет, отраженный от зеркал, находящихся в «выключенном» состоянии, создает темное поле и определяет черный уровень фона изображения. Изображения создаются модуляцией уровня серого путем быстрого переключения зеркал между состояниями «включено» и «выключено» с частотой, достаточной для восприятия наблюдателем. Каждое зеркало может получать ряд инструкций от одного, ни от одного или от множества ЦМУ-демонстраций. Выбранные зеркала могут быть «включены» в процессе производства линзы. ЦМУ (цифровое микрозеркальное устройство) может находиться в цифровых проекционных системах (DLP).

В настоящем документе «управляющее ЦМУ программное обеспечение» обозначает программное обеспечение, использующее файлы ЦМУ и ЦМУ-демонстрации, что позволяет производить предшественники линзы или элементы предшественников линз.

В настоящем документе «ЦМУ-демонстрация» или «файл ЦМУ» обозначает набор одних или обоих из хронологических инструкционных точек данных и инструкционных точек данных на основе толщины, которые могут использоваться для активации зеркал ЦМУ и позволяют производить линзу, предшественника линзы, форму предшественника линзы или элемент(ы) предшественника линзы. ЦМУ-демонстрация может иметь различные форматы, наиболее распространенными из которых являются (x, y, t) и (r, θ, t), где x и y, например, являются положениями зеркал ЦМУ в прямоугольной системе координат, r и θ являются положениями зеркал ЦМУ в полярной системе координат, а t представляет временные инструкции, управляющие состояниями зеркал ЦМУ. ЦМУ-демонстрации могут содержать данные с решеткой, имеющей регулярные или нерегулярные интервалы.

В настоящем документе «условия производственного процесса» обозначают параметры, условия, способы, оборудование и процессы, используемые при производстве одного или более из предшественника линзы, формы предшественника линзы и линзы.

В настоящем документе «фильтрация» обозначает процесс, включающий один или более из определения, обнаружения, удаления и коррекции ошибок в указанных данных для сведения к минимуму влияния ошибок входных данных на следующие анализы.

В настоящем документе «плоское пространство» обозначает пространство координатного отображения (например, декартово, полярное, сферическое и т.п.), где кривизна конфигурации считается устраненной.

В настоящем документе «текучая линзообразующая реакционная среда» обозначает реакционную смесь, которая способна течь в первоначальной форме, прореагировавшей форме или частично прореагировавшей форме и которая при дополнительной обработке может превращаться в часть офтальмологической линзы.

В настоящем документе «свободная форма» или «свободно формованная» (также иногда называемая «контурно формованной» или «контурной формой» с тем же значением, что и «контурно формованная») обозначает поверхность, образующуюся при образовании сшивок в реакционной смеси в результате повоксельного воздействия актиничного излучения, со слоем текучей среды или без такового, а не сформированная при помощи литья, токарной обработки или лазерной абляции. Подробное описание способов свободного формования раскрыто в патенте США № US2009/0053351 и патенте США № US2009/0051059.

В настоящем документе «итерация» обозначает создание следующего файла ЦМУ/ЦМУ-демонстрации, которая в дальнейшем используется в процессе сведения для обеспечения соответствия критериям приемлемости.

В настоящем документе «итерационный цикл» обозначает один или серию стадий процесса, позволяющих изготовить линзу, предшественник линзы и элемент предшественника линзы таким образом, чтобы при каждом прохождении цикла один или более из линзы, предшественника линзы и элемента предшественника линзы становились более соответствующими необходимой конфигурации линзы, чем предыдущий вариант. Процесс сведения может содержать один или более итерационных циклов, в которых может осуществляться модификация одного или обоих из ЦМУ-демонстраций и условий производственного процесса.

В настоящем изобретении «линза» обозначает любое офтальмологическое устройство, находящееся в глазу или на нем. Такие устройства могут обеспечить возможность оптической или косметической коррекции. Например, термин «линза» может обозначать контактную линзу, интраокулярную линзу, накладную линзу, глазную вставку, оптическую вставку или другое аналогичное устройство, которое используется для коррекции или модификации зрения или для косметической коррекции физиологии глаза (например, изменения цвета радужной оболочки) без ущерба для зрения. Предпочтительные линзы могут представлять собой мягкие контактные линзы, которые могут быть изготовлены из силиконовых эластомеров или гидрогелей, которые включают без ограничений силикон-гидрогели и фторированные гидрогели.

Используемый в настоящем документе термин «конфигурация линзы» означает форму и/или функцию требуемой линзы, которая при изготовлении может обеспечить коррекцию оптической силы, приемлемое прилегание линзы (например, закрытие роговицы и перемещение), приемлемую ротационную устойчивость линзы и т.п. Конфигурация линзы может быть представлена либо в гидратированном, либо негидратированном состоянии, в плоском или изогнутом пространстве, в двухмерном или трехмерном пространстве, и с помощью способов, включающих один или более из геометрических рисунков, профиля оптической силы, формы, характеристик, толщины и т.п. Конфигурация линзы может содержать данные с решеткой, имеющей регулярные или нерегулярные интервалы.

Используемый в настоящем документе термин «заготовка линзы» означает составной объект, состоящий из формы для заготовки линзы и текучей линзообразующей реакционной среды, контактирующей с формой для заготовки линзы, которая может быть или не быть ротационно симметричной. Например, текучая линзообразующая реакционная среда может быть образована в процессе изготовления формы для заготовки линзы в объеме реакционной смеси. Отделение формы для заготовки линзы и текучей линзообразующей реакционной среды от объема реакционной смеси, использованной для изготовления формы для заготовки линзы, позволяет получить заготовку линзы. Кроме того, заготовка линзы может быть преобразована в другой объект либо путем удаления некоторого количества текучей линзообразующей реакционной среды, либо путем превращения некоторого количества текучей линзообразующей реакционной среды в нетекучий материал линзы.

Используемый в настоящем документе термин «элемент заготовки линзы», также именуемый «элемент», обозначает нетекучее основание формы для заготовки линзы и служит структурной основой заготовки линзы. Элементы заготовки линзы могут быть определены эмпирически или описаны математически с помощью контрольных параметров (высота, ширина, длина, форма, местоположение и т.д.) и могут быть изготовлены с применением инструкций ЦМУ-демонстрации. Примеры элементов заготовки линзы могут включать одну или более из: элемента края линзы, элемента зоны стабилизации, элемента формирователя объема донной части, элемента оптической зоны, элемента канавки, элемента отводного канала и т.п. Элементы предшественника линзы могут быть произведены с использованием вокселей актиничного излучения и могут быть встроены в офтальмологическую линзу при дополнительной обработке.

В настоящем документе «форма для предшественника линзы» обозначает нетекучий объект, который может быть подходящим для включения в офтальмологическую линзу при дополнительной обработке.

В настоящем документе «офтальмологическое устройство» или «продукт» обозначает один или более из линзы, предшественника линзы и формы предшественника линзы и может включать либо «стандартный продукт», либо «специализированный продукт».

В настоящем документе ПВ (от пика до впадины) обозначает разность между самой высокой точкой и самой низкой точкой на поверхности одного или более из измеренного предшественника линзы, измеренной формы предшественника линзы и измеренной линзы для одного или обоих из всей поверхности и указанного участка (например, оптической зоны) и может быть частью критериев приемлемости.

В настоящем документе СКЗ (среднеквадратичное значение) обозначает гладкость одного или более из измеренного предшественника линзы, измеренной формы предшественника линзы и измеренной линзы для одного или обоих из всей поверхности и указанного участка (например, оптической зоны) и может быть частью критериев приемлемости.

В настоящем документе «стандартный продукт» обозначает продукт с ограниченной доступностью параметров, таких как параметры, получаемые дискретными шагами. Например, параметры сферической силы могут быть доступны только с шагом 0,25 дптр (например, -3,00 дптр, 3,25 дптр, -3,50 дптр и т.п.); параметры цилиндрической силы могут быть доступны только с шагом 0,50 дптр (например, -0,75 дптр, -1,25 дптр, -1,75 дптр и т.п.); а параметры оси цилиндра могут быть доступны только с шагом 10° (например, 10°, 20°, 30° и т.п.). Другие параметры и элементы стандартного продукта, получаемые дискретными шагами, включают без ограничений радиусы базовой кривизны, диаметр, профили стабилизации и профили толщины.

В настоящем документе «подложка» обозначает физический объект, на котором могут быть установлены или образованы другие объекты.

В настоящем документе «подбор поверхности» обозначает процесс построения поверхности или математической функции, лучше всего соответствующей серии точек данных с возможными ограничениями. Подбор поверхности может включать либо интерполяцию, где необходимо точное соответствие данным, либо сглаживание, при котором создают «сглаживающую» функцию, обеспечивающую приблизительное соответствие данным.

В настоящем документе «карта толщины» обозначает двухмерное или трехмерное представление профиля толщины необходимого продукта, формы предшественника линзы или предшественника линзы. Карта толщины может находиться либо в плоском, либо в изогнутом координатном пространстве и может содержать данные с решеткой, содержащей регулярные или нерегулярные интервалы.

В настоящем документе «формируемый участок» обозначает одну или обе из всей линзы одной или более частей линзы, которые могут быть пропущены через итерации в ходе процесса сведения.

В настоящем документе «воксель», также называемый «вокселем актиничного излучения», обозначает объемный элемент, представляющий значение на решетке, содержащей регулярные или нерегулярные интервалы в трехмерном пространстве. Воксель может рассматриваться как трехмерный пиксель, однако если пиксель представляет данные двухмерного изображения, воксель включает и третье измерение. Кроме того, хотя вокселы часто используют для визуализации и анализа медицинских и научных данных, в настоящем изобретении воксел применяют для задания границ дозы актиничного излучения, попадающего в некоторый объем реакционной смеси и тем самым контролирующего скорость поперечной сшивки или полимеризации в конкретном объеме реакционной смеси. В качестве примера, в рамках настоящего изобретения воксели считаются расположенными в одном слое, прилегающими к двухмерной поверхности формы для литья, причем актиничное излучение может быть направлено по нормали к двухмерной поверхности и вдоль общей для каждого вокселя оси. В качестве примера, конкретный объем реакционной смеси может быть сшит или полимеризован в соответствии с разбиением на 768×768 вокселей.

Линза может быть произведена на основе необходимой конфигурации линзы с использованием ЦМУ-демонстраций. Более того, произведенная линза может не соответствовать критериям приемлемости, предъявляемых к конфигурации линзы, причем может потребоваться выполнение итерации предыдущей ЦМУ-демонстрации. Например, итерация предыдущей ЦМУ-демонстрации может обеспечить лучшее сведение необходимой конфигурации линзы.

На фиг. 1 представлена блок-схема возможных стадий способа для реализации настоящего изобретения. В пункте 101 в некоторых вариантах осуществления поверхность линзы может проверяться на предмет аномалий поверхности (например, вкраплений, грязи и т.п.), которые могут на ней присутствовать. В пункте 102 после выявления наличия аномалий на поверхности линзы линза может быть отбракована, и может быть изготовлена новая линза, например, с использованием тех же параметров, что и у предыдущей ЦМУ-демонстрации. В пункте 103, если аномалии на поверхности линзы не обнаруживаются, можно определить значение ПВ. Если значение ПВ является неприемлемым, в пункте 104 можно указать параметры следующей итерации ЦМУ-демонстрации и изготовить новую линзу. Если значение ПВ является приемлемым, в пункте 105 можно определить, находится ли значение СКЗ в необходимой оптической зоне. Если значение СКЗ является неприемлемым, в пункте 104 можно указать параметры следующей ЦМУ-демонстрации и изготовить новую линзу. Если значение СКЗ является приемлемым, в пункте 106 можно определить соответствует ли измеренная линза другим спецификациям толщины (например, по геометрической форме периферии). Если другие спецификации толщины являются неприемлемыми, в пункте 104 можно указать параметры следующей итерации ЦМУ-демонстрации и провести итерацию линзы. Если другие спецификации толщины являются приемлемыми, в пункте 107 линзу можно передавать в последующую обработку.

Как описано в указанных выше стадиях способа, возможны ситуации, когда в предыдущей ЦМУ-демонстрации создается линза, не соответствующая критериям приемлемости, предъявляемым к конфигурации линзы, и необходима следующая итерация.

В процессе сведения можно использовать одну или более различных методик, технологий и способов. При выполнении процесса сведения следующая инструкция ЦМУ-демонстрации следующей итерации может представлять собой одну или обе из измененной предыдущей инструкции ЦМУ-демонстрации, комбинации инструкции предыдущей демонстрации с одной или более другими инструкциями ЦМУ-демонстрации и комбинации двух или более ЦМУ-демонстраций. Например, для следующей итерации можно комбинировать друг с другом две или более части из одной или множества ЦМУ-демонстраций. Соответственно, итерационный цикл процесса сведения может непрерывно повторяться до тех пор, пока линза не будет соответствовать критериям приемлемости, предъявляемым к конфигурации линзы.

В некоторых аспектах настоящего изобретения в процессе сведения может быть реализована методика маскирования. В некоторых вариантах осуществления методика маскирования может включать одну или более из методики радиального маскирования, методики секторного маскирования, методики сегментного маскирования и методики областного маскирования. В некоторых связанных вариантах осуществления одна или более методик маскирования могут быть применены либо к одной ЦМУ-демонстрации, либо к двум или более ЦМУ-демонстрациям, которые могут использоваться в следующей итерации. Кроме того, одна или более методик маскирования могут быть применены к формируемому участку линзы, который может включать одну или обе из целой линзы и одной или более частей линзы.

Более того, методика маскирования может использоваться для дополнительного сведения конфигурации линзы, даже если измеренная линза уже соответствует необходимым критериям приемлемости. Например, значение ПВ измеренной линзы может быть приемлемым, но выполнение методики маскирования в следующей итерации позволит выполнить сведение конфигурации линзы еще качественнее и, следовательно, добиться более высоких характеристик линзы, таких как коррекция зрения с более высокой точностью, чем это было бы возможно без использования методики маскирования.

На фиг. 2a-2d представлены разнообразные примеры разных методик маскирования на плоском пространстве. При реализации методики маскирования пользователь может указать одну или более границ, внутри которых может использоваться одна ЦМУ-демонстрация, а за пределами которых может использоваться другая ЦМУ-демонстрация.

На фиг. 2a представлен пример методики радиального маскирования применительно к ЦМУ-демонстрации. При использовании методики радиального маскирования для следующей итерации можно указать, чтобы одна или более частей одной или более ЦМУ-демонстраций выполнялись внутри определенного радиуса 201. Кроме того, можно указать, чтобы одна или более разных ЦМУ-демонстраций выполнялись в пределах одного или обоих из одного или более радиусов конфигурации линзы и всей оставшейся части конфигурации линзы.

На фиг. 2b представлен пример методики секторного маскирования применительно к ЦМУ-демонстрации. При использовании методики секторного маскирования для следующей итерации можно указать, чтобы одна или более частей одной или более ЦМУ-демонстраций выполнялись внутри определенного сектора 202. Кроме того, можно указать, чтобы одна или более разных ЦМУ-демонстраций выполнялись в пределах одного или обоих из одного или более секторов конфигурации линзы и всей оставшейся части конфигурации линзы.

На фиг. 2c представлен пример методики сегментного маскирования применительно к ЦМУ-демонстрации. При использовании методики сегментного маскирования для следующей итерации можно указать, чтобы одна или более частей одной или более ЦМУ-демонстраций выполнялись внутри определенного сегмента 203, 204. Кроме того, можно указать, чтобы одна или более разных ЦМУ-демонстраций выполнялись в пределах одного или обоих из одного или более сегментов конфигурации линзы и всей оставшейся части конфигурации линзы.

На фиг. 2d представлен пример методики областного маскирования применительно к ЦМУ-демонстрации. При использовании методики областного маскирования для следующей итерации можно указать, чтобы одна или более частей одной или более ЦМУ-демонстраций выполнялись внутри определенной области 205. Кроме того, можно указать, чтобы одна или более разных ЦМУ-демонстраций выполнялись в пределах одной или обеих из одной или более областей конфигурации линзы и всей оставшейся части конфигурации линзы.

При использовании методики маскирования можно указать одну или более связующих зон 206. Например, при реализации методики маскирования можно использовать одну или более связующих зон 206, и две или более частей 207, 208 либо одной ЦМУ-демонстрации, либо двух или более ЦМУ-демонстраций не будут соединяться друг с другом при их комбинации в следующей ЦМУ-демонстрации, как показано на фиг. 2e. Связующая зона 206 находится между частью 207 линзы и смежной частью 208 линзы. В каждой связующей зоне свойства части 207 линзы смешиваются со свойствами смежной части 208 линзы.

В некоторых дополнительных аспектах настоящего изобретения в процессе