Получение катализатора олигомеризации олефинов

Иллюстрации

Показать все

Предложены новая каталитическая система, новый способ её получения и применение каталитических систем для получения продукта тримеризации олефинов. Каталитическая система содержит: а) композицию, содержащую С325-карбоксилат хрома(III), b) пиррольное соединение; и c) соединение гидрокарбил-металл. При этом компонент (а): i) характеризуется инфракрасным спектром, снятым с KBr пластинок, с пиком поглощения инфракрасного излучения υasym (СО2) в пределах 110 см-1 от ИК пика υsym (СО2) и соотношением высот пиков поглощения инфракрасного излучения для пика поглощения инфракрасного излучения υasym (СО2) на 1516+15 см-1 и пика поглощения инфракрасного излучения, расположенного на 700±50 см-1, большим или равным 3:1, или ii) характеризуется значением проверки по критерию согласия, R2, равным по меньшей мере 0,6, для сравнения точек данных высокоэнергетического рентгеноструктурного анализа g(r) композиции, содержащей С325-карбоксилат хрома(III), с расчетными точками данных высокоэнергетического рентгеноструктурного анализа g(r) для теоретической модели одноядерного ацетата хрома(III) в диапазоне r от 1,3 до 4 ангстрем, или iii) получен способом, включающим приведение в контакт в по существу безводных и по существу бескислотных условиях 1) предшественника хрома(III), имеющего формулу CrX3L, где каждый X независимо представляет собой галогенид, каждый L независимо представляет собой С210 простой эфир, С210 простой тиоэфир, С25 нитрил, C130 амин или С330 фосфин или любую их комбинацию и ℓ находится в диапазоне от 0 до 7, 2) С325 карбоксилата металла 1 группы или 2 группы и 3) первого растворителя. Каталитическая система обеспечивает повышение производительности и/или снижение стоимости каталитической системы в процессе полимеризации олефинов. 3 н. и 50 з.п. ф-лы, 23 ил., 12 табл., 11 пр.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

[0001] Настоящее описание относится к каталитической системе, способам получения каталитической системы и способам применения каталитической системы для получения продукта тримеризации.

УРОВЕНЬ ТЕХНИКИ

[0002] Тримеризация этилена с получением 1-гексена представляет собой экономически значимый процесс селективного получения этого альфа-олефина, который, в свою очередь, используют для получения ряда полиолефинов, обычно в виде сополимеров с этиленом. Одна из широко применяемых каталитических систем для тримеризации этилена включает карбоксилат хрома, пиррольное соединение и металл-алкил. Например, одна из каталитических систем для тримеризации этилена включает трис(2-этилгексаноат) хрома(III), 2,5-диметилпиррол, триэтилалюминий и диэтилалюминия хлорид.

[0003] Обычно способ получения активной каталитической системы может быть затруднен благодаря карбоксилату хрома, применяемому в каталитической системе для тримеризации этилена. Различия в качестве между различными партиями коммерческого 2-этилгексаноата хрома(III), и сопутствующие различия в свойствах каталитической системы могут оказывать значительное влияние на производительность и селективность каталитической системы для тримеризации этилена. Соответственно, было бы полезно получить и разработать новые каталитические системы, новые способы получения каталитических систем и новые способы применения каталитических систем для получения продукта тримеризации, которые смогут обеспечить повышенную производительность и экономичность. В одном аспекте существует потребность в новых каталитических системах и способах получения каталитических систем, которые позволили бы снизить количество дорогих активаторов в каталитической системе или которые позволили бы снизить затраты или повысить производительность получения соединений хрома, применяемых в каталитических системах.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0004] Предложена композиция, способ получения каталитической системы и/или способ тримеризации олефинов с использованием каталитической системы.

[0005] В одном аспекте композиция может содержать композицию C3-C25-карбоксилата хрома(III), которая может быть охарактеризована как имеющая инфракрасный спектр, снятый на KBr пластинках, с пиком поглощения инфракрасного излучения υasym (CO2) в пределах 110 см-1 от инфракрасного пика υsym (CO2), и имеющая соотношение высоты пиков поглощения инфракрасного излучения для пика поглощения инфракрасного излучения υasym (CO2) на 1516±15 см-1 к пику поглощения инфракрасного излучения, расположенному на 700±50 см-1, выше или равное 3:1. В другом аспекте композиция может содержать композицию, содержащую C3-C25-карбоксилат хрома(III), которая может быть охарактеризована как имеющая значение проверки по критерию согласия R2, равное по меньшей мере 0,6, при сравнении точек данных высокоэнергетического рентгеноструктурного анализа g(r) композиции, содержащей карбоксилат хрома(III), с расчетными точками данных высокоэнергетического рентгеноструктурного анализа g(r) для теоретической модели одноядерного ацетата хрома(III) в диапазоне r от 1,3 до 4 ангстрем. В еще одном аспекте композиция может содержать композицию, содержащую C3-C25-карбоксилат хрома(III), которая может быть получена способом, включающим приведение в контакт по существу в безводных и по существу в бескислотных условиях 1) предшественника хрома(III), имеющего формулу CrX3L, где каждый X независимо представляет собой галогенид, каждый L независимо представляет собой C2-C10 простой эфир, C2-C10 простой тиоэфир, C2-C5 нитрил, C1-C30 амин или C3-C30 фосфин, или любую их комбинацию, и ℓ находится в диапазоне от 0 до 7, 2) C3-C25-карбоксилата металла 1 группы или 2 группы, и 3) первого растворителя, что приводит к образованию карбоксилата хрома(III). Каталитическая система может дополнительно включать пиррольное соединение, соединение гидрокарбил-металл и, необязательно, галогенсодержащее соединение.

[0006] В одном аспекте эта композиция может применяться в качестве каталитической системы. В одном аспекте способ получения каталитической системы может включать приведение в контакт композиции, содержащей C3-C25-карбоксилат хрома(III), пиррольного соединения, соединения гидрокарбил-металл, и, необязательно, галогенсодержащего соединения. В некоторых вариантах реализации способ получения каталитической системы может дополнительно включать приведение в контакт двух или более из композиции, содержащей C3-C25-карбоксилат хрома(III), пиррольного соединения, соединения гидрокарбил-металл и необязательно галогенсодержащего соединения в присутствии ненасыщенного органического соединения. В одном варианте реализации ненасыщенное органическое соединение может включать олефин с C220 алифатической углеводородной цепью, C620 арен или любую их комбинацию. В некоторых вариантах реализации способ получения каталитической системы может включать приведение в контакт композиции, содержащей карбоксилат хрома(III), пиррольного соединения и соединения гидрокарбил-металл одновременно. В других вариантах реализации способ получения каталитической системы может включать приведение в контакт пиррольного соединения и соединения гидрокарбил-металл (всего количества или порции) с получением смеси пиррол/соединение гидрокарбил-металл перед приведением в контакт пиррольного соединения с композицией, содержащей карбоксилат хрома(III).

[0007] В варианте реализации, где каталитическая система содержит галогенсодержащее соединение, галогенсодержащее соединение может представлять собой, содержать или состоять по существу из следующего: неорганический галогенид металла, галогенид гидрокарбил-металла, галоген-углеводород или любые их комбинации. В некоторых вариантах реализации, где каталитическая система содержит галогенсодержащее соединение, композиция, содержащая галогенсодержащее соединение, может включать, или состоять по существу из следующего: (i) неорганический галогенид металла, (ii) галогенид гидрокарбил-металла, (iii) смесь неорганического галогенида металла и гидрокарбила металла, не являющегося галогенидом, или (iv) смесь галогенида гидрокарбила металла и гидрокарбила металла, не являющегося галогенидом. В варианте реализации, где каталитическая система содержит галогенид металла, способ получения каталитической системы может включать приведение в контакт композиции, содержащей карбоксилат хрома(III), по меньшей мере, с одним из пиррольного соединения и галогенида металла перед приведением в контакт композиции, содержащей карбоксилат хрома(III), с соединением гидрокарбил-металл; в альтернативном варианте способ может включать приведение в контакт соединения гидрокарбил-металл, по меньшей мере, с одним из пиррольного соединения и галогенида металла перед приведением в контакт композиции, содержащей карбоксилат хрома(III), с соединением гидрокарбил-металл; или, в, еще одном альтернативном варианте, способ может включать приведение в контакт композиции, содержащей карбоксилат хрома(III), пиррольного соединения, или композиции, содержащей карбоксилат хрома(III), и пиррольного соединения с соединением гидрокарбил-металл, не являющимся галогенидом, перед контактом с композицией, содержащей галогенид металла. В другом варианте реализации, где каталитическая система содержит галогенсодержащее соединение, композиция, содержащая C3-C25-карбоксилат хрома(III), пиррольное соединение, или композиция, содержащая C3-C25-карбоксилат хрома(III) и пиррольное соединение, могут быть приведены в контакт с соединением гидрокарбил-металл, не являющимся галогенидом, перед приведением в контакт с композицией, содержащей галогенсодержащее соединение; или в еще одном альтернативном варианте, композицию, содержащую C3-C25-карбоксилат хрома(III), и пиррольное соединение приводят в контакт перед приведением в контакт пиррольного соединения или композиции, содержащей C3-C25-карбоксилат хрома(III), с композицией, содержащей галогенсодержащее соединение. В варианте реализации, где каталитическая система содержит галогенсодержащее соединение, способ получения каталитической системы может включать (1) приведение в контакт пиррольного соединения, композиции, содержащей галогенсодержащее соединение, и, необязательно, композиции, содержащей C3-C25-карбоксилат хрома(III), с получением смеси и (2) приведение этой смеси в контакт с соединением гидрокарбил-металл, не являющемся галогенидом. В варианте реализации, где каталитическая система содержит галогенсодержащее соединение, способ получения каталитической системы может включать (1) приведение в контакт пиррольного соединения, соединения гидрокарбил-металл, и необязательно галогенсодержащего соединения с получением смеси, и (2) приведение в контакт смеси с композицией, содержащей C3-C25-карбоксилат хрома(III).

[0008] В другом аспекте каталитическую систему можно применять в способе тримеризации олефинов. В одном варианте реализации способа тримеризации олефинов с каталитической системой, включающей композицию, содержащую C3-C25-карбоксилат хрома(III), пирррольное соединение, соединение гидрокарбил-металл, и, необязательно, галогенсодержащее соединение, указанный способ может включать приведение в контакт олефина, содержащего или состоящего по существу из этилена, композиции, содержащей C3-C25-карбоксилат хрома(III), пиррольного соединения, соединения гидрокарбил-металл и необязательно галогенсодержащего соединения с получением продукта тримеризации. В одном варианте реализации способ тримеризации олефинов может включать a) приведение в контакт композиции, содержащей C3-C25-карбоксилат хрома(III), пиррольного соединения, соединения гидрокарбил-металл и, необязательно, галогенсодержащего соединения с получением каталитической системы, b) приведение в контакт каталитической системы с олефином; и c) получение продукта тримеризации олефинов в условиях тримеризации. В другом варианте реализации способ тримеризации олефинов может включать a) приведение в контакт композиции, содержащей C3-C25-карбоксилат хрома(III), пиррольного соединения, соединения гидрокарбил-металл и необязательно галогенсодержащего соединения с получением каталитической системы, b) приведение в контакт каталитической системы с олефином, содержащим или состоящего по существу из этилена; и c) получение продукта тримеризации олефина в условиях тримеризации, причем композиция, содержащая C3-C25-карбоксилат хрома(III), и соединение гидрокарбил-металл не приводят в контакт перед приведением в контакт с олефином; в альтернативном варианте композицию, содержащую C3-C25-карбоксилат хрома(III), и соединение гидрокарбил-металл не приводят в контакт перед приведением в контакт с соединением гидрокарбил-металл или C3-C25-карбоксилата хрома(III) с олефином; или в еще одном альтернативном варианте, композицию, содержащую C3-C25-карбоксилат хрома(III), и соединение гидрокарбил-металл по существу одновременно приводят в контакт с этиленом. В варианте реализации, где олефин включает этилен, продукт тримеризации может быть получен в условиях тримеризации, включающих парциальное давление этилена в диапазоне от 20 фунтов на квадратный дюйм до 2500 фунтов на квадратный дюйм.

КРАТКОЕ ОПИСАНИЕ ФИГУР

[0009] На фиг. 1 представлен график зависимости процентного отклонения молярного процента 2,5-диметилпиррола (DMP) от стандартного молярного процента DMP, от процентной разницы конечной производительности для 1-гексена, показывающий изменение каталитической активности традиционной каталитической системы на основе трис(2-этилгексаноат)хрома(III) [Cr(EH)3] в олигомеризации этилена.

[0010] На фиг. 2 представлен график зависимости мольного отклонения молярного процента комбинации трэтилалюминия (TEA) и хлорида диэтилалюминия (DEAC)) от стандартного молярного процента комбинации TEA/DEAC, от процентной разницы итоговой производительности для 1-гексена, показывающий изменение каталитической активности обычной каталитической системы на основе трис(2-этилгексаноат)хрома(III) [Cr(EH)3, в которой молярное отношение TEA/DEAC поддерживали постоянным и равным 11:8, в олигомеризации этилена

[0011] На фиг. 3 изображен изолированный карбоксилат (2-этилгексаноат хрома(III)) переходного металла согласно данному описанию.

[0012] На фиг.4 изображен изолированный коммерчески доступный карбоксилат переходного металла (2-этилгексаноат хрома(III)).

[0013] На фиг. 5 изображен ИК спектр первой коммерчески доступной композиции 2-этилгексаноата хрома(III).

[0014] На фиг. 6 изображен расширенный участок, в диапазоне от 2000 см-1 до 1000 см-1, ИК спектра, полученного для первой коммерчески доступной композиции 2-этилгексаноата хрома(III).

[0015] На фиг. 7 изображен ИК спектр, полученный для второй коммерчески доступной композиции 2-этилгексаноата хрома(III).

[0016] На фиг. 8 изображен расширенный участок, в диапазоне от 2000 см-1 до 1000 см-1, ИК спектра, полученного для второй коммерчески доступной композиции 2-этилгексаноата хрома(III).

[0017] На фиг. 9 изображен ИК спектр 2-этилгексаноата хрома(III), полученного в соответствии со способом, приведенном в данном описании, при молярном отношении 2-этилгексаноата натрия к СrCl3(THF)3 приблизительно 3:1.

[0018] На фиг. 10 изображен расширенный участок, в диапазоне от 2000 см-1 до 1000 см-1, ИК спектра, полученного для 2-этилгексаноат хрома(III), полученного в соответствии со способом, раскрытым в данном описании, при молярном отношении 2-этилгексаноата натрия к СrCl3(THF)3 приблизительно 3:1.

[0019] На фиг. 11 изображен ИК спектр 2-этилгексаноата хрома(III), полученного в соответствии со способом, раскрытым в данном описании, при молярном отношении 2-этилгексаноата натрия к СrCl3(THF)3 приблизительно 3,1:1.

[0020] На фиг. 12 изображен расширенный участок, в диапазоне от 2000 см-1 до 1000 см-1, ИК спектра, полученного для 2-этилгексаноат хрома(III) полученного в соответствии со способом, раскрытым в данном описании, при молярном отношении 2-этилгексаноата натрия к СrCl3(THF)3 приблизительно 3,1.

[0021] На фиг. 13 изображен ИК спектр 2-этилгексаноата хрома(III) полученного в соответствии со способом, раскрытым в данном описании, при молярном отношении 2-этилгексаноата натрия к СrCl3(THF)3 приблизительно 3,3:1.

[0022] На фиг. 14 изображен расширенный участок, в диапазоне от 2000 см-1 до 1000 см-1, ИК спектра, полученного для 2-этилгексаноат хрома(III) полученного в соответствии со способом, раскрытым в данном описании, при молярном отношении 2-этилгексаноата натрия к СrCl3(THF)3 приблизительно 3,3:1.

[0023] НА фиг. 15 изображен ИК спектр существенно безнатриевого 2-этилгексаноата хрома(III), полученного в соответствии со способом, раскрытым в данном описании, при молярном отношении 2-этилгексаноата натрия к СrCl3(THF)3 приблизительно 3,3:1.

[0024] НА фиг. 16 изображен расширенный участок, в диапазоне от 2000 см-1 до 1000 см-1, ИК спектра, полученного для существенно безнатриевого 2-этилгексаноата хрома(III), полученного в соответствии со способом, раскрытым в данном описании, при молярном отношении 2-этилгексаноата натрия к СrCl3(THF)3 приблизительно 3,3:1.

[0025] На фиг. 17 изображен ИК спектр 2-этилгексаноата хрома(III), полученного в соответствии со способом, раскрытым в данном описании, при молярном отношении 2-этилгексаноата натрия к СrCl3(THF)3 приблизительно 4:1.

[0026] На фиг. 18 изображен расширенный участок, в диапазоне от 2000 см-1 до 1000 см-1, ИК спектра, полученного для 2-этилгексаноата хрома(III), полученного в соответствии со способом, раскрытым в данном описании, при молярном отношении 2-этилгексаноата натрия к СrCl3(THF)3 приблизительно 4:1.

[0027] На фиг. 19 изображено сравнение точек данных g(r) высокоэнергетического рентгеноструктурного анализа композиции 2-этилгексаноата хрома(III), приготовленной способом согласно данному описанию, и точки данных g(r) высокоэнергетического рентгеноструктурного анализа первой коммерчески доступной композиции 2-этилгексаноата хрома(III).

[0028] На фиг. 20 изображено сравнение точек данных g(r) высокоэнергетического рентгеноструктурного анализа композиции 2-этилгексаноата хрома(III), приготовленной способом согласно данному описанию, и взятые из публикаций точки данных g(r) высокоэнергетического рентгеноструктурного анализа композиции 2-этилгексаноата хрома(III).

[0029] НА фиг. 21 изображено сравнение точек данных g(r) высокоэнергетического рентгеноструктурного анализа композиции 2-этилгексаноата хрома(III), приготовленной способом согласно данному описанию, и оптимизированных расчетных значений точек данных g(r) высокоэнергетического рентгеноструктурного анализа теоретической модели одноядерного ацетата хрома(III).

[0030] На фиг. 22 изображено сравнение точек данных g(r) высокоэнергетического рентгеноструктурного анализа коммерчески доступной композиции 2-этилгексаноата хрома(III), и оптимизированных расчетных значений точек данных g(r) высокоэнергетического рентгеноструктурного анализа теоретического модельного ацетата одноядерного хрома(III).

[0031] На фиг. 23 изображено сравнение взятых из публикаций точек данных g(r) высокоэнергетического рентгеноструктурного анализа и композиции 2-этилгексаноата хрома(III), и оптимизированных расчетных значений точек данных g(r) высокоэнергетического рентгеноструктурного анализа теоретического модельного ацетата одноядерного хрома(III).

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0032] В соответствии с различными аспектами и вариантами реализации настоящего раскрытия предложены новые композиции, содержащие карбоксилат хрома, новые способы получения композиций, содержащих карбоксилат хрома, новые каталитические системы, способы получения новых каталитических систем и способы применения новых каталитических систем для получения продукта тримеризации олефинов. В одном аспекте новые системы тримеризации олефинов описанные здесь и получаемые в соответствии с различными раскрытыми здесь вариантами реализации, обеспечивают хорошую активность каталитической системы, при этом в них используются относительно меньшие количества алкилалюминия и аналогичных активаторов.

[0033] В соответствии с различными аспектами и вариантами реализации настоящего раскрытия предложены:1) компоненты катализатора и способы, включающие объединение пиррола и соединения алкил-металл с получением смеси, причем указанная смесь может содержать пирролид металла, образованный в результате этого этапа приведения в контакт, который составляет компонент каталитической системы; 2) каталитические компоненты и способы, которые включают объединение по существу в бескислотных и безводных условиях, предшественника переходного металла и карбоксилата металла 1 группы или металла 2 группы в апротонном координирующем растворителе с получением композиции, содержащей карбоксилат переходного металла; и 3) каталитические компоненты и способы, которые включают эти два первые каталитические компоненты и способы, т.е. они включают объединение пиррола и соединения алкил-металл c получением смеси, которая содержит пирролид металла, и объединение предшественника переходного металла и карбоксилата металла 1 группы или металла 2 группы в апротонном координирующем растворителе, с получением композиции, содержащей карбоксилат переходного металла, оба из которых являются компонентами каталитической системы.

[0034] Для более ясного определения применяемых здесь терминов, ниже приведены определения. Если не указано иное, в настоящем раскрытии применяются приведенные ниже определения. Если используемый термин не раскрыт здесь специально, можно применять Руководство по химической терминологии ИЮПАК: IUPAC Compendium of Chemical Terminology, 2nd Ed (1997), при условии, что определение не противоречит остальному раскрытию или применяющимся здесь определениям, и не делает какой-либо заявленный объект, к которому применяется это определение, неопределенным или нереализуемым. В случае если определение или употребление, описанное в каком-либо цитируемом здесь документе, противоречит определению или употреблению, приведенному в настоящем тексте, силу имеет приведенное здесь определение или применение.

[0035] Группы элементов таблицы указываются здесь с использованием схемы нумерации в варианте периодической таблицы элементов, опубликованной в Chemical and Engineering News, 63(5), 27, 1985. В некоторых случаях группа элементов может быть указана с использованием общего названия, присвоенного ей, например «щелочные металлы» для элементов 1 группы, «щелочноземельные металлы» для элементов 2 группы, «переходные металлы» для элементов группа 3 - 12, и «галогены» для элементов 17 группы.

[0036] В отношении переходных терминов или фраз в характеристике изобретения, переходный термин “содержащий”, который является синонимом термина “включающий», “включающий в себя», “имеющий» или “характеризующийся» является неисключающим или открытым и не исключает дополнительных, не указанных элементов или этапов способа. Переходная фраза “состоящий из” исключает любой элемент, этап или ингредиент, не указанный в характеристике изобретения. Переходная фраза “состоящий по существу из” ограничивает объем утверждения (пункта формулы) указанными материалами или этапами и теми, которые не оказывают существенного влияния на основные и новые свойства (или свойство) заявленного изобретения. Указание в характеристике изобретения “состоящий по существу из” занимает промежуточное положение между закрытой характеристикой объекта, выраженной в формате “состоящий из” и полностью открытой характеристикой, выраженной в формате “содержащий”. В отсутствие указания на обратное описание соединения или композиции как “состоящих по существу из” не следует понимать как “содержащих», предполагается, что описан указанный компонент, который включает материалы, которые не вносят существенных изменений в композицию или способ, которые описаны этим термином. Например, сырье, состоящее из материала A, может включать примеси, обычно содержащиеся в промышленно производимом или коммерчески доступном образце указанного соединения или композиции. Когда описание объекта изобретения включает различные признаки и/или классы признаков (например, этап способа, признаки сырья и/или признаки продукта, среди других возможностей), переходные термины “включающий”, “состоящий по существу из” и “состоящий” относятся только к классу признаков, который применяются, и в характеристике одного изобретения могут применяться различные переходные термины или фразы. Например, способ может включать несколько перечисленных этапов (и другие не указанные этапы), но включать получение каталитической системы, состоящее из конкретных этапов или, в альтернативном варианте, состоять из конкретных этапов, и/или включать применение каталитической системы, включающей перечисленные компоненты и другие не указанные компоненты.

[0037] В настоящем описание применение термина “содержащий” или эквивалентного выражения включает применение фразы “состоящий по существу из», “состоит по существу из» или эквивалентных выражений в качестве вариантов реализации, альтернативных открытому выражению. Дополнительно, применение термина “содержащий” или эквивалентного выражения или применение “состоящий по существу из” в характеристике предполагает применение фразы “состоящий из», “состоит из» или эквивалентного выражения как альтернативе открытого выражения или промежуточного выражения, соответственно. Например “содержащий” следует понимать как термин, включающий “состоящий по существу из» и “состоящий из” в виде вариантов реализации, альтернативных аспекту, признакам и/или элементам, представленным в описании, если конкретно не указано иное.

[0038] Предполагается, что термины в единственном числе, если не указано другое, включают варианты множественного числа (например, по меньшей мере, один). Например, предполагается, что указание на “гидрат галогенида хрома” включает один гидрат галогенида хрома или смеси или комбинации большего числа гидратов галогенидов хрома, если не указано иначе.

[0039] В этом описании термины первый, второй и третий, среди прочих, могут применяться для различения множественных случаев использования аналогичных элементов. Например, в способе могут применяться два или большее число растворителей, на одном или большем числе этапов способа, или, в альтернативном варианте, два различных растворителя в смеси. Различающий термин можешь применяться к любому описанному здесь элементу, когда это необходимо для различения. Следует понимать, что численное или буквенное обозначение перед различающими терминами не предполагает какого-либо конкретного предпочтения элементов в способе или соединении, описанных здесь, если конкретно не указано иное.

[0040] В настоящем раскрытии способ (процесс) может включать множество этапов или может включать признаки с рядом различных элементов (например, компоненты в каталитической системе или компоненты в способе тримеризации олефинов, среди других признаков). Эти этапы и/или элементы могут быть обозначены с использованием списка a), b), c), и т.д., i), ii), iii), т.д., (a), (b), (c), и т.д. и/или (i), (ii), (iii), и т.д. (среди других вариантов списка), в зависимости от необходимости обеспечить обозначение каждого этапа и/или элемента способа. Следует понимать, численное или буквенное указание перед обозначением в списке обозначений не предполагает конкретного порядка этапов способа, описанных здесь, признака (признаков), описанных здесь и/или элемента (элементов) в признаке, если конкретно не указано обратное или если другого не требуют другие этапы способа, элементы и/или признаки элементов. Дополнительно, эти ряды обозначений приведены для различения различных этапов способа и/или элементов в признаке и могут применяться по необходимости, и без учета рядов обозначений, применяемых для конкретного способа, элемента или признака, применяемого в данном описании, при условии, что ряд обозначений позволяет однозначно различать разные признаки, разные этапы способа и/или разные элементы признака.

[0041] Термин “по существу безводный» применительно к соединению, раствору, растворителю или общим условиям означает, что количество воды меньше или равно 100 ppm (по массе) по массе соединения, раствора или растворителя. Термин “по существу сухой» применительно к атмосфере означает, что, вне зависимости от состава атмосферы, количество воды в атмосфере ниже или равно 100 ppm, по массе.

[0042] Термин “бескислотный” относится к процессу, который осуществляют без специального добавления кислотных или протонных соединений или веществ. Например, “бескислотный” означает, что в реакционный раствор, описанный как «бескислотный», не добавляли карбоновую кислоту, минеральную или неорганическую кислоту, спирт или другие протонные соединения или вещества. Не предполагается, что термин “бескислотный” отражает концентрацию [H3O]+, равную 0 ppm, или концентрацию кислотного или протонного соединения, равную 0 ppm, поскольку “бескислотные” условия могут также относиться к условиям, включающим присутствие небольших количеств кислоты, которая может присутствовать как примесь в добавленном компоненте или может образоваться как побочный продукт в ходе реакции или приготовления реакционного раствора. Например, карбоксилат(ы) переходного металла и композиция (композиции), содержащие карбоксилат переходного металла, полученные описанными способами, могут содержать измеряемые количества свободной карбоновой кислоты или других протогенных соединений, которые могут возникнуть как примеси или как побочные продукты в ходе получения таких соединений или композиций. Термин “по существу бескислотный» применительно к соединению, раствору, растворителю или общим условиям, означает, что количество кислоты меньше или равно 1000 ppm (по массе) в расчете на массу соединения, раствора или растворителя.

[0043] Термины “комнатная температура” или “температура окружающей среды” используются здесь для описания температуры от 15ºC до 35ºC в отсутствие прямого воздействия внешнего нагревателя или охладителя на реакционный сосуд. Соответственно, термины “комнатная температура” и “температура окружающей среды” включают отдельные значения температуры и любые или все диапазоны, поддиапазоны температуры от 15ºC до 35ºC, при условии отсутствия прямого воздействия внешнего нагревателя или охладителя на реакционный сосуд.

[0044] Термин “атмосферное давление” используется здесь для описания давления воздуха на земле в отсутствие применения каких-либо внешних средств изменения давления. Обычно, если процесс осуществляется на экстремальных возвышенностях, «атмосферное давление» составляет около 1 атмосферы (либо, примерно 14,7 фунтов на квадратный дюйм или примерно 101 кПа).

[0045] Термин “апротонный” используется здесь для описания растворителя, который в данных условиях является непротогенным. Соответственно, “апротонное” соединение или растворитель не способны выступать в качестве донора протонов, сильно- или слабокислотного, такого как кислота Бренстеда, в определенных условиях. Например, ацетонитрил может быть апротонным растворителем, несмотря на то, что он может подвергаться депротонированию в присутствии сильного основания, такого как трет-бутоксид калия.

[0046] Термины “одновременный”, “одновременный контакт”, “осуществлять контакт одновременно” и их производные применительно к способу осуществления контакта относятся к способу осуществления контакта, в котором два или более указанных соединений, смесей, потоков и/или композиций приводятся в контакт путем подачи (помещения) в место соединения, тигель, сосуд или реактор, среди прочего, в одно и то же время. Термины “по существу одновременно», “по существу одновременный контакт”, “приведение в контакт по существу одновременно” и их производные при использовании применительно к способу осуществления контакта относятся к способу осуществления контакта, в котором в процессе осуществления контакта два или более указанных соединений, смесей потоков и/или композиций, два или более указанных соединений, смесей потоков и/или композиций приводятся в контакт таким образом, что в течение некоторого периода в ходе осуществления контакта два или более указанных соединений, смесей потоков и/или композиций подают (помещают) в место соединения, тигель, сосуд или реактор, среди прочего, в одно и то же время. Следует отметить, что термины “по существу одновременно», “по существу одновременный контакт”, “приведение в контакт по существу одновременно” и их производные не следует понимать так, что контакт двух или более указанных соединений, смесей потоков и/или композиций осуществляется одновременно на протяжении всего процесса добавления каждого из них. Термины “по существу одновременно”, “по существу одновременный контакт”, “приведение в контакт по существу одновременно” и их производные включают сценарии, в которых подача одного из указанных соединений (или количества, меньшего чем все (части)), смесей, потоков и/или композиций в общее место соединения, тигель, сосуд или реактор может быть начата раньше, чем других, и/или подача одного из указанных соединений, смесей, потоков и/или композиций (или части) в общее место соединения, тигель, сосуд или реактор может быть завершена, прекращена или прервана раньше, чем подача других указанных соединений, смесей, потоков и/или композиций. В любом из описанных здесь вариантов реализации или аспекта термины “одновременно”, “одновременный контакт”, “приведение в контакт по существу одновременно” и их производные могут быть модифицированы путем включения термина, обозначающего количество каждого из указанных соединений, смесей, потоков и/или композиций, которое может быть приведено в контакт одновременно, для описания процессов с различными степенями “по существу одновременно”, “по существу одновременного контакта”, “осуществления контакта по существу одновременно” и их производных. Например, по меньшей мере, 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 75 %, 80 %, 85 %, 90 %, 95 % каждого из указанных соединений, смесей, потоков и/или композиций, которое может быть “приведено в контакт одновременно” или “одновременно приведено в контакт”. В общем случае процентные доли указанных соединений, смесей, потоков и/или композиций, которые могут быть «приведены в контакт одновременно” или “одновременно приведены в контакт” могут быть выражены по массе (массовый процент), по объему (объемный процент) или по молям (молярный процент). Если не указано иное, то если указанные соединения, смеси, потоки и/или композиции, контакт которых осуществляется “по существу одновременно” или которые “по существу одновременно приводятся в контакт” или “контактируют по существу одновременно” и т.п., то это означает, что, по меньшей мере, 50 % каждого из указанных соединений, смесей, потоков и/или композиций могут быть “приведены в контакт одновременно” или их “контакт осуществлен одновременно”.

[0047] Дополнительно следует отметить, что описание способа или процесса приведения в контакт: “одновременно», “приводят в контакт одновременно», “осуществляют контакт одновременно», «по существу одновременно приводят в контакт», “контактируют по существу одновременно» и их производные отличаются от процесса или способа, в котором один или большее число первых материалов (например, соединение, смесь, поток и/или композиция) уже находится в тигле, сосуде или реакторе, а одно или большее число других соединений, смесей, потоков и/или композиций добавляют в этот тигель, сосуд или реактор. В этом примере первый материал в тигле, сосуде или реакторе, не поступает в тигель, сосуд или реактор одновременно с другими соединениями, смесями, потоками и/или композициями и материалом в тигле. Соответственно, нельзя сказать, что первый материал и другие соединения, смеси, потоки и/или композиции “приводят в контакт одновременно», “контактируют одновременно», “приводят в контакт по существу одновременно» или “контактируют по существу одновременно.”

[0048] Предполагается, что для любого конкретного описанного здесь соединения представленная(ое) общая структура или название охватывает также все структурные изомеры, конформационные изомеры и стереоизомеры, которые могут образоваться на основе конкретной совокупности заместителей, если не указано иное. Соответственно, общая ссылка на соединение включает все структурные изомеры, если явным образом не указано иное; например, общая ссылка на пентан включает н-пентан, 2-метил-бутан и 2,2-диметилпропан, а общая ссылка на бутильную группу включает н-бутильную группу, втор-бутильную группу, изо-бутильную группу и трет-бутильную группу. Кроме того, ссылка на общую структуру или название включает все энантиомеры, диастереомеры и другие оптические изомеры в энантиомерной или рацемической форме, а также смеси стереоизомеров, в зависимости от того, что позволяет или чего требует контекст. Для любой(ого) конкретной(ого) представленной(ого) формулы или названия любая(ое) представленная(ое) общая(ое) формула или название также охватывает все конформационные изомеры, региоизомеры и стереоизомеры, которые могут образоваться на основе конкретной совокупности заместителей.

[0049] Химическая «группа» описана в соответствии с тем, каким образом указанную группу формально получают из эталонного или «исходного» соединения, например, через число атомов водорода, формально удаленных из исходного соединения для получения указанной группы, даже если указанная группа не была в буквальном смысле синтезирована указанным образом. Указанные группы могут применяться в качестве заместителей, или координированы или связаны с ионами металлов. Например, «алкильная группа» формально мо