Вибрационный расходомер, а также способы и диагностика для поверки измерителя

Иллюстрации

Показать все

Изобретение относится к способам и диагностике для поверки измерителей в вибрационных расходомерах. Вибрационный расходомер (5) для поверки измерителя включает в себя: измерительную электронику (20), соединенную с первым и вторым тензометрическими датчиками (170L, 170R) и соединенную с приводом (180), при этом измерительная электроника (20) выполнена с возможностью: возбуждать колебания сборки (10) расходомера в одномодовом режиме с помощью привода (180), определять ток (230) одномодового режима привода (180) и определять первое и второе напряжения (231) отклика, генерируемые соответственно первым и вторым тензометрическими датчиками (170L, 170R), вычислять амплитудно-частотные характеристики для упомянутых определенных первого и второго напряжений (231) отклика на основе упомянутого определенного тока (230) одномодового режима, аппроксимировать генерируемые амплитудно-частотные характеристики моделью с вычетом в полюсе и поверять надлежащую работу вибрационного расходомера (5) с использованием значения (216) жесткости измерителя, остаточной упругости (218) и массы (240) измерителя в вариантах осуществления. Технический результат – улучшение выявления изменения калибровочного коэффициента расхода и в минимизации вероятности ложных тревог благодаря улучшенной диагностике. 6 н. и 42 з.п. ф-лы, 18 ил.

Реферат

Область техники

Настоящее изобретение относится к измерительной электронике и, более конкретно, к способам и диагностике для поверки измерителей в вибрационных расходомерах.

Постановка задачи

Вибрационные трубопроводные датчики, такие как массовые расходомеры Кориолиса или вибрационные трубопроводные плотномеры, как правило, работают посредством регистрации движения колеблющегося трубопровода с протекающим по нему материалом. Свойства, относящиеся к материалу в трубопроводе, такие как массовый расход, плотность и т.п., могут определяться с помощью обработки измерительных сигналов, принимаемых от преобразователей движения, связанных с трубопроводом. На режимы колебаний вибрирующей системы, наполненной материалом, обычно влияют комбинированные характеристики массы, жесткости и затухания колебаний вмещающего трубопровода и содержащегося в нем материала.

Трубопровод вибрационного расходомера может включать в себя одну или более расходомерных трубок. Расходомерную трубку заставляют колебаться на резонансной частоте, причем резонансная частота этой трубки пропорциональна плотности находящейся в ней текучей среды. Датчики, расположенные на впускной и выпускной секциях трубки, измеряют относительные колебания между концами трубки. При потоке колеблющаяся трубка и протекающая масса ввиду действия сил Кориолиса представляют одно целое, что приводит к фазовому сдвигу в колебаниях между концами трубки. Этот фазовый сдвиг прямо пропорционален массовому расходу.

Типовой массовый расходомер Кориолиса включает в себя один или более трубопроводов, которые встроены в магистраль или другую транспортную систему и переносят в ней материал, например, текучие среды, суспензии и т.п. Каждый трубопровод может рассматриваться в качестве имеющего набор режимов собственных колебаний, среди которых имеются, к примеру, простые изгибные, крутильные, радиальные и связанные колебания. При типовом применении измерения массового расхода Кориолиса трубопровод с текущим по нему материалом возбуждают в одном или более режимов колебаний и измеряют соответствующее движение трубопровода в разнесенных по трубопроводу точках. Возбуждение, как правило, обеспечивается исполнительным механизмом, например, электромеханическим устройством по типу привода с линейной обмоткой, которое периодически возмущает трубопровод. Удельный массовый расход может определяться с помощью измерения времени запаздывания или разности фаз между колебаниями в местоположениях преобразователей. Два таких преобразователя (или тензометрических датчика) обычно используются для измерения ответных колебаний расходомерного трубопровода или трубопроводов и, как правило, располагаются в положениях выше и ниже по течению относительно исполнительного механизма. С помощью кабельной проводки указанные тензометрические датчики подключаются к электронной измерительной аппаратуре. Измерительная аппаратура принимает от этих двух тензометрических датчиков сигналы и обрабатывает их для получения результата измерения удельного массового расхода.

Разность фаз между сигналами двух датчиков зависит от удельного массового расхода материала, протекающего через расходомерную трубку или расходомерные трубки. Удельный массовый расход материала пропорционален времени запаздывания между сигналами двух датчиков, и, следовательно, удельный массовый расход может быть определен путем умножения времени запаздывания на калибровочный коэффициент расхода (FCF), где время запаздывания определяется разностью фаз, деленной на частоту. FCF отражает свойства материала и свойства поперечного сечения расходомерной трубки. В предшествующем уровне техники FCF определяется с помощью процесса калибровки до установки расходомера в магистраль или другой трубопровод. В процессе калибровки текучую среду пропускают через расходомерную трубку при заданном удельном расходе и рассчитывают коэффициент пропорциональности (FCF) между разностью фаз или временем запаздывания и удельным расходом.

Одним из преимуществ расходомера Кориолиса является то, что точность измерения удельного массового расхода не подвергается влиянию износа движущихся деталей расходомера. Удельный расход определяется путем умножения разности фаз или времени запаздывания между двумя точками расходомерной трубки на калибровочный коэффициент расхода. Единственными входными данными являются поступающие от датчиков синусоидальные сигналы, которые отражают колебания двух точек расходомерной трубки. Соответствующая разность фаз вычисляется по этим синусоидальным сигналам. Колеблющаяся расходомерная трубка не содержит движущихся деталей. Поэтому измерение разности фаз и калибровочного коэффициента расхода не подвергается влиянию износа движущихся деталей расходомера.

Проблема заключается в том, что расходомерные трубки со временем могут изменяться, и начальная заводская калибровка также может изменяться по мере того, как расходомерные трубки подвергаются коррозии, эрозии или иным изменениям. Как следствие, жесткость расходомерной трубки может отклоняться от начального репрезентативного значения жесткости (или первоначально измеренного значения жесткости) в течение срока службы вибрационного расходомера.

Измерение удельного массового расхода может осуществляться согласно следующей формуле:

Параметр (Δt) содержит оперативно получаемое (т.е. измеряемое) значение времени запаздывания, которое существует между сигналами тензометрических датчиков, например, ввиду кориолисовых эффектов, влияющих на удельный массовый поток через вибрационный расходомер 5. Измеряемый параметр (Δt) по сути и определяет удельный массовый расход материала, протекающего через вибрационного расходомер 5. Параметр (Δt0) отвечает времени запаздывания при калибровочном коэффициенте нулевого расхода. Параметр (Δt0), как правило, определяется на заводе-изготовителе и содержится в программе вибрационного расходомера 5. Время запаздывания при нулевом расходе (Δt0) не изменится даже ввиду изменений условий потока. Параметр (FCF) пропорционален жесткости расходомера. Параметр (FCF) содержит калибровочный коэффициент расхода и обычно содержит геометрический коэффициент (G), модуль Юнга (E) и момент инерции (I), где:

FCF=G*E*I (2)

Геометрический коэффициент (G) для вибрационного расходомера является фиксированным и не меняется. Модуль Юнга (Е) также не меняется. Момент инерции (I), напротив, является компонентом FCF, который может изменяться.

Массовые расходомеры Кориолиса с большим успехом применяются в самых разнообразных отраслях промышленности. Однако, расходомеры Кориолиса наряду с большинством других расходомеров могут страдать от накопления отложений, оставляемых технологической средой. В данной области техники это накопление, как правило, называют «налетом». В зависимости от характеристик технологической среды образующийся налет (покрытие) может влиять или не влиять на работу и точность расходомера. Например, плотность налета может быть отлична от плотности технологической среды. Это может негативно сказываться на показаниях плотности, получаемых от расходомера. При определенных технологических средах налет внутри расходомера может нарастать до определенной толщины, а затем отламываться в виде мелких хлопьев. Эти мелкие хлопья могут повлиять на другие части процесса, связанные с расходомером. В крайнем случае достаточно толстый налет может привести к забиванию расходомера, что потребует полного выключения или в некоторых случаях полной замены расходомера.

Другие проблемы могут быть вызваны налетом, забиванием, непоследовательными композициями технологических сред, изменением температуры технологической среды и т.д. Например, в лакокрасочной промышленности один и тот же расходомер может быть использован для нескольких цветов краски. Поэтому, даже несмотря на то, что налет может и не приводить к ошибкам показаний измерителя, он может негативно сказываться на конечном продукте.

Ввиду вышеуказанных проблем наряду с другими проблемами, вызванными налетом, желательно своевременно диагностировать образование налета в расходомере. Диагностические способы предшествующего уровня техники по обнаружению налета в расходомере обладают рядом недостатков. Предшествующий уровень техники ограничен в тех случаях, когда плотность налета, по существу, близка к плотности технологической среды. В этих случаях обнаружение налета по плотности не представляется возможным. Кроме того, для тех приложений, про которые известно, что технологическая среда оставляет в расходомере налет, желательно в процессе чистки расходомера иметь возможность определять, когда налет в измерителе удален полностью.

В связи с этим в данной области техники существует потребность в усовершенствованной поверке измерителя, включающей диагностику для обнаружения налета, которая преодолевает вышеуказанные ограничения. Кроме того, существует потребность в усовершенствованной поверке расходомера, включающей диагностику, которая могла бы легко подтвердить обслуживающему оператору, какое именно повреждение, эрозия, коррозия или другое повреждение измерителя, произошло с конкретным расходомером и связана ли погрешность измерения расхода с данной эрозией, коррозией или другим повреждением расходомерной трубки.

Кроме того, в данной области техники существует потребность в улучшенном выявлении изменения калибровочного коэффициента расхода и в минимизации вероятности ложных тревог благодаря улучшенной диагностике и поверке измерителя.

Сущность изобретения

Настоящее изобретение преодолевает вышеизложенные проблемы и совершенствует данную область техники путем обеспечения измерительной электроники для поверки измерителя, включающей диагностику. Преимущественно, настоящее изобретение позволяет диагностическим параметрам поверки предоставлять результат типа «годен/не годен» по отношению к проблемам, связанным с налетом, эрозией, коррозией и другими повреждениями измерителя.

Кроме того, настоящее изобретение совершенствует данную область техники благодаря надежному выявлению изменения калибровочного коэффициента расхода и минимизации вероятности ложных тревог с помощью улучшенной поверки и диагностики измерителей.

Аспекты изобретения

В соответствии с одним из аспектов настоящего изобретения вибрационный расходомер для поверки измерителя содержит: сборку расходомера, включающую в себя одну или более расходомерных трубок и первый и второй тензометрические датчики; привод, выполненный с возможностью возбуждать колебания одной или более расходомерных трубок; и измерительную электронику, соединенную с первым и вторым тензометрическими датчиками и соединенную с приводом, при этом измерительная электроника выполнена с возможностью: возбуждать колебания сборки расходомера в одномодовом режиме с помощью привода, определять ток одномодового режима привода и определять первое и второе напряжения отклика, генерируемые соответственно первым и вторым тензометрическими датчиками, вычислять амплитудно-частотные характеристики для определенных первого и второго напряжений отклика на основе определенного тока одномодового режима, аппроксимировать генерируемые амплитудно-частотные характеристики моделью c вычетом в полюсе для вычисления жесткости измерителя и поверять надлежащую работу вибрационного расходомера, используя значение жесткости измерителя.

Предпочтительно значение жесткости измерителя включает в себя поправку на плотность.

Предпочтительно поправка на плотность включает в себя вычисление ожидаемой жесткости.

Предпочтительно значение жесткости измерителя включает в себя поправку на давление.

Предпочтительно операция поверки вибрационного расходомера, использующая значение жесткости измерителя, включает в себя определение разности между значением жесткости измерителя и базовым значением жесткости измерителя, при этом определяемая разность сравнивается с предварительно заданным диапазоном жесткости.

Предпочтительно измерительная электроника дополнительно выполнена с возможностью сравнения значения жесткости измерителя с предварительно заданным диапазоном жесткости, генерирования индикации поверки вибрационного расходомера, если значение жесткости измерителя находится в пределах предварительно заданного диапазона жесткости, и генерирования индикации отсутствия поверки вибрационного расходомера, если значение жесткости измерителя находится за пределами предварительно заданного диапазона жесткости.

Предпочтительно измерительная электроника дополнительно выполнена с возможностью вычисления разности значений жесткости измерителя на первом и втором тензометрических датчиках и поверки надлежащей работы вибрационного расходомера с использованием вычисленной разности значений жесткости измерителя.

Предпочтительно операция поверки вибрационного расходомера, использующая вычисленную разность значений жесткости измерителя, включает в себя: определение разности между вычисленной разностью значений жесткости измерителя и базовой разностью значений жесткости измерителя, при этом определяемая разность сравнивается с предварительно заданным диапазоном разности значений жесткости.

Предпочтительно измерительная электроника дополнительно выполнена с возможностью сравнения вычисленной разности значений жесткости измерителя с предварительно заданным диапазоном разности значений жесткости, генерирования индикации поверки вибрационного расходомера, если вычисленная разность значений жесткости измерителя находится в пределах предварительно заданного диапазона разности значений жесткости, и генерирования индикации отсутствия поверки вибрационного расходомера, если вычисленная разность значений жесткости измерителя находится за пределами предварительно заданного диапазона разности значений жесткости.

В соответствии с одним из аспектов настоящего изобретения вибрационный расходомер для поверки измерителя содержит: сборку расходомера, включающую в себя одну или более расходомерных трубок и первый и второй тензометрические датчики; привод, выполненный с возможностью возбуждать колебания одной или более расходомерных трубок; и измерительную электронику, соединенную с первым и вторым тензометрическими датчиками и соединенную с приводом, при этом измерительная электроника выполнена с возможностью: возбуждать колебания сборки расходомера в одномодовом режиме с помощью привода, определять ток одномодового режима привода и определять первое и второе напряжения отклика, генерируемые соответственно первым и вторым тензометрическими датчиками, вычислять амплитудно-частотные характеристики для определенных первого и второго напряжений отклика на основе определенного тока одномодового режима, аппроксимировать генерируемые амплитудно-частотные характеристики моделью c вычетом в полюсе для остаточной упругости и поверять надлежащую работу вибрационного расходомера, используя значение остаточной упругости.

Предпочтительно операция поверки вибрационного расходомера, использующая значение остаточной упругости, включает в себя определение разности между значением остаточной упругости и базовым значением остаточной упругости, при этом определяемая разность сравнивается с предварительно заданным диапазоном остаточной упругости.

Предпочтительно измерительная электроника дополнительно выполнена с возможностью сравнения значения остаточной упругости с предварительно заданным диапазоном остаточной упругости, генерирования индикации поверки вибрационного расходомера, если значение остаточной упругости находится в пределах предварительно заданного диапазона остаточной упругости, и генерирования индикации отсутствия поверки вибрационного расходомера, если значение остаточной упругости находится за пределами предварительно заданного диапазона остаточной упругости.

Предпочтительно измерительная электроника дополнительно выполнена с возможностью вычисления разности значений остаточной упругости на первом и втором тензометрических датчиках и поверки надлежащей работы вибрационного расходомера с использованием вычисленной разности значений остаточной упругости.

Предпочтительно при этом операция поверки вибрационного расходомера, использующая вычисленную разность значений остаточной упругости, включает в себя: определение разности между вычисленной разностью значений остаточной упругости и базовой разностью значений остаточной упругости, при этом определяемая разность сравнивается с предварительно заданным диапазоном разности значений остаточной упругости.

Предпочтительно измерительная электроника дополнительно выполнена с возможностью: сравнения вычисленной разности значений остаточной упругости с предварительно заданным диапазоном разности значений остаточной упругости, генерирования индикации поверки вибрационного расходомера, если вычисленная разность значений остаточной упругости находится в пределах предварительно заданного диапазона разности значений остаточной упругости, и генерирования индикации отсутствия поверки вибрационного расходомера, если вычисленная разность значений остаточной упругости находится за пределами предварительно заданного диапазона разности значений остаточной упругости.

В соответствии с одним из аспектов настоящего изобретения вибрационный расходомер для поверки измерителя содержит: сборку расходомера, включающую в себя одну или более расходомерных трубок и первый и второй тензометрические датчики; привод, выполненный с возможностью возбуждать колебания одной или более расходомерных трубок; и измерительную электронику, соединенную с первым и вторым тензометрическими датчиками и соединенную с приводом, при этом измерительная электроника выполнена с возможностью: возбуждать колебания сборки расходомера в одномодовом режиме с помощью привода, определять ток одномодового режима привода, а также первое и второе напряжения отклика, генерируемые соответственно первым и вторым тензометрическими датчиками, вычислять амплитудно-частотные характеристики для определенных первого и второго напряжений отклика на основе определенного тока одномодового режима, аппроксимировать генерируемые амплитудно-частотные характеристики моделью c вычетом в полюсе для вычисления значения массы измерителя и поверять надлежащую работу вибрационного расходомера, используя значение массы измерителя.

Предпочтительно измерительная электроника дополнительно выполнена с возможностью вычисления разности значений массы измерителя на первом и втором тензометрических датчиках и поверки надлежащей работы вибрационного расходомера с использованием вычисленной разности значений массы измерителя.

Предпочтительно операция поверки вибрационного расходомера, использующая вычисленную разность значений массы измерителя, включает в себя: определение разности между вычисленной разностью значений массы измерителя и базовой разностью значений массы измерителя, при этом определяемая разность сравнивается с предварительно заданным диапазоном разности значений массы.

Предпочтительно измерительная электроника дополнительно выполнена с возможностью сравнения вычисленной разности значений массы измерителя с предварительно заданным диапазоном разности значений массы, генерирования индикации поверки вибрационного расходомера, если вычисленная разность значений массы измерителя находится в пределах предварительно заданного диапазона разности значений массы, и генерирования индикации отсутствия поверки вибрационного расходомера, если вычисленная разность значений массы измерителя находится за пределами предварительно заданного диапазона разности значений массы.

Предпочтительно измерительная электроника дополнительно выполнена с возможностью использования плотности текучей среды для вычисления ожидаемого отклонения массы на первом и втором тензометрических датчиках и поверки надлежащей работы вибрационного расходомера с использованием ожидаемого отклонения массы.

Предпочтительно при этом плотность текучей среды включает в себя по меньшей мере одну из измеренной плотности текучей среды и введенной ожидаемой плотности текучей среды.

Предпочтительно измерительная электроника дополнительно выполнена с возможностью вычисления разности значений ожидаемого отклонения массы на первом и втором тензометрических датчиках и поверки надлежащей работы вибрационного расходомера с использованием вычисленной разности значений ожидаемого отклонения массы.

Предпочтительно при этом операция поверки вибрационного расходомера, использующая вычисленную разность значений ожидаемого отклонения массы, включает в себя: определение разности между вычисленной разностью значений ожидаемого отклонения массы и базовой разностью значений ожидаемого отклонения массы, при этом определяемая разность сравнивается с предварительно заданным диапазоном разности значений ожидаемого отклонения массы.

Предпочтительно измерительная электроника дополнительно выполнена с возможностью сравнения вычисленной разности значений ожидаемого отклонения массы с предварительно заданным диапазоном разности значений ожидаемого отклонения массы, генерирования индикации поверки вибрационного расходомера, если вычисленная разность значений ожидаемого отклонения массы находится в пределах предварительно заданного диапазона разности значений ожидаемого отклонения массы, и генерирования индикации отсутствия поверки вибрационного расходомера, если вычисленная разность значений ожидаемого отклонения массы находится за пределами предварительно заданного диапазона разности значений ожидаемого отклонения массы.

В соответствии с одним из аспектов настоящего изобретения способ поверки измерителя для вибрационного расходомера включает в себя: возбуждение колебаний сборки вибрационного расходомера в одномодовом режиме с помощью привода; определение тока одномодового режима привода, а также определение первого и второго напряжений отклика на одномодовый режим, генерируемых соответственно первым и вторым тензометрическими датчиками; вычисление амплитудно-частотных характеристик для определенных первого и второго напряжений отклика на основе определенного тока одномодового режима; аппроксимацию генерируемых амплитудно-частотных характеристик моделью c вычетом в полюсе для получения жесткости измерителя; и поверку надлежащей работы вибрационного расходомера с использованием значения жесткости измерителя.

Предпочтительно значение жесткости измерителя включает в себя поправку на плотность.

Предпочтительно при этом поправка на плотность включает в себя вычисление ожидаемой жесткости.

Предпочтительно при этом значение жесткости измерителя включает в себя поправку на давление.

Предпочтительно при этом операция поверки вибрационного расходомера, использующая значение жесткости измерителя, включает в себя определение разности между значением жесткости измерителя и базовым значением жесткости измерителя, при этом определяемая разность сравнивается с предварительно заданным диапазоном жесткости.

Предпочтительно измерительная электроника дополнительно содержит: сравнение значения жесткости измерителя с предварительно заданным диапазоном жесткости, генерирование индикации поверки вибрационного расходомера, если значение жесткости измерителя находится в пределах предварительно заданного диапазона жесткости, и генерирование индикации отсутствия поверки вибрационного расходомера, если значение жесткости измерителя находится за пределами предварительно заданного диапазона жесткости.

Предпочтительно измерительная электроника дополнительно содержит: вычисление разности значений жесткости расходомера на первом и втором тензометрических датчиках и поверку надлежащей работы вибрационного расходомера с использованием вычисленной разности значений жесткости измерителя.

Предпочтительно при этом операция поверки вибрационного расходомера, использующая вычисленную разность значений жесткости измерителя, включает в себя: определение разности между вычисленной разностью значений жесткости измерителя и базовой разностью значений жесткости измерителя, при этом определяемая разность сравнивается с предварительно заданным диапазоном разности значений жесткости.

Предпочтительно измерительная электроника дополнительно содержит: сравнение вычисленной разности значений жесткости измерителя с предварительно заданным диапазоном разности значений жесткости, генерирование индикации поверки вибрационного расходомера, если вычисленная разность значений жесткости измерителя находится в пределах предварительно заданного диапазона разности значений жесткости, и генерирование индикации отсутствия поверки вибрационного расходомера, если вычисленная разность значений жесткости измерителя находится за пределами предварительно заданного диапазона разности значений жесткости.

В соответствии с одним из аспектов настоящего изобретения способ поверки измерителя для вибрационного расходомера включает в себя: возбуждение колебаний сборки вибрационного расходомера в одномодовом режиме с помощью привода; определение тока одномодового режима привода, а также определение первого и второго напряжений отклика на одномодовый режим, генерируемых соответственно первым и вторым тензометрическими датчиками; вычисление амплитудно-частотных характеристик для определенных первого и второго напряжений отклика на основе определенного тока одномодового режима; аппроксимацию генерируемых амплитудно-частотных характеристик моделью c вычетом в полюсе для остаточной упругости; и поверку надлежащей работы вибрационного расходомера с использованием значения остаточной упругости.

Предпочтительно при этом операция поверки вибрационного расходомера, использующая значение остаточной упругости, включает в себя определение разности между значением остаточной упругости и базовым значением остаточной упругости, при этом определяемая разность сравнивается с предварительно заданным диапазоном остаточной упругости.

Предпочтительно измерительная электроника дополнительно содержит: сравнение значения остаточной упругости с предварительно заданным диапазоном остаточной упругости, генерирование индикации поверки вибрационного расходомера, если значение остаточной упругости находится в пределах предварительно заданного диапазона остаточной упругости, и генерирование индикации отсутствия поверки вибрационного расходомера, если значение остаточной упругости находится за пределами предварительно заданного диапазона остаточной упругости.

Предпочтительно измерительная электроника дополнительно содержит: вычисление разности значений остаточной упругости на первом и втором тензометрических датчиках и поверку надлежащей работы вибрационного расходомера с использованием вычисленной разности значений остаточной упругости.

Предпочтительно при этом операция поверки вибрационного расходомера, использующая вычисленную разность значений остаточной упругости, включает в себя: определение разности между вычисленной разностью значений остаточной упругости и базовой разностью значений остаточной упругости, при этом определяемая разность сравнивается с предварительно заданным диапазоном разности значений остаточной упругости.

Предпочтительно измерительная электроника дополнительно содержит: сравнение вычисленной разности значений остаточной упругости с предварительно заданным диапазоном разности значений остаточной упругости, генерирование индикации поверки вибрационного расходомера, если вычисленная разность значений остаточной упругости находится в пределах предварительно заданного диапазона разности значений остаточной упругости, и генерирование индикации отсутствия поверки вибрационного расходомера, если вычисленная разность значений остаточной упругости находится за пределами предварительно заданного диапазона разности значений остаточной упругости.

В соответствии с одним из аспектов настоящего изобретения способ поверки измерителя для вибрационного расходомера включает в себя: возбуждение колебаний сборки вибрационного расходомера в одномодовом режиме с помощью привода; определение тока одномодового режима привода, а также определение первого и второго напряжений отклика на одномодовый режим, генерируемых соответственно первым и вторым тензометрическими датчиками; вычисление амплитудно-частотных характеристик для определенных первого и второго напряжений отклика на основе определенного тока одномодового режима; аппроксимацию генерируемых амплитудно-частотных характеристик моделью с вычетом в полюсе для получения значения массы измерителя; и поверку надлежащей работы вибрационного расходомера с использованием значения массы измерителя.

Предпочтительно измерительная электроника дополнительно содержит: вычисление разности значений массы измерителя на первом и втором тензометрических датчиках и поверку надлежащей работы вибрационного расходомера с использованием вычисленной разности значений массы измерителя.

Предпочтительно при этом операция поверки вибрационного расходомера, использующая вычисленную разность значений массы измерителя, включает в себя: определение разности между вычисленной разностью значений массы измерителя и базовой разностью значений массы измерителя, при этом определяемая разность сравнивается с предварительно заданным диапазоном разности значений массы.

Предпочтительно измерительная электроника дополнительно содержит: сравнение вычисленной разности значений массы измерителя с предварительно заданным диапазоном разности значений массы, генерирование индикации поверки вибрационного расходомера, если вычисленная разность значений массы измерителя находится в пределах предварительно заданного диапазона разности значений массы, и генерирование индикации отсутствия поверки вибрационного расходомера, если вычисленная разность значений массы измерителя находится за пределами предварительно заданного диапазона разности значений массы.

Предпочтительно измерительная электроника дополнительно содержит: использование плотности текучей среды для вычисления ожидаемого отклонения массы на первом и втором тензометрических датчиках и поверку надлежащей работы вибрационного расходомера с использованием ожидаемого отклонения массы.

Предпочтительно при этом плотность текучей среды включает в себя по меньшей мере одну из измеренной плотности текучей среды и введенной ожидаемой плотности текучей среды.

Предпочтительно измерительная электроника дополнительно содержит: вычисление разности значений ожидаемого отклонения массы на первом и втором тензометрических датчиках и поверку надлежащей работы вибрационного расходомера с использованием вычисленной разности значений ожидаемого отклонения массы.

Предпочтительно при этом операция поверки вибрационного расходомера, использующая вычисленную разность значений ожидаемого отклонения массы, включает в себя: определение разности между вычисленной разностью значений ожидаемого отклонения массы и базовой разностью значений ожидаемого отклонения массы, при этом определяемая разность сравнивается с предварительно заданным диапазоном разности значений ожидаемого отклонения массы.

Предпочтительно измерительная электроника дополнительно содержит: сравнение вычисленной разности значений ожидаемого отклонения массы с предварительно заданным диапазоном разности значений ожидаемого отклонения массы, генерирование индикации поверки вибрационного расходомера, если вычисленная разность значений ожидаемого отклонения массы находится в пределах предварительно заданного диапазона разности значений ожидаемого отклонения массы, и генерирование индикации отсутствия поверки вибрационного расходомера, если вычисленная разность значений ожидаемого отклонения массы находится за пределами предварительно заданного диапазона разности значений ожидаемого отклонения массы.

Описание чертежей

Одна и та же ссылочная позиция относится к одному и тому же элементу на всех чертежах. Чертежи не обязательно выполнены в масштабе.

На фиг.1 показан вибрационный расходомер для поверки измерителя в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.2 показана измерительная электроника для поверки измерителя вибрационного расходомера в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.3 представлен график амплитудно-частотной характеристики, иллюстрирующей влияние остаточной упругости.

На фиг.4 представлен вибрационный расходомер с изогнутыми расходомерными трубками, в котором две параллельные изогнутые расходомерные трубки колеблются в режиме изгибных колебаний.

На фиг.5 представлена блок-схема способа поверки измерителя для вибрационного расходомера в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.6 представлена блок-схема способа поверки измерителя для вибрационного расходомера в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.7 представлена блок-схема способа поверки измерителя для вибрационного расходомера в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.8 показано графическое представление поверки измерителя в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.9 показано графическое представление поверки измерителя в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.10 показано графическое представление поверки измерителя в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.11 показано графическое представление поверки измерителя в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.12 показано графическое представление поверки измерителя в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.13 показано графическое представление поверки расходомера в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.14 показано графическое представление поверки измерителя в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.15 показано графическое представление поверки измерителя в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.16 показано графическое представление поверки измерителя в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.17 показано графическое представление поверки измерителя в соответствии с одним из вариантов осуществления настоящего изобретения.

На фиг.18 показано графическое представление поверки измерителя в соответствии с одним из вариантов осуществления настоящего изобретения.

Подробное описание изобретения

Фиг.1-18 и последующее описание иллюстрируют конкретные примеры, после изучения которых специалисты в данной области техники смогут реализовать и использовать наилучший вариант осуществления настоящего изобретения. С целью обучения принципам настоящего изобретения некоторые упомянутые аспекты были упрощены или опущены. Специалистам в данной области техники должно быть понятно, какие варианты на основе этих примеров попадают под объем настоящего изобретения. Специали