Оптическая система для биометрической идентификации пользователя

Иллюстрации

Показать все

Изобретение относится к области биометрической идентификации пользователя. Способ идентификации пользователя содержит обнаружение касания пальцем пользователя чувствительной к касанию области на мобильном устройстве, сбор данных, относящихся к отпечатку пальца, в течение заданного времени, причем данные, относящиеся к отпечатку пальца, включают в себя информацию касательно рисунка гребней, рисунка потовых желез и динамики микроциркуляции крови в пальце. Далее осуществляют проверку на соответствие полученных рисунков гребней и потовых желез соответствующим частям заранее сохраненных образцов рисунков для пользователя. Если оба полученных рисунка соответствуют соответствующим частям сохраненных для пользователя образцов, тогда осуществляют регистрацию динамики микроциркуляции крови в пальце. В случае успешной регистрации динамики микроциркуляции крови в пальце идентифицируют пользователя как ранее зарегистрированного. Технический результат заключается в повышении точности идентификации пользователя мобильного устройства. 2 н. и 19 з.п. ф-лы, 10 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Данное изобретение относится к области биометрической идентификации пользователя, в частности, к системе и способу идентификации по рисунку гребней, потовых желез и наличию динамической микроциркуляции крови в кончике пальца, и может быть использовано для защиты от поддельных биометрических параметров в системах контроля доступа.

УРОВЕНЬ ТЕХНИКИ

Идентификация личности с помощью биометрических технологий является в настоящее время одним из перспективных, бурно развивающихся направлений, среди которых способы и средства с использованием отпечатков пальцев занимают одно из ведущих мест. В существующих мобильных устройствах для распознавания отпечатков пальцев используются емкостные сенсоры, которые не обеспечивают должного уровня безопасности и не могут являться идеальным способом для защиты устройств от несанкционированного доступа. Многие исследования показали, что доступ к таким устройствам можно получить с помощью поддельных отпечатков пальцев, выполненных из пластилина, желатина, силикона, клея и т.д. Такой подход не предполагает антиспуфинг-анализ, т.е. анализ на выявление подделки.

Даже если биометрические устройства используют физиологическую информацию для идентификации пользователя, эти измерения редко детектируют факт того, что пользователь использует «живой» палец, т.е. факт принадлежности отпечатка пальца живому человеку. Поэтому в современных мобильных устройствах существует потребность в системе для идентификации пользователя с антиспуфинг-анализом. Таким образом, одной из целей идентификации является определение того, собраны ли биометрические данные пользователя путем использования настоящего «живого» пальца.

Настоящее изобретение обеспечивает повышенную безопасность доступа и точность идентификации пользователя для устройств с биометрической идентификацией при использовании пользователем, имеющим доступ к устройству, устройства для регистрации и соответствующей проверки. В настоящем изобретении идентификация и антиспуфинг-анализ являются результатом реконструкции микроциркуляции крови в кончике пальца. Это означает, что извлекаются три главных параметра: рисунок гребней отпечатка пальца, рисунок потовых желез и динамика микроциркуляции крови в кончике пальца.

Данный подход предлагает реализовать систему распознавания отпечатков пальцев, основанную на оптических методах, что в настоящее время еще не применено в мобильных устройствах.

Одним из известных решений, раскрывающих системы биометрической идентификации с помощью отпечатка пальца, является решение, раскрытое, например, в патентном документе US 8520911 B2 («Low power fingerprint capture system, apparatus, and method», Identification International, Inc.). Известное решение описывает способ идентификации пользователя с использованием оптической системы, а также соответствующее устройство для его осуществления. В этом устройстве используется принцип полного внутреннего отражения света (устройство содержит источник света, призму, камеру и компьютер или другое устройство управления, которое используется для захвата изображения), а также используется сканирующее устройство для захвата изображения отпечатка пальца. В существующих изобретениях, таких как US 8520911 B2, не предусмотрено проведение антиспуфинг-анализа, что приводит к возможности применения поддельного отпечатка пальца. В таких известных изобретениях также не осуществляется маркировка потовых желез для получения рисунка потовых желез в качестве дополнительного идентифицирующего признака для достижения большей степени безопасности при проведении идентификации пользователя. Более того, не предусмотрено использование поляризационной пленки, за счет которой повышается качество получаемого изображения в силу улучшения соотношения сигнал-шум путем фильтрации отраженного излучения от поверхности, что далее будет раскрыто более подробно. В таких известных изобретениях также не применяется спекл-отображение для определения функциональных характеристик кровотока, таких как скорость частиц потока, пространственное распределение таких скоростей, необходимых для регистрации микроциркуляции крови в кончике пальца.

Патентный документ US 8538095 B2 («Method and apparatus for processing biometric images», Aprilis, Inc.) раскрывает следующий вариант способа и устройства для обработки биометрических изображений. Источник излучения согласно данному решению обеспечивает коллимированный или расширенный пучок света. Источник излучения формирует один или более лучей, которые проецируются посредством оптического элемента и HOE для отражения покровной плоскости, чтобы сформировать изображение признаков отпечатка пальца. Источник излучения может включать в себя когерентный источник, например лазерный диод, который эффективно работает с голографическим оптическим элементом (HOE), или некогерентный источник. В известных решениях такого типа также не применяется анализ спекл-изображений для детектирования того, используется ли «живой» палец, либо же подделка. Использование поляризационной пленки тоже не предусмотрено в таких решениях, что также не позволяет достичь высокого качества получаемого изображения признаков отпечатка пальца.

Кроме того, известен патентный документ US 7505613 B2 («System for and method of securing fingerprint biometric systems against fake-finger spoofing», Atrua Technologies, Inc.), раскрывающий вариант системы и способа обеспечения биометрических систем в целях предотвращения использования поддельных отпечатков пальцев. Патент описывает антиспуфинг-модуль, включающий анализ изображения отпечатка пальца, а именно: плотность потовых желез, плотность потовых полос, пиксельный анализ, в частности, отклонение пикселей, соответствующих гребням, и пикселей, соответствующих бороздкам на пальце, и т.д. Однако и в данном известном решении не предусмотрено осуществление анализа динамической микроциркуляции крови в кончике пальца, который необходим для подтверждения, что к устройству приложен «живой» палец. Это является существенным недостатком представленного антиспуфинг-модуля в силу того, что поддельный отпечаток пальца (принадлежащий неживому человеку) может быть использован для получения доступа к устройству, так как будет идентифицирован таким устройством. Более того, данное известное решение не применимо в мобильном устройстве.

Патентный документ US 7817256 B2 («Personal authentication method and personal authentication device utilizing finger-tip blood flow measurement by laser light», Fujii et al.) описывает вариант способа персональной аутентификации и устройства, использующего измерение кровотока кончика пальца, посредством лазерного излучения. В этом способе рисунок отпечатка пальца получается с помощью информации о характеристиках кровотока «живого» тела. Кончик пальца облучают одним лазерным лучом с некоторой длиной волны или множеством различных лазерных лучей с некоторыми длинами волн одновременно или последовательно. И формируются наложенные карты скорости потока крови или множество карт скоростей потока крови по отношению к отраженному свету. В данном известном решении также не предусмотрено использование поляризационной пленки, что не позволяет достичь высокого качества получаемого изображения признаков отпечатка пальца, а для регистрации кровотока осуществляется захват только двух кадров, которых может быть недостаточно для определения, переместился ли эритроцит хотя бы на один размер своего корпуса (10 мкм). Дополнительно важно отметить, что данное решение не применимо в мобильном устройстве.

Задачей настоящего изобретения является предоставление системы и способа для идентификации пользователя со следующими усовершенствованиями по сравнению с решениями предшествующего уровня техники:

- лучшая точность распознавания пользователя, а именно рисунка гребней, рисунка потовых желез и отображения карт микроциркуляции крови в кончике пальца;

- антиспуфинг-анализ, осуществляемый с помощью следующих решений: формирования изображения с помощью поляризации света для фиксирования эффекта вращения плоскости поляризации после рассеивания света на живой ткани, последующий анализ колебаний интенсивности (определение динамической микроциркуляции крови в кончике пальца) с помощью спекл-отображения;

- уменьшение размеров системы для идентификации для интегрирования в потребительские мобильные устройства за счет используемой системы линз.

Более того, в качестве дополнительного преимущества настоящего изобретения можно отметить следующее. В мире существует небольшой процент людей, больных адерматоглифией - редкая генетическая мутация, приводящая к отсутствию у индивидуума отпечатка пальца (папиллярного узора). Получение рисунка потовых желез позволяет осуществлять идентификацию и в отношении данной группы людей.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Указанная задача решается посредством способа и системы, которые охарактеризованы в независимых пунктах формулы изобретения. Дополнительные варианты реализации настоящего изобретения представлены в зависимых пунктах формулы изобретения.

Настоящее изобретение, включающее процедуру предварительной индивидуальной регистрации отпечатка пальца, позволяет создать оптическую систему для распознавания отпечатка пальца с использованием физиологической информации с целью идентификации «живого» пользователя. Конструкция и способ реализации позволяют интегрировать систему идентификации пользователя в потребительские мобильные устройства, однако настоящее изобретение также может быть применено и к стационарным устройствам, при необходимости.

В соответствии с первым аспектом настоящего изобретения предложена оптическая система для идентификации пользователя, встроенная в мобильное устройство, содержащая источник излучения, световод для направленной передачи света от источника излучения, блок формирования оптического изображения, и блок обработки для обработки электрического сигнала, полученного от детектора блока формирования оптического изображения, причем электрический сигнал включает в себя данные, относящиеся к рассеивающему свет объекту, содержащие информацию касательно рисунка гребней, рисунка потовых желез и динамики микроциркуляции крови в пальце. При этом блок обработки дополнительно выполнен с возможностью идентификации пользователя на основе полученных данных, относящихся к рассеивающему свет объекту. Блок формирования оптического изображения включает в себя систему линз для приема выходящего из световода света, отраженного от рассеивающего свет объекта, прилегающего к световоду, и фокусировки принятого света на поляризационную пленку, причем рассеивающим свет объектом является палец пользователя, поляризационную пленку для фильтрации принятого света, и упомянутый детектор со светочувствительными элементами, на который проецируется отфильтрованный свет для формирования оптического изображения на его поверхности, причем поляризационная пленка расположена непосредственно перед детектором по ходу распространения света. Детектор выполнен с возможностью преобразования сформированного оптического изображения в электрический сигнал. Упомянутая поляризационная пленка состоит из двух частей: кросс-поляризационной части и со-поляризационной части.

Блок обработки выполнен с возможностью идентификации пользователя на основе сравнения полученных данных, относящихся к рассеивающему свет объекту, с заранее сохраненными данными, причем пользователь идентифицируется как ранее зарегистрированный, если заранее сохраненные данные соответствуют полученным данным, относящимся к рассеивающему свет объекту.

Согласно одному варианту осуществления источником излучения является лазерный диод.

Согласно другому варианту осуществления источником излучения является светодиод (LED).

Предложенная оптическая система также может быть выполнена с использованием множества световодов. В случае если система содержит одиночный световод, он дополнительно может включать в себя светопоглотитель. При необходимости, в системе с множеством световодов также могут содержаться светопоглотители.

Согласно одному варианту осуществления система линз блока формирования оптического изображения реализуется в виде одного или более из: одиночной линзы, набора линз или массива линз.

В другом варианте осуществления детектор блока формирования оптического изображения осуществляется в виде CCD-матрицы.

Согласно другому варианту осуществления детектор блока формирования оптического изображения осуществляется в виде CMOS-матрицы.

Блок обработки предлагаемой оптической системы может осуществляется в виде автономной системы. Автономная система, в свою очередь, может быть выполнена в виде системы на основе FPGA (программируемой пользователем вентильной матрицы) или представлена как система на основе заказной интегральной схемы.

При необходимости, блок обработки осуществляется в виде системы на базе ПК, а система на базе ПК может быть представлена в виде графического процессора (GPU), в виде кластерной системы или в виде процессора общего назначения.

В соответствии со вторым аспектом настоящего изобретения предложен способ идентификации пользователя, содержащий этапы, на которых обнаруживают касание пальцем кнопки, собирают данные, относящиеся к отпечатку пальца, в течение заданного времени для получения множества фреймов, причем данные, относящиеся к отпечатку пальца, включают в себя информацию касательно рисунка гребней, рисунка потовых желез и динамики микроциркуляции крови в пальце. При этом касание может быть осуществлено любой частью пальца. Далее согласно предложенному способу определяют соответствие полученного рисунка гребней соответствующей части заранее сохраненного образца рисунка гребней для пальца пользователя. Если полученный рисунок гребней соответствует соответствующей части сохраненного образца рисунка гребней, тогда принимают решение о проверке соответствия полученного рисунка потовых желез соответствующей части сохраненного образца рисунка потовых желез для пальца пользователя. Если полученный рисунок потовых желез соответствует соответствующей части сохраненного образца рисунка потовых желез, тогда проверяют на основании полученного множества фреймов, зарегистрирована ли динамика микроциркуляции. В случае успешной регистрации динамики микроциркуляции идентифицируют пользователя как ранее зарегистрированного.

Необходимо отметить, что, если по меньшей мере один из этапов способа идентификации пользователя признается несостоявшимся, тогда пользователь не идентифицируется.

Согласно одному варианту осуществления способ дополнительно содержит предварительный этап индивидуальной регистрации, на котором обнаруживают касание пальцем кнопки, причем касание осуществляется посредством многократного нажатия или скольжения пальцем для получения полного отпечатка пальца, собирают данные, относящиеся к отпечатку пальца, в течение заданного времени для получения множества фреймов. При этом данные, относящиеся к отпечатку пальца, также включают в себя информацию касательно рисунка гребней, рисунка потовых желез и динамики микроциркуляции. После сбора данных осуществляют регистрацию рисунка гребней для создания заранее сохраненного образца рисунка гребней, регистрацию рисунка потовых желез для создания заранее сохраненного образца рисунка потовых желез и регистрацию динамики микроциркуляции. При этом множество фреймов включает в себя приблизительно 30 фреймов.

Согласно предложенным вариантам осуществления пользователь осуществляет касание пальцем кнопки, под областью которой расположена оптическая система для идентификации пользователя согласно первому аспекту.

Использование изобретенного сенсора отпечатка пальцев и упомянутого способа обеспечивает высокую безопасность и точность для устройств с биометрической идентификацией.

В отношении пользователей, больных адерматоглифией, способ идентификации пользователя аналогично проводит вышеупомянутые этапы определения соответствий, причем этап определения соответствия полученного рисунка гребней соответствующей части заранее сохраненного образца рисунка гребней признается состоявшимся, если полученная информация касательно рисунка гребней определяет отсутствие гребней, как и было определено для данного пользователя на этапе регистрации.

Технический результат, достигаемый посредством использования настоящего изобретения, заключается в создании системы для идентификации «живого» пользователя по рисунку гребней, потовых желез и наличию динамической микроциркуляции крови в пальце, которая при этом пригодна для интегрирования в потребительские мобильные устройства и обеспечивает высокую точность идентификации.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Эти и другие признаки и преимущества настоящего изобретения станут очевидны после прочтения нижеследующего описания и просмотра сопроводительных чертежей, на которых:

Фиг. 1 иллюстрирует компоновку системы для идентификации пользователя в мобильном устройстве в соответствии с предпочтительным вариантом осуществления настоящего изобретения;

Фиг. 2.1 представляет собой структуру системы для идентификации пользователя, включающую в себя лазерный диод в качестве источника излучения, массив линз и поляризационную пленку, в соответствии с вариантом осуществления настоящего изобретения;

Фиг. 2.2 представляет собой структуру системы для идентификации пользователя, включающую в себя набор линз для формирования изображения в соответствии с вариантом осуществления настоящего изобретения;

Фиг. 2.3 иллюстрирует структуру световода системы для идентификации пользователя в соответствии с вариантом осуществления настоящего изобретения;

Фиг. 2.4 представляет собой структуру системы для идентификации пользователя, включающую в себя голографический оптический элемент (HOE), в соответствии с другим вариантом осуществления настоящего изобретения;

Фиг. 2.5 иллюстрирует расположение световода, детектора и системы линз в соответствии с одним вариантом осуществления настоящего изобретения;

Фиг. 2.6 иллюстрирует расположение световода, детектора и системы линз в соответствии с другим вариантом осуществления настоящего изобретения;

Фиг. 2.7 представляет собой структуру системы для идентификации пользователя, в которой основные элементы системы продублированы для возможности использования двух длин волн, в соответствии с одним вариантом осуществления настоящего изобретения;

Фиг. 2.8 представляет собой структуру системы для идентификации пользователя, в которой поляризационные пленки расположены между источником излучения и световодом, в соответствии с вариантом осуществления настоящего изобретения;

Фиг. 3 иллюстрирует блок-схему последовательности операций способа идентификации пользователя в соответствии с вариантом осуществления настоящего изобретения.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

Различные варианты осуществления настоящего изобретения описываются в дальнейшем более подробно со ссылкой на чертежи. Однако настоящее изобретение может быть воплощено во многих других формах и не должно истолковываться как ограниченное любой конкретной структурой или функцией, представленной в нижеследующем описании. На основании настоящего описания специалист в данной области техники поймет, что объем правовой охраны настоящего изобретения охватывает любой вариант осуществления настоящего изобретения, раскрытый в данном документе, вне зависимости от того, реализован ли он независимо или в сочетании с любым другим вариантом осуществления настоящего изобретения. Например, система может быть реализована или способ может быть осуществлен на практике с использованием любого числа вариантов осуществления, изложенных в данном документе. Кроме того, следует понимать, что любой вариант осуществления настоящего изобретения, раскрытый в данном документе, может быть воплощен с помощью одного или более элементов формулы изобретения.

Слово «примерный» используется в данном документе в значении «служащий в качестве примера или иллюстрации». Любой вариант осуществления, описанный в данном документе как «примерный», необязательно должен истолковываться как предпочтительный или обладающий преимуществом над другими вариантами осуществления.

Настоящее изобретение относится к области антиспуфинг-идентификации пользователя на основе оптической системы. Главной особенностью предложенного изобретения является метод спекл-корреляционной видеорефлектометрии для получения изображений рисунка подушечки пальца (хребты/гребни, впадины/бороздки, потовые железы, микроциркуляторное русло). Метод спекл-корреляционной видеорефлектометрии был выбран как наиболее подходящий метод для определения функциональных характеристик кровотока (микроциркуляция в кончике пальца), таких как скорость частиц потока и пространственное распределение скоростей таких частиц. Связь скорости потока частиц (эритроциты в плазме крови) и контраста спекл поля регулируется соотношением Зигерта (контраст спекл поля обратно пропорционален скорости смещения рассеивателей - эритроцитов). Метод спекл-корреляционной видеорефлектометрии относится к группе методов динамического рассеяния света. Данный метод основан на близости значений статистических моментов пространственно-временных флуктуаций интенсивности эргодических и статистически однородных спекл-полей, оцениваемых путем усреднения во временной и пространственной областях и предполагает оценки контраста усредняемых по времени динамических спеклов в зависимости от времени экспозиции при записи спекл-модулированных изображений: , где - соответственно среднее значение и среднеквадратичное значение флуктуаций яркости спекл-модулированного изображения при заданном времени экспозиции . Анализ локальных оценок контраста спекл-модулированных изображений поверхности объекта при фиксированном времени экспозиции по зонам, покрывающим заданное число спеклов, позволяет визуализировать участки, существенно отличающиеся по значениям характеристик подвижности рассеивающих центров от усредненных по зондируемой области значений. Максимальная чувствительность данного метода к вариациям подвижности динамических рассеивающих центров по зондируемой области достигается при выборе времени экспозиции, соответствующего максимальному по модулю значению производной .

Как было упомянуто ранее, согласно настоящему изобретению осуществляется антиспуфинг-анализ, который включает в себя формирование изображения после поляризации света посредством фиксирования эффекта вращения плоскости поляризации после рассеивания света в живой ткани и последующий анализ колебаний интенсивности, т.е. определение динамической микроциркуляции крови в кончике пальца, с помощью спекл-отображения. Таким образом, система, раскрытая в настоящем документе, позволяет отличить «спуфинг»-изображение - т.е. изображение поддельных отпечатков пальцев (выполненных, например, из пластилина, желатина, силикона, клея и т.д. или даже принадлежащих неживому человеку), от изображения «живого» пальца.

Фиг. 1 иллюстрирует компоновку системы 100 для идентификации пользователя в мобильном устройстве 110 в соответствии с предпочтительным вариантом осуществления настоящего изобретения. Согласно предпочтительному варианту осуществления, проиллюстрированному на вышеупомянутой фигуре, система 100 для идентификации пользователя, т.е. оптическая система, должна быть помещена, например, под областью кнопки ʺHomeʺ («Домой») мобильного устройства 110. Однако в вариантах осуществления оптическая система может быть помещена под любую чувствительную к касанию область экрана мобильного устройства.

Далее, обращаясь к Фиг. 2.1, будут рассмотрены структура и функционирование системы 100 для идентификации пользователя. Фиг. 2.1 представляет собой структуру системы 100 для идентификации пользователя, включающую в себя лазерный диод в качестве источника 202 излучения, световод 201, массив 203 линз и поляризационную пленку, в соответствии с примерным вариантом осуществления настоящего изобретения. Палец 200 пользователя прикладывается к системе 100, в частности к области, под которой расположен световод 201, для идентификации пользователя. Внутри системы 100 источником 202 излучения (света) является лазерный диод, который требуется для создания спеклов. Излучаемый лазерный свет направляется из оптически более плотной среды (материал световода) в оптически менее плотную среду (воздух) под углом, который больше критического угла для границы раздела двух прозрачных сред (не поглощающих свет). Таким образом, лазерный свет, падающий на границу раздела этих двух сред, полностью отражается границей в силу того, что свет не преломляется в оптически менее плотную среду, а скользит вдоль упомянутой границы раздела двух сред. Вышеописанное явление полного внутреннего отражения (ПВО) применяется для направления за счет многократного полного отражения света внутри световода (коэффициент отражения равен 1). В местах прикосновения гребней пальца к световоду (т.е. в местах, где граница раздела двух сред «воздух-стекло» меняется на границу раздела двух сред «гребень-стекло») ПВО более не имеет место. При наложении пальца 200 (непрозрачная среда) на поверхность световода наблюдается явление нарушения полного внутреннего отражения (НПВО), в частности, ПВО прерывается рассеивающим объектом, т.е. гребнями на поверхности пальца 200 пользователя, показатель преломления которого больше показателя преломления материала световода. Таким образом, при попадании на границу раздела двух сред - материала световода и гребней пальца, эффект ПВО пропадает и происходит поглощение излучения в слое, в который частично проникает световая волна, а коэффициент отражения оказывается меньшим единицы. Далее свет, отраженный от границы раздела среды-световода и среды-впадин (промежутки между гребнями пальца), попадает в массив 203 линз, который фокусирует его на поляризационную пленку, содержащую две части: кросс-поляризованную 204 и со-поляризованную 205. Отражение от поверхности кончика пальца (границы раздела) отсекается при использовании скрещенных поляроидов поляризационной пленки по сравнению с отражением света, приходящим из глубины ткани пальца. Таким образом, поляризация уменьшается, а соотношение сигнал-шум путем такой фильтрации отражения от поверхности улучшается, вследствие чего повышается качество получаемого изображения, что способствует более эффективному различению живой ткани от неживой. Световод 201 предназначен для равномерного распределения света от источника излучения на всю поверхность пальца. Под массивом 203 линз понимается двумерная структура, состоящая из линз, которая может включать в себя разное количество линз - линзовый растр. В изобретении массив 203 линз используется для уменьшения размеров сенсора (оптической системы), т.к. это упрощает выбор места расположения сенсора в любом мобильном устройстве. Для регистрации электрического сигнала требуется детектор 206 со светочувствительными элементами, которым является светочувствительная матрица, например, CCD или CMOS. Детектор расположен за поляризационной пленкой, и он преобразует проецированное на него оптическое изображение в электрический сигнал, а затем передает электрический сигнал к блоку 207 обработки. Массив линз, поляризационная пленка и детектор со светочувствительными элементами вместе образуют блок формирования оптического изображения. Полученные с помощью электрического сигнала данные обрабатываются посредством блока 207 обработки для извлечения необходимых для идентификации пользователя данных и непосредственной идентификации пользователя.

Лазерный диод может быть заменен на другой подходящий источник 202 излучения, в частности, светодиод (LED). В этом случае поглощающие свойства биологических тканей регистрируются как известная функция длины волны.

Блок 207 обработки может быть сконструирован в виде автономной системы, например, системы на основе FPGA (Field-Programming Gate Array, программируемой пользователем вентильной матрицы) или системы на основе заказной (разрабатываемой по техническим заданиям заказчика) интегральной схемы. Также блок 207 обработки может быть выполнен в виде системы на базе ПК, в частности, на основе графического процессора (GPU), кластерной системы или в виде процессора общего назначения.

Фиг. 2.2 представляет собой структуру системы 100 для идентификации пользователя, включающую в себя набор 208 линз для формирования изображения в соответствии с примерным вариантом осуществления настоящего изобретения. Согласно представленной структуре палец 200 пользователя аналогично прикладывается к системе 100 для идентификации пользователя. Внутри системы 100 также присутствует источник 202 излучения (света) для создания спеклов. Свет претерпевает полное внутренне отражение (ПВО) внутри световода 201, которое прерывается рассеивающим объектом, т.е. кончиком пальца 200 пользователя. Вместо массива линз 203 используется набор 208 линз, в котором линзы расположены одна за другой (обычная оптическая система, которая может состоять из любого количества линз на одной оптической оси). Также вместо набора линз может быть использована только одна линза. Проходя теперь через набор 208 линз, свет также попадает на поляризационную пленку, содержащую две части: кросс-поляризованную 204 и со-поляризованную 205. Далее, детектор 206 (CCD/CMOS) регистрирует полученные данные, т.е. отфильтрованные световые лучи, прошедшие через вышеупомянутую поляризационную пленку, и формируется Фурье-изображение, которое представляет собой пространственный Фурье спектр. Сформированное изображение обрабатывается посредством блока 207 обработки.

Фиг. 2.3 иллюстрирует структуру световода 201 системы 100 для идентификации пользователя в соответствии с примерным вариантом осуществления настоящего изобретения. В частности, на Фиг. 2.3 изображено касание пальцем 200 кнопки, предпочтительно кнопки ʺHomeʺ на мобильном устройстве 110, под областью которой расположен световод 201. Поперечное сечение световода 201 в данном варианте осуществления имеют форму прямоугольника или, предпочтительно, по существу прямоугольной трапеции. Причем в случае выполнения световода в форме по существу прямоугольной трапеции источник 202 излучения расположен со стороны поверхности торца световода, образующего по существу прямые углы с длинными сторонами световода. Палец 200 пользователя прикладывается к длинной стороне световода, которая, в сущности, и располагается под областью вышеупомянутой кнопки ʺHomeʺ на мобильном устройстве 110, причем в случае прямоугольной трапеции этой стороной является сторона бόльшего основания. В данном варианте осуществления возможно использование световода с отражателем, расположенном на торце световода с углами 86.25°-90° (угол между торцом и длинной стороной световода) или 90°-93.75° (угол между торцом и короткой стороной световода), а в предпочтительном варианте осуществления - с углами 86.25° и 93.75°, соответственно. Отражатель, как известно, применяется для более эффективного использования светового потока посредством световода за счет минимизации потерь света (по сравнении со световодом со светопоглотителем, раскрытым далее). Единственным критерием к наклону торцевой стенки/отражателя, а следовательно к величинам вышеупомянутых углов, является требование оптимального отражения света на палец, такими образом что отраженный свет оптимально распределяется на поверхность приложенного пальца. Таким образом, в предпочтительном варианте осуществления сторона световода, противоположная источнику излучения, расположена к основанию не под прямым углом, за счет чего свет, отражаясь от данной стороны с отражателем, попадает на приложенный к кнопке палец. Далее свет, отраженный от границы раздела среды-световода и среды-впадин, попадает в массив 203 линз, как это было описано выше в отношении Фиг. 2.1.

В случае использования прямоугольного световода для контролирования рассеивания света необходим светопоглотитель, чтобы минимизировать попадание на гребни света под углами, отличными от углов при ПВО. Это реализуется за счет того, что в прямоугольном световоде со светопоглотителем (в отличие от световода с наклонной стенкой) часть лучей, дошедшая до торца световода, поглощается. Применение светопоглотителя в раскрытой оптической системе подробнее раскрыто со ссылкой на Фиг. 2.4, 2.7 и 2.8 далее.

Фиг. 2.4 представляет собой структуру системы для идентификации пользователя, включающую в себя голографический оптический элемент (HOE), в соответствии с другим примерным вариантом осуществления настоящего изобретения. В данном варианте осуществления свет от источника 202 излучения распространяется через голографический оптический элемент 209 (HOE). Голографические оптические элементы предназначены для корректировки искажения изображений объектов в оптических системах. Голографический оптический элемент 209 расположен на поверхности световода 201 напротив источника излучения, как это изображено на Фиг. 2.4. Система также включает в себя светопоглотитель 212 для поглощения части отраженного света, расположенный на торце световода 201, противоположном расположению источника 202 излучения в системе 100.

Фиг. 2.5 иллюстрирует расположение световода 201, детектора 206 и линзы 210 по отношению друг к другу в системе 100. Вместо линзы также может быть использован и набор 208 линз, раскрытый ранее. Расстояние между световодом 201 со стороны рассеивающего объекта (кончика пальца 200 пользователя), линзой 210 и детектором 206 равно двойному фокусному расстоянию, и оно обеспечивает реальное изображение отпечатка пальца.

Фиг. 2.6 иллюстрирует расположение световода 201, детектора 206 и линзы 210 в соответствии с предпочтительным вариантом осуществления настоящего изобретения. В данном варианте осуществления линза 210 также может быть заменена на набор 208 линз. Согласно этому варианту осуществления расстояние между световодом 201 со стороны рассеивающего объекта (кончика пальца 200 пользователя), линзой 210 и детектором 206 равно фокусному расстоянию. Известно, что в фокальной плоскости линзы, т.е. плоскости, проходящей через фокус линзы и перпендикулярной оптической оси линзы, образуется распределение интенсивности света (т.е. спектральное разложение световых волн), падающего на линзу, которое имеет форму пространственного Фурье спектра. Таким образом, расстояние между объектами оптической системы выбирается равным фокусному расстоянию специально для обеспечения получения Фурье-изображения (спектра) отпечатка пальца. Такое расположение элементов обеспечивает меньшие размеры конечной системы для установки в пользовательское мобильное устройство. Затем с помощью обратного преобразования Фурье можно получить реальное изображение отпечатка пальца, из которого соответственно могут быть получены рисунок гребней и рисунок потовых желез. Наличие динамики микроциркуляции крови в пальце определяется на основе анализа Фурье-изображения.

Фиг. 2.7 представляет собой структуру системы 100 для идентификации пользователя, в которой основные элементы системы продублированы для возможности использования двух длин волн, в соответствии с примерным вариантом осуществления настоящего изобретения. Согласно данному альтернативному варианту осуществления в системе 100 дополнительно используется второй световод 201, второй голографический оптический элемент 209 (HOE), второй источник излучения (в качестве источников излучения в данном варианте осуществления используются светодиоды 211) и второй светопоглотитель 212. Согласно настоящему изобретению также может быть использовано и множество вышеуказанных элем