Способы для лазерного зажигания и измерения

Иллюстрации

Показать все

Изобретение относится к системам зажигания в двигателях внутреннего сгорания. Техническим результатом является повышение эффективности запуска двигателя транспортного средства с гибридным приводом. Результат достигается тем, что способ содержит приведение в действие лазерного устройства зажигания в цилиндре двигателя и идентификацию положения двигателя в ответ на это; и воспламенение смеси воздуха и топлива в цилиндре с помощью лазерного устройства зажигания. 3 н. и 16 з.п. ф-лы, 13 ил.

Реферат

УРОВЕНЬ ТЕХНИКИ

На транспортных средствах с электрическим гибридным приводом (HEV) и транспортных средствах с пуском-остановом двигатель внутреннего сгорания (ICE) может останавливаться или выводиться из работы во время выбранных условий. Остановка двигателя может сберегать топливо посредством избегания определенных условий, например, таких как условия холостого хода. Когда это происходит, коленчатый вал и распределительные валы двигателя могут останавливаться в неизвестных положениях цикла двигателя. Для того, чтобы перезапускать двигатель, положение кулачков/поршней может определяться, так чтобы последовательное и точное топливоснабжение и установка момента зажигания могли обеспечиваться для получения надежных запусков с низкими выбросами. По существу, точное и своевременное узнавание положений поршней и кулачков двигателя во время запуска может давать возможность координации установки момента зажигания и подачи топлива в двигателе.

Некоторые способы определения положения поршней или двигателя полагаются на колесо синхронизации коленчатого вала с конечным числом зубьев и промежутков для обеспечения синхронизации в координации с измерениями распределительных валов. Так как информация о положении коленчатого вала типично вырабатывается с использованием зубчатого колеса с отсутствующим зубцом, модуль управления двигателем может определять относительное положение двигателя для каждого цилиндра. Коленчатый вал поворачивается дважды за цикл двигателя, таким образом, чтобы однозначно идентифицировать положение двигателя, информация для коленчатого вала комбинируется с идентификацией цилиндра (CID). При перезапуске двигателя модуль управления двигателем, поэтому, типично ожидает определения положения двигателя до начала последовательного впрыска топлива, что навлекает время задержки в процессе возобновления работы. Один из примеров показан US 7 765 980, где положение двигателя идентифицируется посредством датчика угла поворота коленчатого вала.

Изобретатели в материалах настоящей заявки осознали проблемы у таких подходов. Например, в зависимости от температуры двигателя может меняться время для идентификации положения коленчатого вала относительно положения распределительного вала. Такое непостоянство определения относительного положения между распределительным валом и коленчатым валом (для того чтобы идентифицировать положения двигателя и поршней) может приводить к уменьшенной способности достижения и поддержания быстрой синхронизации, надежного сгорания и сниженных выбросов. Кроме того, любые задержки при идентификации положения двигателя также могут задерживать запуск двигателя. При запуске двигателя в ответ на запрос пуска в ход транспортного средства, такие задержки затем воплощаются в задержках реакции транспортного средства, снижая удовлетворенность потребителя.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В одном из примерных подходов некоторые из вышеприведенных проблем могут быть препоручены способу, содержащему приведение в действие лазерного устройства зажигания в цилиндре двигателя и синхронизацию подачи топлива на основании считанного лазером положения двигателя, и воспламенение смеси воздуха и топлива в цилиндре с помощью лазерного устройства зажигания. Таким образом, может быть возможным использовать преимущества лазерной системы зажигания для повышения точности идентификации положения двигателя (посредством измерений положения кулачков и поршней), такой как во время запуска двигателя. Например, такой подход может давать более быструю и более точную информацию о положении, скорости двигателя/поршня и т.д. Посредством более ранней идентификации такой информации во время проворачивания коленчатого вала двигателя (или даже до проворачивания коленчатого вала), может достигаться более быстрая синхронизация с распределительным валом, приводя к более ранней подаче топлива и сгоранию в двигателе. Преимуществом вышеприведенного аспекта изобретения является более быстрое среднее время запуска двигателя, а также улучшенная удовлетворенность потребителя, улучшенная экономия топлива и пониженные выбросы.

Более конкретно, в настоящей заявке раскрыт способ, состоящий в том, что приводят в действие лазерное устройство зажигания в цилиндре двигателя; синхронизируют подачу топлива на основании считанного лазером положения двигателя и воспламеняют смесь воздуха и топлива в цилиндре с помощью лазерного устройства зажигания.

В дополнительном аспекте синхронизация подачи топлива заключается в том, что однозначно идентифицируют положение двигателя на основании работы лазера.

В другом дополнительном аспекте однозначная идентификация положения двигателя заключается в том, что определяют положение поршней двигателя и положение клапанов цилиндра, чтобы идентифицировать такт цилиндра двигателя.

В еще одном дополнительном аспекте идентификация положения поршней двигателя и положения клапанов цилиндра заключается в том, что приводят в действие лазер в режиме работы с более низкой мощностью, а воспламенение смеси топлива и воздуха заключается в том, что приводят в действие лазер в режиме работы с более высокой мощностью.

В еще одном дополнительном аспекте лазерное устройство зажигания действует в режиме более низкой мощности для выявления положения поршня двигателя на основании лазерного сигнала, отраженного от поршня.

В еще одном дополнительном аспекте лазерное устройство зажигания действует в режиме более низкой мощности для выявления положения клапанов цилиндра на основании лазерного сигнала, отраженного от клапана цилиндра.

В еще одном дополнительном аспекте определение положения клапанов основано на по существу блокировании клапаном цилиндра лазерного сигнала низкой мощности.

В еще одном дополнительном аспекте определение положения двигателя основано на детектировании каждого из отраженных световых импульсов и ослабленных сигналов из по существу блокированных лазерных импульсов внутри цилиндра.

Еще один дополнительный аспект дополнительно состоит в том, что определяют число оборотов двигателя в ответ на приведение в действие лазера и настраивают впрыск топлива на основании определенного положения двигателя и числа оборотов двигателя.

В еще одном дополнительном аспекте установка момента и величина впрыска топлива основаны на идентифицированных положении двигателя и числе оборотов двигателя.

В еще одном дополнительном аспекте выбор цилиндра для первого впрыска топлива основан на положении двигателя.

В еще одном дополнительном аспекте однозначная идентификация положения двигателя включает в себя по меньшей мере одно из импульсного измерения лазером в режиме низкой мощности; и частотной модуляции лазера с периодически повторяющимся линейным изменением частоты; и определения положения поршня на основании расстояния, указанного сдвигом частоты, измеренным посредством считанных отражений лазера поршнем; и определения положения клапана на основании света в цилиндре.

В еще одном дополнительном аспекте однозначная идентификация положения двигателя заключается в том, что идентифицируют доплеровский сдвиг частоты, отраженной поршнем и измеренной датчиком, присоединенным к цилиндру.

Еще один дополнительный аспект дополнительно состоит в том, что указывают число оборотов двигателя на основании множества идентифицированных положений двигателя посредством лазерного устройства зажигания.

Также раскрыт способ, состоящий в том, что синхронизируют первое событие сгорания от состояния покоя при запуске двигателя посредством того, что приводят в действие лазерное устройство зажигания, присоединенное к цилиндру двигателя, чтобы идентифицировать положение двигателя, в ответ на считанный свет в цилиндре; и воспламеняют смесь воздуха и топлива в цилиндре с помощью лазерного устройства зажигания с установкой момента воспламенения, основанной на идентифицированном положении двигателя.

Дополнительный аспект дополнительно состоит в том, что впрыскивают топливо в ответ на идентифицированное положение двигателя, чтобы сформировать смесь.

В другом дополнительном аспекте топливо впрыскивается непосредственно в цилиндр.

В еще одном дополнительном аспекте топливо впрыскивается во впускной коллектор для формирования смеси перед поступлением в цилиндр двигателя.

В еще одном дополнительном аспекте положение двигателя дополнительно идентифицируется на основании положения распределительного вала и коленчатого вала.

Кроме того, раскрыт способ, состоящий в том, что останавливают двигатель в ответ на условия выключения холостого хода; синхронизируют первое событие сгорания от остановки при перезапуске двигателя, приводят в действие лазерное устройство зажигания в цилиндре двигателя; и идентифицируют положение двигателя в ответ на считанный свет в цилиндре; и воспламеняют смесь воздуха и топлива в цилиндре с помощью лазерного устройства зажигания с установкой момента воспламенения, основанной на идентифицированном положении двигателя.

Должно быть понятно, что сущность изобретения, приведенная выше, предоставлена для знакомства с упрощенной формой подборки концепций, которые дополнительно описаны в подробном описании. Она не предполагается для идентификации ключевых или существенных признаков заявленного объекта патентования, объем которого однозначно определен формулой изобретения, которая сопровождает подробное описание. Более того, заявленный объект патентования не ограничен реализациями, которые устраняют какие-либо недостатки, отмеченные выше или в любой части этого раскрытия.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 показывает схематическое изображение примерного транспортного средства с гибридным приводом.

Фиг. 2 показывает принципиальную схему примерного двигателя внутреннего сгорания.

Фиг. 3а и 3b показывают принципиальные схемы примерного цилиндра двигателя.

Фиг. 4 показывает примерный четырехцилиндровый двигатель, остановленный в произвольном положении в своем ездовом цикле.

Фиг. 5 показывает два режима работы лазерной системы во время примерного цикла двигателя и примерные данные для однозначной идентификации положения двигателя с использованием лазерной системы.

Фиг. 6 показывает примерную многомерную характеристику установки фаз газораспределения и положения поршня относительно положения двигателя во время примерного цикла двигателя для двигателя с непосредственным впрыском.

Фиг. 7 показывает примерную многомерную характеристику установки фаз газораспределения и положения поршня относительно положения двигателя во время примерного цикла двигателя для двигателя с впрыском топлива во впускные каналы.

Фиг. 8 показывает примерный способ для выполнения различных бортовых диагностических программ во время работы двигателя при ездовом цикле транспортного средства.

Фиг. 9 показывает примерный способ для запуска или перезапуска двигателя во время действия примерного ездового цикла транспортного средства.

Фиг. 10 показывает примерный способ для эксплуатации лазерной системы в двух режимах на основании рабочего состояния двигателя внутреннего сгорания.

Фиг. 11 показывает примерный способ для синхронизации подачи топлива на основании двух режимов детектирования лазера.

Фиг. 12 показывает примерный способ для идентификации ухудшения характеристик двигателя в соответствии с раскрытием.

ПОДРОБНОЕ ОПИСАНИЕ

Предусмотрены способы и системы для повышения эффективности запуска двигателя транспортного средства с гибридным приводом, такого как показанное на фиг. 1. В одном из примеров определение и точность положения поршней и кулачков может достигаться раньше и быстрее в последовательности запуска двигателя с использованием лазерной системы зажигания, присоединенной к системе двигателя, такой как показанная на фиг. 2-4. Например, для повышения скорости сбора данных информации считывания установки фаз кулачкового распределения, настройки управления с обратной связью могут быть основаны на лазерных импульсах внутри цилиндра двигателя в качестве средства определения положения кулачков и поршня при оптимизации подачи топлива. Контроллер затем поддерживает установку фаз газораспределения на требуемом значении на основании обратной связи по положению кулачков относительно положения коленчатого вала. Фиг. 5 показывает два режима детектирования лазерной системы во время примерного цикла двигателя и примерные данные для однозначной идентификации положения двигателя с использованием лазерной системы. Фиг. 6-7 показывают многомерные характеристики положения поршня и установки фаз газораспределения для двигателей с непосредственным впрыском и впрыском во впускные каналы, непосредственно. Для образцового положения двигателя по фиг. 4, эти многомерные характеристики иллюстрируют, каким образом лазерная система, присоединенная к контроллеру, может работать в двух режимах мощности во время ездового цикла двигателя. Например, режим низкой мощности может использоваться для определения положения двигателя наряду с тем, что режим высокой мощности может использоваться для воспламенения топливовоздушной смеси. Система управляется контроллером согласно различным программам, проиллюстрированным на фиг. 8-12. Эти фигуры иллюстрируют различные программы управления для повышения эффективности запуска двигателя, которые могут выполняться системой управления двигателя по фиг. 1-2.

Со ссылкой на фиг. 1, эта фигура схематически изображает транспортное средство с гибридной силовой установкой 10. Гибридная силовая установка 10 включает в себя двигатель 20 внутреннего сгорания, присоединенный к трансмиссии 16. Трансмиссия 16 может быть ручной трансмиссией, автоматической трансмиссией или их комбинацией. Кроме того, могут быть включены в состав различные дополнительные компоненты, такие как гидротрансформатор, и/или другие зубчатые передачи, такие как звено главной передачи и т.д. Трансмиссия 16 показана присоединенной к ведущему колесу 14, которое может контактировать с поверхностью дороги.

В этом примерном варианте осуществления, гибридная силовая установка также включает в себя устройство 18 преобразования энергии, которое, среди прочего, может включать в себя электродвигатель, генератор и их комбинации. Устройство 18 преобразования энергии дополнительно показано присоединенным к устройству 22 накопления энергии, которое может включать в себя аккумуляторную батарею, конденсатор, маховик, баллон высокого давления и т.д. Устройство преобразования энергии может приводиться в действие, чтобы поглощать энергию от движения транспортного средства и/или двигателя и преобразовывать поглощенную энергию в форму энергии, пригодную для хранения устройством накопления энергии (другими словами, обеспечивать работу генератора). Устройство преобразования энергии также может приводиться в действие, чтобы подавать выходную мощность (мощность, работу крутящий момент, скорость, и т.д.) на ведущее колесо 14 и/или двигатель 20 (другими словами, обеспечивать работу электродвигателя). Должно быть принято во внимание, что устройство преобразования энергии, в некоторых вариантах осуществления, может включать в себя электродвигатель, генератор или оба, электродвигатель и генератор, в числе различных других компонентов, используемых для обеспечения надлежащего преобразования энергии между устройством накопления энергии и ведущими колесами и/или двигателем транспортного средства.

Изображенные соединения между двигателем 20, устройством 18 преобразования энергии, трансмиссией 16 и ведущим колесом 14, могут указывать передачу механической энергии с одного компонента на другой, тогда как соединения между устройством 18 преобразования энергии и устройством 22 накопления энергии могут указывать передачу многообразия форм энергии, таких как электрическая, механическая и т.д. Например, крутящий момент может передаваться с двигателя 20, чтобы приводить в движение ведущее колесо 14 транспортного средства, через трансмиссию 16. Как описано выше, устройство 22 накопления энергии может быть выполнено с возможностью работать в режиме генератора и/или режиме электродвигателя. В режиме генератора, система 10 может поглощать некоторую или всю выходную мощность из двигателя 20 и/или трансмиссии 16, что может уменьшать величину приводной выходной мощности, подаваемой на ведущее колесо 14. Кроме того, выходная мощность, принимаемая устройством преобразования энергии, может использоваться для зарядки устройства 22 накопления энергии. В качестве альтернативы, устройство 22 накопления энергии может принимать электрический заряд из внешнего источника 24 энергии, такого как штепсельное соединение для источника сетевого питания. В режиме электродвигателя, устройство преобразования энергии может подавать механическую выходную мощность на двигатель 20 и/или трансмиссию 16, например, используя электрическую энергию, накопленную в электрической аккумуляторной батарее.

Варианты осуществления с гибридной силовой установкой могут включать в себя полностью гибридные системы, в которых транспортное средство может передвигаться только на двигателе, только на устройстве преобразования энергии (например, электродвигателе) или комбинации того и другого. Также могут применяться вспомогательные или умеренные гибридные конфигурации, в которых двигатель является основным источником крутящего момента с гибридной силовой установкой, действующей, чтобы избирательно выдавать добавочный крутящий момент, например, во время увеличения нагрузки на двигатель при постоянном числе оборотов или других условий. Кроме того еще, также могут использоваться системы стартера/генератора и/или генератора переменного тока с развитой логикой.

Из вышеприведенного должно быть понятно, что примерная гибридная силовая установка способна на различные режимы работы. Например, в первом режиме, двигатель 20 включен и действует в качестве источника крутящего момента, приводящего в движение ведущее колесо 14. В этом случае, транспортное средство эксплуатируется в режиме «включенного двигателя», и топливо подается в двигатель 20 (изображено подробнее на фиг. 2) из топливной системы 100. Топливная система 100 включает в себя систему 110 восстановления паров топлива для накопления паров топлива и снижения выбросов из силовой установки 10 транспортного средства с гибридным приводом.

В другом режиме силовая установка может действовать с использованием устройства 18 преобразования энергии (например, электрического двигателя) в качестве источника крутящего момента, приводящего в движение транспортное средство. Этот режим «отключенного двигателя» может применяться во время торможения, низких скоростей, в то время как останавливается на светофорах и т.д. В еще одном другом режиме, который может называться режим «содействия», альтернативный источник крутящего момента может дополнять и действовать совместно с крутящим моментом, выдаваемым двигателем 20. Как указано выше, устройство 18 преобразования энергии также может работать в режиме генератора, в котором крутящий момент поглощается из двигателя 20 и/или трансмиссии 16. Более того, устройство 18 преобразования энергии может действовать для усиления или поглощения крутящего момента во время переходов двигателя 20 между разными режимами сгорания (например, во время переходов между режимом искрового зажигания и режимом воспламенения от сжатия).

Различные компоненты, описанные выше со ссылкой на фиг. 1, могут управляться системой 41 управления транспортным средством, которая включает в себя контроллер 12 с машинно-читаемыми командами для выполнения программ и подпрограмм для регулирования систем транспортного средства, множество датчиков 42 и множество исполнительных механизмов 44.

Фиг. 2 показывает принципиальную схему примерного цилиндра многоцилиндрового двигателя 20 внутреннего сгорания. Двигатель 20 может управляться, по меньшей мере частично, системой управления, включающей в себя контроллер 12, и входными сигналами от водителя 132 транспортного средства через устройство 130 ввода. В этом примере устройство 130 ввода включает в себя педаль акселератора и датчик 134 положения педали для формирования пропорционального сигнала РР положения педали.

Цилиндр 30 сгорания двигателя 20 может включать в себя стенки 32 цилиндра сгорания с поршнем 36, расположенным в них. Поршень 36 может быть присоединен к коленчатому валу 40, так чтобы возвратно-поступательное движение поршня преобразовывалось во вращательное движение коленчатого вала. Коленчатый вал 40 может быть присоединен к по меньшей мере одному ведущему колесу транспортного средства через промежуточную систему трансмиссии. Цилиндр 30 сгорания может принимать всасываемый воздух из впускного коллектора 45 через впускной канал 43 и может выпускать газообразные продукты сгорания отработавших газов через выпускной канал 48. Впускной коллектор 45 и выпускной канал 48 могут избирательно сообщаться с цилиндром 30 сгорания через соответственные впускной клапан 52 и выпускной клапан 54. В некоторых вариантах осуществления цилиндр 30 сгорания может включать в себя два или более впускных клапана и/или два или более выпускных клапана.

Двигатель 20 опционально может включать в себя датчики 55 и 57 положения кулачков. Однако в показанном примере впускной клапан 52 и выпускной клапан 54 могут управляться посредством приведения в действие кулачков через соответственные системы 51 и 53 кулачкового привода. Каждая из систем 51 и 53 кулачкового привода может включать в себя один или более кулачков и может использовать одну или более из систем переключения профиля кулачков (CPS), регулируемой установки фаз кулачкового распределения (VCT), изменения фаз газораспределения (VVT) и/или изменения подъема клапана (VVL), которые могут управляться контроллером 12 для изменения работы клапанов. Чтобы давать возможность выявления положения кулачков, системы 51 и 53 кулачкового привода могут иметь зубчатые колеса. Положение впускного клапана 52 и выпускного клапана 54 может определяться датчиками 55 и 57 положения, соответственно. В альтернативных вариантах осуществления, впускной клапан 52 и/или выпускной клапан 54 могут управляться посредством возбуждения клапанного распределителя с электромагнитным управлением. Например, цилиндр 30, в качестве альтернативы, может включать в себя впускной клапан, управляемый посредством возбуждения клапанного распределителя с электромагнитным управлением, и выпускной клапан, управляемый через кулачковый привод, включающий в себя системы CPS и/или VCT.

Топливная форсунка 66 показана присоединенной непосредственно к цилиндру 30 сгорания для впрыска топлива непосредственно в него пропорционально длительности импульса сигнала FPW, принятого из контроллера 12 через электронный формирователь 68. Таким образом, топливная форсунка 66 обеспечивает то, что известно в качестве непосредственного впрыска топлива в цилиндр 30 сгорания. Топливная форсунка, например, может быть установлена сбоку цилиндра сгорания или сверху камеры сгорания. Топливо может подаваться в топливную форсунку 66 топливной системой (не показана), включающей в себя топливный бак, топливный насос и направляющую-распределитель топлива. В некоторых вариантах осуществления цилиндр 30 сгорания, в качестве альтернативы или дополнительно, может включать в себя топливную форсунку, скомпонованную во впускном канале 43, в конфигурации, которая обеспечивает то, что известно как впрыск топлива во впускной канал, выше по потоку от цилиндра 30 сгорания.

Впускной канал 43 может включать в себя клапан 74 управления движением заряда (CMCV) и заслонку 72 CMCV, также может включать в себя дроссель 62, имеющий дроссельную заслонку 64. В этом конкретном примере положение дроссельной заслонки 64 может регулироваться контроллером 12 посредством сигналов, выдаваемых на электродвигатель или исполнительный механизм, включенный дросселем 62, конфигурацией, которая может называться электронный регулятор дросселя (ETC). Таким образом, дроссель 62 может приводиться в действие, чтобы регулировать всасываемый воздух, выдаваемый в цилиндр 30 сгорания, среди других цилиндров сгорания двигателя. Впускной канал 43 может включать в себя датчик 120 массового расхода воздуха и датчик 122 давления воздуха в коллекторе для выдачи соответственных сигналов MAF и MAP в контроллер 12.

Датчик 126 отработавших газов показан присоединенным к выпускному каналу 48 выше по потоку от каталитического нейтрализатора 70 отработавших газов. Датчик 126 может быть любым подходящим датчиком для выдачи показания топливовоздушного соотношения в отработавших газах, таким как линейный датчик содержания кислорода или UEGO (универсальный или широкодиапазонный датчик содержания кислорода в отработавших газах), двухрежимный датчик содержания кислорода или EGO, HEGO (подогреваемый EGO), датчик содержания NOx, НС или СО. Система выпуска может включать в себя розжиговые каталитические нейтрализаторы и каталитические нейтрализаторы низа кузова, а также выпускной коллектор, расположенные выше по потоку и/или ниже по потоку датчики топливовоздушного соотношения. Каталитический нейтрализатор 70 отработавших газов может включать в себя многочисленные блоки нейтрализатора в одном из примеров. В еще одном примере могут использоваться многочисленные устройства снижения токсичности выбросов, каждое с многочисленными брикетами. Каталитический нейтрализатор 70 отработавших газов, в одном из примеров, может быть каталитическим нейтрализатором трехкомпонентного типа.

Контроллер 12 показан на фиг. 2 в качестве микрокомпьютера, включающего в себя микропроцессорный блок 102, порты 104 ввода/вывода, электронный запоминающий носитель для исполняемых программ и калибровочных значений, показанный в качестве микросхемы 106 постоянного запоминающего устройства в этом конкретном примере, оперативное запоминающее устройство 108, энергонезависимую память 109 и шину данных. Контроллер 12 может принимать различные сигналы и информацию с датчиков, присоединенных к двигателю 20, в дополнение к тем сигналам, которые обсуждены ранее, в том числе, измерение вводимого массового расхода воздуха (MAF) с датчика 120 массового расхода воздуха; температуру охлаждающей жидкости двигателя (ЕСТ) с датчика 112 температуры, присоединенного к патрубку 114 охлаждения; в некоторых примерах сигнал профильного считывания зажигания (PIP) с датчика 118 на эффекте Холла (или другого типа), присоединенного к коленчатому валу 40, может быть опционально включен в состав; положение дросселя (TP) с датчика положения дросселя; и сигнал абсолютного давления в коллекторе, MAP, с датчика 122. Датчик 118 на эффекте Холла опционально может быть включен в двигатель 20, так как он действует в рабочем объеме, подобном лазерной системе двигателя, описанной в материалах настоящей заявки. Постоянное запоминающее устройство 106 запоминающего носителя может быть запрограммировано машинно-читаемыми данными, представляющими собой команды, исполняемые процессором 102 для выполнения способов, описанных ниже, а также их вариантов.

Лазерная система 92 включает в себя задающий генератор 88 лазерного излучения и блок 90 управления лазером (LCU). LCU 90 побуждает задающий генератор 88 лазерного излучения вырабатывать энергию лазерного излучения. LCU 90 может принимать операционные команды из контроллера 12. Задающий генератор 88 лазерного излучения включает в себя часть 86 лазерной накачки и часть 84 сведения излучения. Часть 84 ведения излучения сводит лазерное излучение, выработанное частью 86 накачки лазера, в фокусной точке 82 лазера цилиндра 30 сгорания.

Лазерная система 92 выполнена с возможностью работать в большем, чем один рабочий объем, с синхронизацией каждой операции на основании положения двигателя по четырехтактному циклу сгорания. Например, энергия лазерного излучения может использоваться для воспламенения топливовоздушной смеси во время рабочего такта двигателя, в том числе, во время проворачивания коленчатого вала двигателя, операции прогрева двигателя и работы прогретого двигателя. Топливо, впрыскиваемое топливной форсункой 66, может формировать топливовоздушную смесь во время по меньшей мере части такта впуска, где воспламенение топливовоздушной смеси энергией лазерного излучения, вырабатываемой задающим генератором 88 лазерного излучения, начинает сгорание негорючей в ином случае топливовоздушной смеси и вытесняет поршень 36 вниз. При второй работоспособности LCU 90 может подавать импульсы с низкой мощностью для определения положения поршня и клапанов во время четырехтактного цикла сгорания. Например, по возобновлению работы двигателя из условий останова двигателя при холостом ходе, энергия лазерного излучения может использоваться для контроля положения, скорости, и т.д., двигателя, для того чтобы синхронизировать подачу топлива и установку фаз газораспределения.

LCU 90 может управлять задающим генератором 88 лазерного излучения, чтобы фокусировать энергию лазерного излучения в разных местоположениях в зависимости от условий эксплуатации. Например, энергия лазерного излучения может фокусироваться в первом местоположении в стороне от стенки 32 цилиндра в пределах внутренней области цилиндра 30, для того чтобы воспламенять топливовоздушную смесь. В одном из вариантов осуществления первое местоположение может находиться возле верхней мертвой точки (ВМТ, TDC) рабочего такта. Кроме того, LCU 90 может направлять задающий генератор 88 лазерного излучения, чтобы вырабатывать первое множество импульсов лазерного излучения, направленных в первое местоположение, и первое сгорание от состояния покоя может принимать энергию лазерного излучения из задающего генератора 88 лазерного излучения, которая является большей, чем энергия лазерного излучения, выдаваемая в первое местоположение для более поздних сгораний.

Контроллер 12 управляет LCU 90 и имеет несъемный машинно-читаемый запоминающий носитель, включающий в себя машинную программу для настройки местоположения подачи энергии лазерного излучения на основании температуры, например ЕСТ. Энергия лазерного излучения может направляться в разные местоположения внутри цилиндра 30. Контроллер 12 также может заключать в себе дополнительные или альтернативные датчики для определения режима работы двигателя 20, в том числе дополнительные датчики температуры, датчики давления, датчики крутящего момента, а также датчики, которые выявляют частоту вращения двигателя, количество воздуха и величину впрыска топлива. Дополнительно или в качестве альтернативы, LCU 90 может поддерживать прямую связь с различными датчикам, такими как датчики температуры для выявления ЕСТ, для определения режима работы двигателя 20.

Как описано выше, фиг. 2 показывает один цилиндр многоцилиндрового двигателя, и каждый цилиндр может подобным образом включать в себя свой собственный набор впускных/выпускных клапанов, топливную форсунку, лазерную систему зажигания и т.д.

При отсутствии воспламенения топливовоздушной смеси на высокой мощности лазерная система 92 может испускать импульсы низкой мощности для точного измерения расстояния от верхней части цилиндра до поршня или, что касается CID, для определения, находятся ли впускные и/или выпускные клапаны в открытом или закрытом положении. Например два имеющихся в готовом виде лазерных изделия массового производства точно измеряют расстояния от 2 дюймов до более чем 100 футов с точностью в пределах 1/8 дюйма (Johnson Level & Tool Mfg. Col, Inc., Mequon, WI; and DeWalt Industrial Tool Col, Baltimore, MD). Фиг. 3а и 3b показывают примерные операции лазерной системы 92, которая включает в себя задающий генератор 88 лазерного излучения, систему 94 обнаружения и LCU 90. LCU 90 побуждает задающий генератор 88 лазерного излучения вырабатывать лазерный импульс низкой энергии, показанный под 302, который может направляться в направлении верхней поверхности 313 поршня 36. После испускания световая энергия может отражаться от поршня и детектироваться датчиком 94. LCU 90 может принимать операционные команды, такие как режим мощности, из контроллера 12. Например, во время воспламенения используемый лазерный импульс может подвергаться быстрой пульсации с высокой энергоемкостью, чтобы воспламенять топливовоздушную смесь. Наоборот, для определения положения двигателя, контроллер может управлять лазерной системой, чтобы раскачивать частоту с низкой энергоемкостью, чтобы определять положение поршня и идентифицировать одно или более положений клапана. Например, частотная модуляция лазера с периодически повторяющимся линейным изменением частоты может предоставлять возможность определения одного или более положений поршня в двигателе. Датчик 94 обнаружения может быть расположен в верхней части цилиндра в качестве части лазерной системы и может быть калиброван, чтобы принимать обратный импульс 304, отраженный от верхней поверхности 313 поршня 36.

Фиг. 3а и 3b иллюстрируют, каким образом лазерная система 92 может испускать импульсы в направлении поршня 36 в цилиндре 30, описанном выше со ссылкой на фиг. 2. Импульсы, испускаемые лазерной системой 92, например импульс 302, показанный на фиг. 3а, могут направляться в направлении верхней поверхности 313 поршня 36. Импульс 302 может отражаться от верхней поверхности поршня и обратный импульс, например импульс 304, может приниматься лазерной системой 92, который может использоваться для определения положения поршня 36 внутри цилиндра 30.

В некоторых примерах расположение поршня может определяться способами модуляции частоты f c использованием частотно модулированных лазерных пучков с периодически повторяющимся линейным изменением частоты. В качестве альтернативы, способы фазового сдвига могут использоваться для определения расстояния. Посредством обнаружения доплеровского сдвига или посредством сравнения образцовых положений в два разных момента времени, может логически выводиться информация о положении, скорости поршня и числе оборотов двигателя (измерение RPM). Положения впускного клапана 352 и/или выпускного клапана 354 также могут определяться с использованием лазерной системы. Когда CID комбинируется с положением поршня, положение двигателя может определяться и использоваться для синхронизации подачи топлива и установки фаз газораспределения. Такие позиционные состояния двигателя могут быть основаны на положениях поршней и CID, определенных посредством лазеров.

Контроллер 12, кроме того, может управлять LCU 90 и включать в себя постоянный машинно-читаемый запоминающий носитель, включающий в себя управляющую программу для настройки местоположения подачи энергии лазерного излучения на основании условий эксплуатации, например на основании положения поршня 36 относительно ВМТ. Контроллер 12 также может заключать в себе дополнительные или альтернативные датчики для определения режима работы двигателя 20, в том числе дополнительные датчики температуры, датчики давления, датчики крутящего момента, а также датчики, которые выявляют частоту вращения двигателя, количество воздуха и величину впрыска топлива, как описано выше со ссылкой на фиг. 2. Дополнительно или в качестве альтернативы, LCU 90 может непосредственно поддерживать связь с различными датчикам, такими как датчики 118 на эффекте Холла, чье включение в состав может быть необязательным, для определения режима работы двигателя 20.

Лазерная система может использоваться для измерения положения кулачков, например, посредством блокирования испускаемых импульсов во время определенных тактов цикла двигателя. Например, в одном из вариантов осуществления лазерная система 92 может быть расположена возле впускного клапана 352, таким образом, измерение положения поршня внутри цилиндра предотвращается во время такта впуска ездового цикла. Во время такта впуска клапан 352 открывается в камеру и блокирует испускаемые лазерные импульсы от отражения от верхней поверхности поршня 313. Например, на фиг. 3b, так как лазерная система 92 размещена в непосредственной близости от впускного клапана 352, когда цилиндр 30 находится в