Изделие(я) с мягким нетканым полотном
Иллюстрации
Показать всеПредлагается изделие, включающее мягкое нетканое полотно. Изделие содержит проницаемый для жидкости слой; непроницаемый для жидкости слой; абсорбирующую сердцевину, расположенную между упомянутым проницаемым для жидкости слоем и упомянутым непроницаемым для жидкости слоем; и нетканое полотно, содержащее: по меньшей мере первый слой волокон, изготовленных из первой композиции, содержащей пропиленовый сополимер; и по меньшей мере второй слой волокон, изготовленных из второй композиции, при этом упомянутая вторая композиция содержит количество пропиленового сополимера в процентах по весу от веса упомянутой второй композиции, отличное от количества упомянутого пропиленового сополимера в процентах по весу от веса упомянутой первой композиции, по меньшей мере один промежуточный волокнистый слой, расположенный между упомянутыми первым и вторым волокнистыми слоями, при этом упомянутый промежуточный волокнистый слой содержит волокна, изготовленные из третьей композиции, и при этом упомянутое нетканое полотно имеет показатель свойств материала, составляющий по меньшей мере 2. 18 з.п. ф-лы, 9 ил., 5 табл.
Реферат
Область техники
Настоящее изобретение в целом относится к изделиям промышленного изготовления, которые включают нетканое полотно, имеющее хорошие осязательные и механические характеристики.
Уровень техники
Как известно, для изготовления различных изделий используются нетканые полотна. Нетканые полотна являются особенно полезными для изготовления из них по меньшей мере одного из многочисленных компонентов, из которых формируется готовое изделие. Многие типы нетканых полотен, используемых для изготовления потребительских товаров, изготавливают из различных полимеров, например, из полиолефинов. Одним из преимуществ, которые дает использование нетканых полотен из полиолефинов, является то, что такие полотна могут улучшать осязательные характеристики изделия, то есть, пользователь или потребитель такого изделия будет ощущать его более мягким. Полимеры, используемые для изготовления нетканых полотен, имеют ряд характерных свойств. Известно, что нетканые полотна, содержащие волокна, изготовленные из определенных смесей полиолефинов, например, из смеси полипропилена, пропиленового сополимера и добавки, усиливающей мягкость, ощущаются значительно более мягкими, чем нетканые полотна, содержащие волокна, изготовленные только из одного полипропилена. Такого типа более мягкие нетканые полотна, как правило, изготовлены с использованием непрерывных процессов укладки волокон, таких, как, например, кардование, аэродинамическая укладка или процесс спанбонд. По окончании процесса его изготовления нетканое полотно может быть смотано в рулон. Рулон нетканого полотна может быть перемещен в другое место, например, на производственную площадку изготовления изделий, на которой нетканое полотно разматывают из рулона для изготовления из него по меньшей мере одного элемента конечного продукта. При этом нетканое полотно подвергается относительно высокому натяжению в направлении движения в машине, в частности, чтобы размотать его и обеспечить дальнейшую его транспортировку по технологической линии. Такое натяжение в направлении движения в машине вызывает эффект, именуемый «сужением» полотна. Сужение вызывается уменьшение размера полотна, измеренного в поперечном направлении (то есть, в направлении, перпендикулярном направлению движения полотна в машине). Несмотря на то, что сужение может использоваться в некоторых приложениях, оно может также иметь и отрицательные последствия в виде повышения себестоимости конечного продукта и ухудшения обрабатываемости материала. В частности, отмечается, что нетканое полотно, содержащее волокна, изготовленные из определенных смесей полиолефинов, например, из смеси полипропилена, пропиленового сополимера и добавки, усиливающей мягкость, подвержено сужению, степень которого выше допустимой.
Поэтому целью настоящего изобретения является обеспечить изделие, которое включает нетканое полотно, имеющее хорошие осязательные характеристики, в частности, хорошую мягкость на ощупь, и в меньшей степени подверженное сужению.
Можно ожидать, что цель настоящего изобретения может быть достигнута путем включения в изделие нетканого полотна, имеющего по меньшей мере два волокнистых слоя, скрепленных друг с другом в местах скрепления, включая первый слой, который включает волокна, изготовленные из первой композиции, содержащей смесь полипропилена, пропиленового сополимера и добавки, усиливающей мягкость, и по меньшей мере второй слой, который включает волокна, изготовленные из второй композиции, в результате чего второй слой имеет механические свойства, отличные от свойств первого слоя.
Сущность изобретения
В одном из воплощений изобретения предлагается изделие, содержащее проницаемый для жидкости слой, непроницаемый для жидкости слой и абсорбирующую сердцевину, расположенную между упомянутыми проницаемым для жидкости слоем и непроницаемым для жидкости слоем. Кроме того, изделие включает нетканое полотно, содержащее по меньшей мере первый слой волокон, изготовленных из первой композиции, содержащей пропиленовый сополимер и по меньшей мере второй слой волокон, изготовленных из второй композиции. Вторая композиция содержит пропиленовый сополимер в количестве в процентах по весу от веса второй композиции, отличном от количества пропиленового сополимера в процентах по весу от веса первой композиции. Нетканое полотно имеет показатель свойств материала, составляющий по меньшей мере 2.
Краткое описание чертежей
Фиг.1 - схематический разрез нетканого полотна в соответствии с одним из воплощений настоящего изобретения.
Фиг. 2 - схематический разрез нетканого полотна в соответствии с еще одним воплощением настоящего изобретения.
Фиг. 3 - схематический вид технологического процесса, который может использоваться для изготовления одного из воплощений нетканого полотна в соответствии с настоящим изобретением.
Фиг. 4А-4С - схематические изображения структур скрепления, которые могут быть сформированы в нетканом полотне в соответствии с настоящим изобретением.
Фиг. 5А и 5В - увеличенные изображения двух подгузников, включающих наружный покровный слой, изготовленный из двух различных материалов в соответствии с настоящим изобретением.
Фиг. 6 - схематический разрез изделия, включающего одно из воплощений нетканого полотна в соответствии с одним из воплощений настоящего изобретения.
Подробное описание изобретения
В контексте настоящего описания термины «удлиняемый материал» и «растяжимый материал» используются как взаимно заменяющие друг друга и означают материал, который после приложения к нему упругого усилия может быть растянут до длины, составляющей по меньшей мере 150% его длины в нерастянутом (исходном) состоянии (то есть, может быть растянут на величину, составляющую 50% или более от его исходной длины), без наступления полного разрыва или иного разрушения материала, по результатам теста на растяжение, который будет более подробно описан ниже. В случае, если такой растяжимый материал после снятия приложенной к нему силы сокращается на величину, составляющую по меньшей мере 40% величины его удлинения, то такой растяжимый материал может считаться «эластичным» или «эластомерным». Так, например, эластичный материал, имеющий исходную длину 100 мм, может быть растянут до длины по меньшей мере 150 мм и после снятия растягивающего усилия сокращается до длины не более 130 мм (что соответствуют сокращению на 40%). В случае, если материал сокращается менее чем на 40% величины его удлинения после снятия приложенной силы, то такой растяжимый материал считается «в сущности не эластичным» или «в сущности не эластомерным». Так, например, растяжимый, но не эластичный материал, имеющий исходную длину 100 мм, может быть растянут до длины по меньшей мере 150 мм и после снятия растягивающего усилия может сократиться до длины 145 мм (в данном случае сокращение составляет 10%).
В контексте настоящего описания термин «пленка» означает относительно не пористый материал, изготавливаемый с использованием технологического процесса, включающего экструдирование, например, полимерного, материала через относительно узкую прорезь мундштука. Пленка может быть непроницаемой для жидкости, но проницаемой для воздуха или пара (но необязательно). Подходящие примеры материалов в форме пленки будут более подробно описаны ниже.
В контексте настоящего описания термин «слой» обозначает суб-компонент (элемент) полотна. «Слой» может иметь форму множества волокон, вырабатываемых на одном ряду мундштуков или укладываемых на одном этапе укладки волокон при использовании прядильной машины с несколькими рядами мундштуков (например, нетканое полотно типа «спанбонд/волокна, выдуваемые из расплава/спанбонд», включает по меньшей мере один слой волокон «спанбонд», по меньшей мере один слой волокон, выдуваемых из расплава, и по меньшей мере еще один слой волокон «спанбонд»), или форму пленки, экструдируемой или выдуваемой из одного мундштука. Состав слоя может быть определен, исходя из известных компонентов смолы, использованной для формирования данного слоя, или аналитически, то есть путем анализа смеси, из которой изготовлены волокна слоя, например, такими методами, как дифференциальная сканирующая калориметрия или ядерный магнитный резонанс.
В контексте настоящего описания термин «направление движения в машине (MD)» означает направление, в сущности параллельное направлению движения полотна в процессе его изготовления. Направления в пределах 45° от направления движения в машине также считаются направлением движения в машине. Термин «поперечное направление (CD)» означает направление, в сущности перпендикулярное направлению MD и лежащее в плоскости, в целом определяемой полотном. Направления в пределах 45° от направления CD также считаются поперечными направлениями.
В контексте настоящего описания термин «волокна, выдуваемые из расплава», означает волокна, изготавливаемые с использованием технологического процесса, в котором расплавленный материал (как правило, полимерный) экструдируют под давлением через отверстия в мундштуке. На выходящие из мундштука волокна падает поток горячего воздуха, имеющий большую скорость и увлекающий волокна за собой, в результате чего волокна удлиняются, уменьшаются в диаметре и ломаются. Таким образом, получаются волокна, имеющие различную, но в большинстве своем конечную длину. В этом состоит отличие от процесса «спанбонд», в котором сохраняется непрерывность волокон по всей их длине. Пример процесса выдувания волокон из расплава описан в патенте США 3,849,241 (Buntin с соавторами).
В контексте настоящего описания термин «нетканое полотно» означает пористый, волокнистый материал, изготовленный из сплошных (длинных) нитей (волокон) и/или прерывистых (коротких) волокон с использованием таких процессов, как спанбонд, выдувание волокон из расплава, кардование, фибрилляция пленок, фибрилляция расплавленных пленок, воздушная укладка, сухая укладка, влажная укладка со штапельными волокнами, а также с использованием сочетаний упомянутых процессов, известных сведущим в данной области техники. Нетканые полотна не имеют структуры из волокон, которую имеют тканые или вязаные полотна. В контексте настоящего описания термин «волокна «спанбонд»» означает волокна, изготавливаемые в технологическом процессе, в котором производится экструдирование расплавленного термопластического материала в виде нитей через множество тонких, как правило, круглого сечения капилляров мундштука, после чего к нитям прилагается растягивающее напряжение, механически или пневматически, и они уменьшаются в толщине (например, нити могут наматываться на натяжной барабан, или они могут увлекаться потоком воздуха). Воздушный поток может обеспечивать быстрое охлаждение нитей до их вытяжения или в процессе их вытяжения. В процессе «спанбонд» непрерывность нитей, как правило, сохраняется. Нити укладывают на сборную поверхность, в результате чего формируется полотно из произвольно ориентированных, в сущности сплошных нитей, которые могут быть впоследствии скреплены друг с другом для формирования из них достаточно прочного нетканого полотна. Примеры процессов «спанбонд» и/или формируемых в них полотен описаны в патентах США 3,338,992; 3,692,613, 3,802,817; 4,405,297 и 5,665,300.
В контексте настоящего описания термин «полотно» означает элемент, который включает по меньшей мере волокнистый слой или по меньшей мере слой пленки, и имеющий достаточную структурную целостность, чтобы его можно было смотать в рулон, транспортировать и проводить дальнейшую его обработку (так, например, рулон полотна может быть размотан, натянут, сложен и/или нарезан в процессе изготовления изделия, содержащего элемент, который включает кусок данного полотна). Для формирования полотна может быть скреплено друг с другом множество слоев.
Без какого-либо намерения ограничить возможные области применения нетканого полотна, описанного в настоящей заявке, авторы полагают, что краткое описание характеристик такого полотна, особенно имеющих отношение к процессу изготовления нетканого полотна, его предполагаемого применения и дальнейшей обработки для изготовления из него изделий, поможет лучше понять настоящее изобретение. При этом подразумевается, что нетканые полотна, подходящие, например, для использования их в качестве элементов таких изделий, как, например, абсорбирующие изделия, упоминаемые в качестве не ограничивающего примера, как правило, включают волокна, изготавливаемые из полиолефиновой смолы. Многие из изделий, включающих такие нетканые полотна, на том или ином этапе их использования вступают в контакт с кожей человека, который может быть пользователем данного изделия или лицом, ухаживающим за пользователем. В течение многих лет производителями ведется поиск нетканых полотен, имеющих хорошие осязательные характеристики, и известно множество таких материалов, которые усиливают ощущения мягкости изделия. Один из примеров таких мягких материалов включает нетканое полотно PEGATEX Softblend производства PEGAS NONWOVENS s.r.o.
Такое нетканое полотно включает три слоя волокон «спанбонд», изготовленных из композиции, содержащей смесь полипропилена с пропиленовым сополимером и добавкой, усиливающей мягкость. Такое нетканое полотно включает также множество мест скрепления, выполненных каландрованием, соединяющих слои друг с другом и обеспечивающих достаточную физическую структурную целостность полотна для его последующей обработки. Несмотря на то, что данный материал имеет хорошие осязательные характеристики, полимерная смесь, используемая для изготовления таких волокон, имеет относительно высокую стоимость. Кроме того, как будет дополнительно обсуждаться ниже, было отмечено, что данный материал подвержен сужению в значительно большей степени, чем другие, более традиционные материалы. И хотя эффект сужения может быть полезным в некоторых приложениях, в большинстве случаев сужение может вызывать рост себестоимости изделия, поскольку потребуется дополнительное количество материала для компенсации уменьшения размера изготавливаемого из него элемента в поперечном направлении. Поскольку производители различных изделий, и в частности, абсорбирующих изделий, постоянно вынуждены искать пути снижения себестоимости продукции и уменьшения количества отходов производства, можно предполагать, что нетканое полотно, предлагаемое в настоящем изобретении, может быть подходящей альтернативой существующим нетканым полотнам. Настоящее изобретение основано на следующих соображениях, которые будут более подробно объяснены ниже.
Так, считается, что степень сужения нетканого полотна по меньшей мере частично связана с прочностью на изгиб и модулем упругости при изгибе полимерной композиции, используемой для изготовления волокон нетканого полотна. Прочность материала на изгиб отражает его способность выдерживать деформации под нагрузкой. Модуль упругости при изгибе является мерой жесткости материала и рассчитывается, как приращение напряжения в материале, деленное на приращение величины его изгиба, на начальном участке кривой зависимости напряжения от изгиба. Для материалов, которые допускают значительную деформацию, но при этом не ломаются, прочностью на изгиб (именуемой также прочностью на изгиб по текучести) считается предельное напряжение, при котором наступает текучесть, и как правило, измеряемое при 5%-ной деформации (величине изгиба) его наружной поверхности. При изгибе испытуемый образец, имеющий форму бруска, испытывает сжимающее напряжение на поверхности, которая становится вогнутой, и растягивающее напряжение на стороне, которая становится выпуклой. Подробно данный способ описан, например, в стандартной методике ASTM D790. Испытание заканчивают, когда изгиб образца достигает 5%, или ранее, если наступает излом образца до достижения 5%-ного изгиба. Данный тест позволяет также измерить модуль упругости при изгибе материала (отношение напряжения к величине деформации изгиба). В Таблице 1 представлены средние значения пределов прочности на изгиб и модуля упругости при изгибе для некоторых полимеров.
Приведенные данные отражают жесткость материалов. Гибкие материалы, в том числе эластомерные и растяжимые материалы (как правило, пропиленовые сополимеры) имеют более низкие значения предела прочности на изгиб и модуля упругости при изгибе, чем обычные полимеры (гомополимеры). Существуют различные способы изменения модуля упругости полимера, получаемого из той или иной смолы. Такие способы включают добавление в смолу наполнителя (например, TiO2), смешение различных смол, имеющих различные свойства, а также использование различных добавок, известных в данной области техники. Ниже будут подробно описаны предпочтительные воплощения изобретения. Приводимое ниже подробное описание будет более понятным из прилагаемых чертежей, на которых аналогичными номерами позиций обозначены одинаковые элементы, а номерами позиций, имеющими две последние одинаковые цифры (например, 20 и 120), обозначены аналогичные элементы.
На фиг. 1 схематически показан разрез одного из воплощений настоящего изобретения. Так, на данном чертеже показано нетканое полотно 10, содержащее нижний волокнистый слой 110 и верхний волокнистый слой 210, укладываемый поверх нижнего волокнистого слоя 110 в процессе изготовления нетканого полотна 10. Верхний и нижний волокнистые слои скрепляют друг с другом в множестве мест 20 скрепления, которые консолидируют нетканое полотно 10 и могут быть получены с использованием любого известного процесса каландрования. Места 20 скрепления (полученные каландрованием) могут иметь любые подходящие формы и размеры и могут быть сформированы в виде повторяющейся структуры. Не ограничивающие примеры подходящих процессов каландрования со скреплением и повторяющихся структур скрепления описаны в патентной заявке США 13/428,404 (Xu с соавторами), поданной 23 марта 2012 года от The Procter & Gamble Company одновременно с настоящей заявкой. Как упоминалось выше, известны нетканые полотна, имеющие множество слоев из волокон, и причем все слои содержат волокна одного и того же состава. Примером такого нетканого полотна является нетканое полотно производства PEGAS NONWOVENS s.r.o., включающее три слоя волокон спанбонд, причем волокна каждого слоя изготовлены из одной и той же полимерной композиции и включают смесь полипропилена, пропиленового сополимера и добавки, усиливающей мягкость. Данная композиция будет более подробно описана ниже. Несмотря на то, что данное нетканое полотно имеет хорошие осязательные характеристики, благодаря которым пользователь будет ощущать изделие, в котором используется такое полотно, действительно мягким, такой материал, как было упомянуто выше, подвержен сужению. Замечено, что степень сужения материала может быть значительно уменьшена, если заменить один из волокнистых слоев нетканого полотна на слой, в котором используются волокна, имеющие состав, отличный от состава волокон остальных слоев. В одном из воплощений верхний волокнистый слой 210 включает волокна, изготовленные из первой композиции, содержащей смесь первого полиолефина, второго полиолефина, отличного от первого полиолефина и содержащего пропиленовый сополимер, и добавки, усиливающей мягкость, а нижний волокнистый слой 110 включает волокна, изготовленные из второй композиции, отличной от первой композиции. В одном из воплощений первый полиолефин первой композиции может быть полиэтиленом или полипропиленом и предпочтительно является полипропиленовым гомополимером. Было определено, что второй полиолефин, содержащий полипропиленовый сополимер, может обеспечивать улучшенные характеристики получаемого нетканого полотна. При этом упомянутый «полипропиленовый сополимер» включает по меньшей мере два различных типа мономерных единиц, одна из которых является пропиленом. Подходящие примеры мономерных единиц включают этилен и более высокие α-олефины в диапазоне С4-С20, например, 1-бутен, 4-метил-1-пентен, 1-гексен, 1-октен, 1-децен или их смеси. Пропилен предпочтительно должен быть сополимеризован с этиленом, так, чтобы пропиленовый сополимер включал пропиленовые единицы (единицы полимерной цепи, полученные из пропиленовых мономеров) и этиленовые единицы (единицы полимерной цепи, полученные из этиленовых мономеров).
Единицы, или сомономеры, полученные из этилена и/или α-олефина С4-С10, как правило, могут присутствовать в количестве от 1% до 35%, или от 5% до примерно 35%, или от 7% до 32%, или от 8% до примерно 25%, или от 8% до 20%, или даже от 8% до 18% по весу от суммарного веса пропилен-α-олефинового сополимера. Содержание сомономера может быть подобрано таким образом, чтобы пропилен-α-олефиновый сополимер имел теплоту плавления (для дифференциальной сканирующей калориметрии), составляющую 75 Дж/г или менее, температуру плавления 100°С или менее, кристалличность, составляющую от 2% до примерно 65% кристалличности изотактического полипропилена, и показатель текучести расплава, составляющий от 0,5 до 90 дг/мин.
В одном из воплощений пропилен-α-олефиновый сополимер содержит этиленовые единицы. Пропилен-α-олефиновый сополимер может содержать от 5% до 35%, или от 5% до 20%, или от 10% до 12%, или от 15% до 20% этиленовых единиц по весу от суммарного веса пропилен-α-олефинового сополимера. В некоторых воплощениях пропилен-α-олефиновый сополимер состоит в сущности из единиц, полученных из пропилена и этилена, то есть, пропилен-α-олефиновый сополимер не содержит никаких других сомономеров в количествах, превышающих количества, которые могут присутствовать, как примеси в потоках этилена и пропилена, подаваемых на реакцию полимеризации, или в количествах, которые могут значимо изменить теплоту плавления, температуру плавления, кристалличность или показатель текучести расплава пропилен-α-олефинового сополимера, или каких-либо прочих сомономеров, намеренно добавляемых в реакцию полимеризации.
Пропилен-α-олефиновый сополимер может иметь триадную тактичность трех пропиленовых единиц, измеренную методом 13С-ЯМР, составляющую по меньшей мере 75%, по меньшей мере 80%, по меньшей мере 82%, по меньшей мере 85%, или по меньшей мере 90%. Показатель триадной тактичности определяется следующим образом. Показатель триадной тактичности, обозначаемый обычно "m/r", определяется методом ядерного магнитного резонанса (ЯМР) на изотопах 13С. Показатель тактичности m/r может быть рассчитан, как описано в публикации Н.N. Cheng 17 «MACROMOLECULES» 1950 (1984). При этом индексы "m" и "r" отражают стереохимию смежных пропиленовых групп, а именно, "m" означает мезо-смесь, а "r" означает рацемическую смесь. Материал с показателем m/r, примерно равным 1,0, в целом представляет собой синдиотактический полимер, а с показателем m/r, примерно равным 2,0 и более, в целом является атактическим. Изотактический материал теоретически имеет показатель m/r, приближающийся к бесконечности, а большинство атактических полимеров, образующихся, как побочные продукты реакций, имеют достаточное количество атактических молекул, в результате чего их показатель m/r составляет более 50.
Пропилен-α-олефиновый сополимер может иметь теплоту плавления (Hf), определяемую методом дифференциальной сканирующей калориметрии, составляющую 75 Дж/г или менее, 70 Дж/г или менее, 50 Дж/г или менее, или даже 35 Дж/г или менее. Пропилен-α-олефиновый сополимер может иметь теплоту плавления, составляющую по меньшей мере 0,5 Дж/г, 1 Дж/г, или по меньшей мере 5 Дж/г. Дифференциальная сканирующая калориметрия проводится следующим образом. Навеску из примерно 0,5 г полимера раздавливают до толщины примерно 15-20 миллидюймов (примерно 381-508 мкм) при температуре примерно 140-150°С, используя специальную форму и пленку MYLAR™ в качестве подложки. Раздавленному образцу полимера дают охладиться до комнатной температуры, подвесив его в воздухе (не удаляя при этом подложки из пленки MYLAR™). После этого раздавленный образец полимера отпускают при комнатной температуре (примерно 23-25°С) в течение 8 дней. По истечении данного срока из раздавленного образца полимера просечкой вырезают диск весом 15-20 мг и помещают его в алюминиевую чашку объемом 10 мл. После этого образец в виде диска помещают в дифференциальный сканирующий калориметр (примером является Perkin Elmer Pyris 1 Thermal Analysis System) и охлаждают его до температуры -100°С. После этого образец нагревают со скоростью примерно 10°С/мин до конечной температуры 165°С. При этом определяется затраченная тепловая энергия, как площадь под пиком плавления образца. Она соответствует теплоте плавления образца и на ее основании может быть рассчитана удельная теплота плавления полимера (в Дж/г). Такие расчеты автоматически проводятся системой Perkin Elmer. Система строит кривую зависимости удельной теплоемкости образца от его температуры. На фоне базовой линии такой зависимости будет заметно значительное повышение удельной теплоемкости, соответствующее температурному диапазону плавления образца. При таких условиях измерения кривая плавления образца имеет два максимума. Больший из максимумов во всем диапазоне плавления считается точкой плавления.
Пропилен-α-олефиновый сополимер может иметь единственный пик плавления, который и будет зафиксирован дифференциальным сканирующим калориметром. В одном из воплощений сополимер имеет основной пик фазового перехода плавления при температуре 90°С или менее, при этом диапазон плавления достаточно широк и заканчивается при температуре примерно 110°С или более. Пиковая точка плавления Tm определяется, как температура, при которой имеет место максимальное поглощение тепла во всем диапазоне плавления образца. Однако на практике сополимер может иметь и второстепенные пики плавления, расположенные в непосредственной близости к основному пику, и/или в конце фазового перехода плавления. В контексте настоящего описания такие второстепенные пики плавления в совокупности с основным пиком рассматриваются, как единый пик плавления, и по самому высокому из данных пиков определяется точка плавления Tm пропилен-α-олефинового сополимера. Пропилен-α-олефиновый сополимер может иметь точку плавления Tm, составляющую 100°C или менее, 90°С или менее, 80°С или менее, или 70°С или менее. Пропилен-α-олефиновый сополимер может иметь плотность от 0,850 до 0,920 г/см3, от 0,860 до 0,900 г/см3, или от 0,860 до 0,890 г/см3, при комнатной температуре, измеренную по ASTM D-1505.
Пропилен-α-олефиновый сополимер может иметь показатель текучести расплава (MFR), измеренный по ASTM D1238 (2,16 кг, 230°С), составляющий по меньшей мере 0,2 дг/мин. В одном из воплощений показатель текучести расплава пропилен-α-олефинового сополимера составляет от 0,5 до 5000 дг/мин, от примерно 1 до 2500 дг/мин, от примерно 1,5 до 1500 дг/мин, от 2 до 1000 дг/мин, от 5 до 500 дг/мин, от 10 до 250 дг/мин, от 10 до 100 дг/мин, от 2 до 40 дг/мин, или от 2 до 30 дг/мин.
Пропилен-α-олефиновый сополимер может иметь растяжимость до наступления разрыва, составляющую менее чем 2000%, менее чем 1000% или менее чем 800%, измеренную по ASTM D412.
Пропилен-α-олефиновый сополимер может иметь средневесовой молекулярный вес (Mw) от 5000 до 5000000 г/моль, предпочтительно от 10000 до 1000000 г/моль, и более предпочтительно от 50000 до 400000 г/моль; среднечисловой молекулярный вес (Μn) от 2500 до 2500000 г/моль, предпочтительно от 10000 до 250000 г/моль, и более предпочтительно от 25000 до 200000 г/моль; и/или z-средний молекулярный вес (Μz) от 10000 до 7000000 г/моль, предпочтительно от 80000 до 700000 г/моль, и более предпочтительно от 100000 до 500000 г/моль. Пропилен-α-олефиновый сополимер может иметь распределение молекулярного веса (MWD) от 1,5 до 20, или от 1,5 до 15, предпочтительно от 1,5 до 5, и более предпочтительно от 1,8 до 5, и наиболее предпочтительно от 1,8 до 3 или 4. Молекулярные веса (Mn, Mw и Μz), а также распределение молекулярного веса (MWD) могут быть определены, как описано ниже и как описано в публикации Verstate с соавторами, 21 MACROMOLECULES 3360 (1988). Если условия измерений, приведенные ниже, противоречат условиям, приведенным в упомянутой публикации, следует руководствоваться условиями, приведенными ниже. Молекулярный вес и распределение молекулярного веса могут быть измерены с помощью гель-проникающего хроматографа Waters 150, оборудованного светорассеивающим фотометром Chromatix КМХ-6. Измерения проводятся при температуре 135°С, и в качестве подвижной фазы используется 1,2,4-трихлорбензол. В качестве колонок используются колонки 802, 803, 804 и 805 с полистирольным гелем Showdex (Showa-Denko America, Inc.). Данный метод подробно описан в публикации Verstate с соавторами, 21 MACROMOLECULES 3360 (1988). Каких-либо поправочных коэффициентов на распределение полимера по колонке не используют; однако имеющиеся данные для общепринятых стандартов, например, данные Национального Бюро Стандартов для полиэтилена 1484 и анионно гидрогенизованных полиизопренов (сополимер из чередующихся единиц этилена и пропилена) показывают, что поправки для отношений Mw/Mn или Mz/Mw составляют менее чем 0,05 единиц. Отношение Mw/Mn рассчитывают на основании отношения времени элюции к молекулярному весу, в то время как отношение Mz/Mw определяется с помощью светорассеивающего фотометра. Численный анализ может быть проведен с помощью имеющегося в продаже программного обеспечения GPC2, MOLWT2 производства LDC/Milton Roy (Ривьера-Бич, штат Флорида, США). Примерами подходящих пропилен-α-олефиновых сополимеров являются имеющиеся в продаже сополимеры VISTAMAXX® (ExxonMobil Chemical Company, Хьюстон, штат Техас, США), VERSIFY® (The Dow Chemical Company, Мидлэнд, штат Мичиган, США), некоторые из сополимеров TAFMER® ХМ или ΝΟΤΙΟ® (Mitsui Company, Япония), а также некоторые из сополимеров SOFTEL® (Basell Polyolefins, Нидерланды). Из имеющихся в продаже, особенно подходящие пропилен-α-олефиновые сополимеры для использования в настоящем изобретении могут быть определены с помощью методов и критериев отбора, приведенных выше.
Пропиленовые сополимеры хорошо смешиваются с другими полиолефинами, и в частности, с пропиленовыми гомополимерами, и изменяя пропорции смешения двух данных компонентов, можно изготовить материалы с различными свойствами. Полипропиленовый сополимер является мягким на ощупь, и изготавливаемое из него нетканое полотно хорошо прилегает к криволинейной поверхности и легко сгибается. С другой стороны, полипропиленовый компонент обеспечивает механическую прочность полотна и уменьшает пластичность материала. Примеры композиций, подходящих для изготовления нетканых волокнистых материалов в соответствии с настоящим изобретением, могут включать полипропиленовый гомополимер в количестве по меньшей мере 60%, по меньшей мере 70%, по меньшей мере 75%, или по меньшей мере 80% по весу от суммарного веса композиции, и полипропиленовый сополимер в количестве по меньшей мере 10%, по меньшей мере 12%, по меньшей мере 14% по весу от суммарного веса композиции. Такие композиции позволяют изготовить материал, который хорошо прилегает к криволинейной поверхности и является мягким, и при этом обладает требуемыми механическими характеристиками. Однако было определено, что такой материал может быть грубым на ощупь и давать ощущение «резинового». Так, пропилен-α-олефиновые сополимеры, в частности, пропилен-этиленовые сополимеры, могут быть более липкими на ощупь, чем полимеры, изготовленные из обычных полиолефиновых волокон, таких, как, например, полиэтиленовые и полипропиленовые волокна.
Было определено, что для снижения «липкого» или «резинового» ощущения от волокон, изготовленных из описанной выше композиции, включающей смесь двух полиолефинов, может быть полезным введение добавки, повышающей мягкость. Добавка, усиливающая мягкость, может быть добавлена в композицию в чистом виде, разбавленном виде и/или в виде концентрата, например, в полиолефиновых полимерах, таких, как, например, полипропилен, полистирол, полиэтилен низкой плотности, полиэтилен высокой плотности или пропилен-α-олефиновые сополимеры.
Первая композиция, подходящая для изготовления волокон в соответствии с настоящим изобретением, также может содержать одну или более добавок, усиливающих мягкость, которые могут присутствовать в композиции в количестве от 0,01% до 10%, или от 0,03% до 5%, или даже от 0,05% до 1% по весу от суммарного веса волокон. После прядения волокон и формирования из них нетканого полотна некоторая часть добавки, усиливающей мягкость, может улетучиться, и в волокнах готового полотна она не будет присутствовать в таком же количестве, как в исходной композиции. Кроме того, можно ожидать, что часть добавки, усиливающей мягкость, может мигрировать из внутренней части полотна на его наружную поверхность. И хотя теоретически это необязательно, можно ожидать, что миграция добавки на наружную поверхность волокна может усиливать ощущение мягкости, которое испытывает пользователь, дотрагиваясь до нетканого материала.
В одном из воплощений добавка, усиливающая мягкость, является органическим аминным соединением, то есть, содержит аминогруппу, связанную с углеводородной группой. В другом воплощении добавка, усиливающая мягкость, является амином жирной кислоты или амидом жирной кислоты. В некоторых воплощениях добавка, усиливающая мягкость, может иметь одну или более парафиновых или олефиновых групп, связанных с атомом азота и образующих аминное или амидное соединение. Парафиновая или олефиновая группа может быть, например, полярной или ионной частицей, расположенной в виде боковой цепи или внутри аминного/амидного скелета. Примеры таких полярных или ионных частиц включают гидроксильные группы, карбоксилатные группы, простые эфирные группы, сложные эфирные группы, сульфонатные группы, сульфитные группы, нитратные группы, нитритные группы, фосфатные группы и их сочетания.
В одном из воплощений добавка, усиливающая мягкость, является амином алкила-простого эфира и имеет формулу (R'OH)3-xNRx, где R выбран из группы, состоящей из водорода, алкильных радикалов С1-С40, алкилов-простых эфиров С2-С40, алкилкарбоновых кислот С1-С40 и алкилов-сложных эфиров С2-С40; R' выбран из группы, состоящей из алкильных радикалов С1-С40, алкилов-простых эфиров С2-С40, карбоновых кислот С1-С40 и алкилов-сложных эфиров С2-С40; x=0, 1, 2 или 3, предпочтительно 0 или 1, более предпочтительно 1. В одном из воплощений R выбран из группы, состоящей из водорода и алкильных радикалов С5-С40; a R' выбран из группы, состоящей из алкильных радикалов С5-С40 и алкилов-простых эфиров С5-С40.
В другом воплощении добавка, усиливающая мягкость, является амид-содержащим соединением, имеющим формулу: RCONH2, где R - алкил или алкен С5-С23. В другом воплощении добавка, усиливающая мягкость, является амидом жирной кислоты, имеющим формулу: (R'CO)3-xNR''x, где R'' выбран из группы, состоящей из водорода, алкильных радикалов С10-С60, алкеновых радикалов С10-С60 и их замещенных производных, a R' выбран из группы, состоящей из алкильных радикалов С10-С60, алкеновых радикалов С10-С60 и их замещенных производных, а x=0, 1, 2 или 3, предпочтительно 1 или 2, более предпочтительно 2. В контексте настоящего описания термин «алкеновый радикал» означает радикал, имеющий в своей углеродной цепи одну или более ненасыщенных двойных связей, например, e.g., CH2CH2CH2CH2CH=CHCH2CH2CH2CHsubCH2CH3, где "sub" означает замещение в любом месте углеродной цепи. Заместителем может быть гидроксильная группа, карбоксильная группа, галид или сульфатная группа.
В некоторых воплощениях добавка, усиливающая мягкость, содержит ненасыщенный амид. В одном из воплощений содержащая ненасыщенный амид добавка, усиливающая мягкость, имеет формулу: RCONH2, где R - алкен С5-С23. В другом воплощении содержащая ненасыщенный амид добавка, усиливающая мягкость, имеет формулу: (R'CO)3-xNR''x, где R'' выбран из группы, составляющей из водорода, алкильных радикалов С10-С60, алкеновых радикалов С10-С60 и их замещенных производных, a х=0, 1, 2 или 3, предпочтительно 1 или 2, более предпочтительно 2. В одном из воплощений содержащая ненас