Способ и система улучшения качества переключения передач

Иллюстрации

Показать все

Изобретение относится к транспортным средствам. Способ улучшения качества переключения механической трансмиссии моторного транспортного средства заключается в прогнозировании следующей передачи, которая должна быть включена. Во время переключения определяют, на основании прогнозируемой следующей передачи и скорости транспортного средства, частоту вращения двигателя, требуемую на момент окончания переключения передачи. Регулируют частоту вращения двигателя до требуемого значения. Когда передача включена, определяют, совпадает ли включенная передача с прогнозируемой следующей передачей, которая должна быть включена. Если она отличается - регулируют частоту вращения двигателя на основе включенной передачи и текущей скорости транспортного средства. Улучшается качество переключения передач. 3 н. и 8 з.п. ф-лы, 4 табл., 13 ил.

Реферат

Область техники, к которой относится изобретение

Данное изобретение относится к моторным транспортным средствам, а именно к усовершенствованному способу и системе синхронизации частоты вращения двигателя с частотой вращения ведущего вала механической трансмиссии, приводимой в действие двигателем через сцепление при переключении передачи.

Уровень техники

Плохие дорожные качества транспортного средства при переключении передач у транспортных средств с механической коробкой переключения передач (МКПП) является частой причиной недовольства потребителей. Плохие дорожные качества транспортного средства или плохое качество переключения передач проявляются в виде рывков при переключении передачи, которые связаны с разобщением крутящего момента из-за несовпадения частоты вращения двигателя и ведущего вала коробки передач при включении муфты сцепления после переключения передачи.

Существуют принципы согласования переключения передач (GSH) или синхронизации по частоте, которые приводят к уравниванию скоростей вращения двигателя и вала коробки передач в области дисков муфты сцепления в результате переключения передачи непосредственно перед включением муфты сцепления.

Существующие принципы, известные из уровня техники, основываются на предположении, какую следующую передачу водитель собирается включить, или определении уже выбранной передачи. Успешная синхронизация по частоте зависит от возможности быстрого изменения частоты оборотов двигателя в момент, когда муфта сцепления не включена, на такую частоту оборотов, которая является оптимальной для следующей передачи, которую собирается включить водитель.

Используя способ «наилучшего предположения», такая система предполагает, будет ли следующая включаемая водителем передача на одну ниже или выше, чем предыдущая, как только водитель нажимает на педаль сцепления, система производит регулировку частоты вращения двигателя до оптимального значения частоты, свойственной предполагаемой передаче. Выключение муфты сцепления используется как пусковой сигнал для того, чтобы максимально увеличить время для регулировки частоты вращения двигателя.

Однако данные способы часто приводят к неправильному определению выбираемой передачи и, как следствие, к неоптимальной разности скоростей вращения шестерен при включении муфты сцепления. Более того, использование процесса выключения муфты сцепления или отклонения положения педали сцепления в качестве пускового сигнала приведет к ошибочным результатам, если водитель временно выключает сцепление, но не осуществляет переключение передачи.

Использование способа «определения передачи», в котором определяется фактически включенная передача, а затем эти данные используются для установления требуемой частоты вращения двигателя, является более точным и надежным, чем способ наилучшего предположения, но после выбора водителем передачи остается значительно меньше времени на регулирование частоты вращения двигателя перед включением муфты сцепления. В некоторых случаях оставшийся период времени на регулирование частоты вращения двигателя настолько мал, что за него невозможно добиться желаемой частоты для осуществления полной синхронизации.

Таким образом, оба известных способа имеют недостатки, которые потенциально ухудшают дорожные качества транспортного средства.

Раскрытие изобретения

Данное изобретение предусматривает способ и механизм улучшения качества переключения передач механической трансмиссии.

Первый аспект изобретения предусматривает способ улучшения качества переключения передач механической трансмиссии моторного транспортного средства, имеющего двигатель, который через муфту сцепления приводит в действие трансмиссию. Данный способ включает в себя прогнозирование следующей передачи, которая будет включена, осуществляемое во время переключения передач с использованием системы предварительного определения передачи, определения, на основании прогнозируемой передачи и скорости двигателя транспортного средства, частоты вращения двигателя и скорости транспортного средства, необходимых на момент окончания включения водителем следующей передачи, и установки частоты вращения двигателя на необходимое значение.

Способ может также включать в себя определение, когда передача уже включена, совпадает ли включенная передача с той, которая предположительно будет включена следующей, и затем, если эта передача отличается от прогнозной, регулирование частоты вращения двигателя на основании данных о включенной передаче и текущей скорости транспортного средства.

Если включенная передача совпадает с той, которая предположительно будет включена следующей, способ может также включать в себя определение уточненной частоты вращения двигателя на основании данных о текущей скорости транспортного средства и регулирование частоты вращения двигателя для достижения уточненного значения частоты вращения.

Прогнозирование следующей включаемой передачи может быть основано на определении датчиком передачи прохождения одной или нескольких контрольных точек, связанных с механизмом переключения передач трансмиссии.

Переключение передачи может начаться, когда выключена одна передача, и заканчиваться, когда включены другая передача и муфта сцепления.

Второй аспект изобретения предусматривает систему улучшения качества переключения передач механической трансмиссии моторного транспортного средства. Данная система содержит двигатель для обеспечения привода трансмиссии через муфту сцепления, прогнозирующую систему считывания передачи для обеспечения информации, указывающей на включенное состояние трансмиссии, контроллер для управления частотой вращения двигателя, и устройство ввода данных в электронный контроллер для предоставления информации о скорости моторного транспортного средства. При этом электронный контроллер работает в процессе переключения передачи в ответ на информацию о прогнозируемой передаче, которая должна быть включена следующей, полученную от прогнозирующей системы считывания передачи, а также информацию о скорости транспортного средства для установки частоты вращения двигателя на значение, требуемое на момент окончания переключения передачи.

Электронный контроллер также может быть выполнен с возможностью определения, когда передача включена, является ли включенная передача такой, которая по прогнозу должна быть включена следующей, и, если эта передача отличается от прогнозной, регулирование частоты вращения двигателя на основании данных о включенной передаче и текущей скорости транспортного средства.

Если включенная передача совпадает с той, которая по прогнозу должна быть включена следующей, электронный контроллер может определять уточненную частоту вращения двигателя на основании данных о текущей скорости транспортного средства, и регулировать частоту вращения двигателя для достижения уточненного значения частоты вращения.

Информация о прогнозируемой передаче, которая будет включена следующей, может включать в себя определение датчиком передачи прохождения одной или нескольких контрольных точек, связанных с механизмом переключения передач трансмиссии.

Переключение передачи может начаться, когда выключена одна передача, и заканчиваться, когда включены другая передача и муфта сцепления.

Электронный контроллер может содержать модуль состояния трансмиссии для получения и обработки одного или нескольких сигналов от датчиков передачи и блок управления двигателем, функционально связанный с модулем состояния трансмиссии, и установленным с возможностью регулирования частоты вращения двигателя в процессе изменения передачи.

Входной сигнал с информацией о скорости транспортного средства может быть получен от датчика скорости транспортного средства.

Согласно третьему аспекту изобретения представлено моторное транспортное средство, имеющее механическую трансмиссию и систему улучшения качества переключения передач механической трансмиссии, выполненную в соответствии с вышеизложенным вторым аспектом изобретения.

Краткое описание чертежей

Далее изобретение будет описано с помощью примеров со ссылкой на сопроводительные чертежи, на которых:

Фиг.1А представляет собой схематическое изображение транспортного средства согласно одному из аспектов изобретения;

Фиг.1В представляет собой схематическое изображение части линии привода моторного транспортного средства, изображенного на Фиг.1А;

Фиг.2А представляет собой схематическое изображение части трансмиссии транспортного средства, показанного на Фиг.1, изображающее расположение двухкоординатного датчика выбранной передачи и двухкоординатной магнитной мишени;

Фиг.2В представляет собой схематическое изображение, показывающее движения поворотного селекторного цилиндра переключения передач, осевое (по оси X) и угловое (по оси Y) положения которого считываются двухкоординатным датчиком выбранной передачи;

Фиг.3А представляет собой первое схематическое изображение ведомого механизма поворотного селекторного цилиндра;

Фиг.3В представляет собой второе схематическое изображение ведомого механизма поворотного селекторного цилиндра, изображенного на Фиг.3А;

Фиг.4 представляет собой схематическое изображение поворотного механизма переключения передачи трансмиссии, более подробно изображающее поворотный селекторный цилиндр переключения передач, показанный на Фиг.2В;

Фиг.5 представляет собой более подробное изображение части трансмиссии, изображенной на Фиг.2А, показывающее положение двухкоординатной мишени и массива двухкоординатных магнитных датчиков;

Фиг.6А представляет собой увеличенное сечение части ведомого механизма поворотного селекторного цилиндра с Фиг.3А и Фиг.3В, показывающее ведомый механизм поворотного селектора в положении нейтральной передачи;

На Фиг.6В показано увеличенное сечение части ведомого механизма поворотного селекторного цилиндра с Фиг.3А и Фиг.3В, показывающее ведомый механизм поворотного селектора в положении включенной четной передачи;

На Фиг.6С показано увеличенное сечение части ведомого механизма поворотного селекторного цилиндра с Фиг.3А и Фиг.3В, показывающее ведомый механизм поворотного селектора в положении включенной нечетной передачи;

Фиг.7А представляет собой схему, показывающую зависимость между угловым и осевым положениями поворотного селекторного цилиндра трансмиссии, и соответствующими выходными сигналами двухкоординатного датчика выбранной передачи;

На Фиг.7В показано увеличенное изображение зависимости между угловым положением поворотного селекторного цилиндра и выходным сигналом, изображающее две контрольные точки на плоскости или в угловом положении согласно одному варианту прогнозирующей системы определения передачи по изобретению;

Фиг.8А представляет собой схематическое изображение кулисного селекторного механизма Н-типа, на котором показан ряд контрольных точек на плоскости и между плоскостями, в соответствии со вторым вариантом прогнозирующей системы определения передачи по изобретению;

На Фиг.8В изображен график зависимости между осевым положением поворотного селекторного цилиндра и выходным сигналом, отображающий контрольные точки между плоскостями с Фиг.8А;

На Фиг.8С изображен график зависимости между угловым положением поворотного селекторного цилиндра и выходным сигналом, отображающий контрольные точки на плоскости с Фиг.8А;

На Фиг.8D показан вид снизу направляющей рычага кулисного механизма переключения передач Н-типа, показывающий расположение ряда датчиков рычага переключения передач, формирующих часть третьего варианта прогнозирующей системы считывания передачи;

На Фиг.9 изображен график зависимости между скоростью транспортного средства и частотой вращения двигателя для различных передаточных отношений;

На Фиг.10 приведена упрощенная блок-схема первого варианта осуществления способа прогнозирования включения передачи;

На Фиг.11 приведена упрощенная блок-схема второго варианта осуществления способа прогнозирования включения передачи;

На Фиг.12 приведена упрощенная блок-схема первого варианта осуществления способа улучшения качества переключения передач механической трансмиссии моторного транспортного средства;

На Фиг.13 приведена упрощенная блок-схема второго варианта осуществления способа улучшения качества переключения передач механической трансмиссии моторного транспортного средства;

Осуществление изобретения

На Фиг.1-6С изображено транспортное средство 1, имеющее двигатель 2, соединенный приводом с механическим редуктором/трансмиссией 3 посредством муфты сцепления 10. Трансмиссия 3 включает в себя рычаг 11 переключения передач, посредством которого водитель может выбирать различные передачи трансмиссии 3 с использованием селекторного механизма переключения передач Н-типа (H-gate selector machanism).

Электронный блок обработки данных в форме модуля 4 управления силовой передачей (РСМ) для управления силовой передачей моторного транспортного средства 1. Управляющий модуль 4 включает в себя блок 6 управления двигателем для управления работой двигателя 2 и модуль 5 состояния трансмиссии для определения рабочего режима трансмиссии 3.

Управляющий модуль (РСМ) 4 принимает ряд входных сигналов с датчиков 9, включая сигналы от датчиков 9е частоты вращения двигателя, датчиков 9v скорости транспортного средства, связанных с колесом «W», датчиков 9с положения педали сцепления, датчиков 9а положения педали газа, датчиков 9b положения педали тормоза, а также информацию от других возможных компонентов моторного транспортного средства 1.

Все или некоторые из входных сигналов от датчиков 9 могут быть использованы блоком 6 управления двигателем для управления работой двигателя 2, а именно частотой вращения двигателя 2. Следует принимать во внимание, что блок 6 управления двигателем и модуль 5 состояния коробки передач могут быть как отдельными элементами обработки данных, так и частями единого электронного процессора, как например модуль РСМ 4, как показано на чертежах.

Согласно Фиг.1В двигатель имеет ведомый вал 2а, который приводит в действие муфту сцепления 10 и вращается с такой же частотой, что и коленчатый вал двигателя 2. На практике ведомый вал 2а двигателя образован маховиком двигателя 2. Муфта сцепления 10 используется для разъемного соединения ведомого вала 2а с ведущим валом 3i трансмиссии 3, который в большинстве случаев сформирован ведущим валом трансмиссии 3.

Следует отметить, что когда муфта сцепления 10 находится в зацеплении без скольжения, частота вращения ведомого вала 2а двигателя равна частоте ведущего вала 3i трансмиссии. Когда муфта сцепления выключена, между частотой ведомого вала двигателя и частотой ведущего вала трансмиссии нет прямой связи. Однако частота ведущего вала трансмиссии связана со скоростью транспортного средства и передаточным числом, а также любыми другими факторами, влияющими на зависимость между частотой ведущего вала трансмиссии и скоростью транспортного средства, как например передаточное число главной передачи и радиус качения колеса «W» моторного транспортного средства 1.

Следует отметить, что используемый термин «механическая трансмиссия» относится к трансмиссии, в которой различные передаточные числа выбираются водителем моторного транспортного средства 1 вручную путем перемещения рычага 11 переключения передач.

Также следует отметить, что включение и выключение муфты сцепления 10 контролируется водителем моторного транспортного средства 1 вручную или электронным способом в ответ на действия водителя, как в случае с электронным сцеплением (e-clutch). Электронное сцепление - это электронно-управляемая муфта сцепления, в котором положение педали сцепления контролируется с использованием датчика, а фактическое включение/выключение муфты выполняется приводом с электронным управлением.

Моторное транспортное средство 1 содержит первый вариант системы прогнозирования передачи, состоящей из модуля 5 состояния трансмиссии, двухкоординатной магнитной мишени 8 и двухкоординатного датчика 7 выбранной передачи, образующих в комбинации пару двухкоординатных датчиков переключения передачи. Модуль 5 состояния трансмиссии расположен так, чтобы принимать сигналы от датчика 7 выбранной передачи, прикрепленного к картеру 3В трансмиссии 3. Датчик 7 выбранной передачи является массивом двухкоординатных магнитных датчиков PWM, который передает сигналы, основанные на изменении магнитного потока между датчиком 7 выбранной передачи и двухкоординатной магнитной мишенью 8, связанной с устройством переключения передач в виде поворотного селекторного цилиндра 3А. Датчик 7 выбранной передачи совмещает датчик углового положения с датчиком смещения по оси в одном массиве двухкоординатных датчиков.

На Фиг. 2А, 4 и 5 изображена типичная конфигурация трансмиссии Н-типа, состоящая из переключающего поворотного селекторного цилиндра 3А, расположенного внутри основного картера 3В трансмиссии. Переключающий поворотный селекторный цилиндр 3А вращается при движении рычага 11 переключения передач вперед и назад для выбора четной или нечетной передачи соответственно, и движется в осевом направлении при движении рычага 11 влево и вправо для смены плоскости рычага переключения передач, в которой осуществляется выбор передачи. Передача заднего хода может иметь конфигурацию четной или нечетной передачи, в зависимости от конфигурации трансмиссии 3. Следует отметить, что переключающий поворотный селекторный цилиндр можно расположить таким образом, что движения вперед и назад приводят к осевому движению селекторного цилиндра, а движения влево и вправо приводят к вращению селекторного цилиндра, следовательно, выходные данные массива двухкоординатных датчиков можно будет интерпретировать соответствующим образом.

Рычаг 11 переключения передач соединен посредством тросового привода с парой рычагов 21А, 21В, сформированных в виде части поворотного узла 20 переключения, который приводит в движение переключающий поворотный селекторный цилиндр 3А.

Двухкоординатная магнитная мишень 8 прикреплена к поворотному селекторному цилиндру 3А, и, в показанном примере, датчик 7 выбранной передачи расположен на внешней стороне картера 3В трансмиссии и детектирует осевые и вращательные перемещения магнитной мишени 8. Однако следует отметить, что датчик 7 выбранной передачи можно установить внутри картера 3В трансмиссии.

На Фиг.2В показаны варианты перемещения магнитной мишени 8 при включении различных передач.

На Фиг.3А, 3В, 6А, 6В и 6С изображен ведомый механизм 3С, который прикреплен к селекторному цилиндру 3А и вращается вместе с ним. Ведомый механизм 3С имеет три фиксатора 3Е, центральный фиксатор соответствует положению нейтральной передачи, фиксатор для четной передачи расположен с одной стороны от нейтрального фиксатора, а для нечетной передачи - с другой стороны. Шарик 3D удерживается пружиной (схематически изображена стрелкой S на Фиг. 6А, 6В и 6С) для стыковки с одним из фиксаторов 3Е. Шарик 3D в скользящем контакте опирается на корпус коробки передач 3В напрямую или посредством кронштейна. Следует отметить, что шарик 3D можно заменить на поддерживаемый пружиной штифт с полусферическим концом. Фиксаторы 3Е определяют первое, второе и третье угловые положения, соответствующие положению выбора для первого, второго рядов передач и нейтральной передачи трансмиссии 3. Выступы, расположенные между фиксаторами нейтрального положения и фиксаторами положения включенных передач определяют, будет ли трансмиссия 3 при освобождения рычага переключения передач 11 перемещаться в положение включенной передачи или нейтральное положение, что далее будет рассмотрено более подробно.

Начиная с трансмиссии 3, можно увидеть, что имеется физическая связь с магнитной мишенью 8 в виде механического соединения мишени 8 с селекторным цилиндром 3А, а также физическое соединение с датчиком 7 выбранной передачи в виде механического соединения датчика 7 с картером 3В трансмиссии.

Существует магнитная связь между датчиком 7 выбранной передачи и магнитной мишенью 8, таким образом, что изменение магнитного потока можно считывать с помощью датчика 7 для получения сигнала об угловом и осевом положении селекторного цилиндра 3А и, следовательно, о том, находится ли трансмиссия на четной передачи, нечетной передаче или в нейтральном положении, и какая из четных или нечетных передач включена.

Датчик 7 выбранной передачи постоянно генерирует выходные сигналы, указывающие на осевое и угловое положения селекторного цилиндра 3А, и эти сигналы используют для прогнозирования следующей включаемой передачи путем сравнения выходных сигналов различных контрольных точек.

Например, при проведении испытаний можно установить угловые положения цилиндра 3А при включенной передаче. Четные и нечетные положения при включенной передаче показаны на Фиг. 6В и 6С соответственно.

На Фиг.6А цилиндр 3А изображен в нейтральном положении, а на Фиг. 6В и 6С цилиндр 3А изображен в положениях включенной четной передачи (EPI) и включенной нечетной передачи (OPI). В данном случае точка включения четной передачи достигается, когда цилиндр 3А поворачивается на Q градусов относительно нейтрального положения, а точка включения нечетной передачи достигается, когда цилиндра 3А поворачивается на -β градусов относительно нейтрального положения. Вращение по часовой стрелке цилиндра 3А представлено на Фиг. 6А-6С в виде положительного угла, а вращение против часовой стрелки - в виде отрицательного угла.

Если известны угловые положения, при которых достигается включение передач (EPI и OPI), и датчик 7 выбранной передачи откалиброван так, что модуль 5 состояния трансмиссии способен определить по его сигналам, что эти угловые положения достигнуты, то это можно использовать для прогнозирования, является ли будущая передача четной или нет, до того, как она будет на самом деле включена. При комбинировании данной информации с осевым положением цилиндра 3А, полученной на основании сигнала об осевом положении, который генерируется датчиком 7 выбранной передачи, модуль 5 состояния трансмиссии способен определить точное положение следующей передачи, которая будет включена.

Специалистам в данной области техники понятно, что соответствующие точки включения четных и нечетных передач являются угловыми положениями цилиндра 3А, где различные действующие силы будут вращать цилиндр 3А так, что шарик 3D будет полностью зафиксирован соответствующим фиксатором, после чего включится соответствующая передача. Другими словами, в точке включения передачи и после ее прохождения трансмиссия автоматически будет включена на передачу, а в положении перед этой точкой трансмиссия вернется в положение нейтральной передачи.

Согласно Фиг.7А и 7В к модулю 5 состоянии трансмиссии поступают два входных сигнала: сигнал с данными об угловом положении (ось Y) и сигнал с данными об осевом перемещении (ось X). Точнее, датчик 7 выбранной передачи генерирует сигнал PWM на выходе, который находится в пределах диапазона (между 10% и 90%) или вне диапазона (>90% или <10%). Программный драйвер ввода информации в модуле 5 состояния трансмиссии обрабатывает PWM-сигнал, и, если он выходит за пределы (>90% или <10%) драйвер выдает данный сигнал за ошибку. Следует отметить, что диапазон от 10% до 90% указан в качестве примера и не является ограничивающим.

Если PWM-сигнал находится в пределах диапазона (между 10% и 90%), драйвер считает сигнал нормальным. Затем модуль 5 состояния трансмиссии сравнивает PWM-сигнал с пороговым значением, чтобы определить, выбрана или нет нейтраль, выбрана или нет четная передача, выбрана или нет нечетная передача, была ли достигнута точка включения OPI и была ли достигнута точка включения EPI.

На Фиг.7А видно, что шестиступенчатая трансмиссия имеет традиционное выполнение переключающего механизма Н-типа с нечетными передачами, расположенными в одном ряду с передачей заднего хода, и четными передачами, расположенными в другом ряду. Также видно, что передачи расположены в ряде плоскостей рычага управления переключением передач, на одной из которых расположена передача заднего хода, а на следующих плоскостях по две передачи переднего хода: первая и вторая передачи (плоскость 1/2), третья и четвертая передачи (плоскость 3/4) и пятая и шестая передачи (плоскость 5/6).

На Фиг.7В видно, что если PWM-сигнал в основном составляет 90%, модуль 5 состояния трансмиссии интерпретирует это как указание на то, что выбрана одна из четных передач. Если PWM-сигнал, в основном, составляет 10%, модуль 5 состояния трансмиссии интерпретирует это как указание на то, что выбрана одна из нечетных передач. Если же PWM-сигнал, в основном, составляет 50%, модуль 5 состояния трансмиссии интерпретирует это как указание на то, что выбрано нейтральное положение.

Следует отметить, что на практике могут иметь место интервалы допуска применительно ко всем указанным фигурам, например, модуль 5 состояния трансмиссии может нормально работать для следующих угловых направлений с осуществлением логических проверок:

Если 85%< PWM-сигнал <90%, то включена четная передача; (1)

Если 10%< PWM-сигнал <15%, то включена нечетная передача; (2)

Если 45%< PWM-сигнал <55%, то передача на нейтрали. (3)

В дополнение к этой оценке модуль 5 состояния трансмиссии также сравнивает сигнал углового положения датчика 7 выбранной передачи с двумя поворотными контрольными точками для точек включения четной передачи (EPI) и точек включения нечетной передачи (OPI), которые используются для прогнозирования следующей включаемой передачи.

Например, как изображено на Фиг.7В, модуль 5 состояния трансмиссии осуществляет следующие проверки для углового положения:

Если PWM-сигнал <30%, то прогнозная следующая передача является нечетной; (4)

Если PWM-сигнал <70%, то прогнозная следующая передача является четной. (5)

Где заранее заданные поворотные контрольные точки EPI и OPI это 70% и 30% соответственно.

Используя данную логику, модуль 5 состояния трансмиссии способен предсказать следующую передачу до ее непосредственного включения путем объединения результатов проверки с осевым положением цилиндра 3А. Данная информация может быть направлена на несколько миллисекунд раньше (20-40 мс) другим системам управления, нуждающимся в ней, например, индикатору передачи интерфейса водителя (HMI) или блоку 6 управления двигателем непосредственно перед включением передачи.

Следует отметить, что датчик 7 выбранной передачи также можно расположить так, чтобы когда трансмиссия 3 находится в нейтральном положении, соответствующая норма сигнала составляла бы 50%, когда рычаг переключения передач передвинут вперед на одну из нечетных передач, норма сигнала превышала бы 50%, а когда выбрана одна из четных передач, норма сигнала была бы ниже 50%. Таким образом, вышеописанные логические проверки будут иметь противоположные

условия, например:

Если 85%< PWM-сигнал <90%, то включена нечетная передача; (1’)

Если 10%< PWM-сигнал <15%, то включена четная передача (2’)

Если 45%< PWM-сигнал <55%, то передача на нейтрали (3’)

Если PWM-сигнал <30%, то прогнозная следующая передача

является четной; (4’)

Если PWM-сигнал <70%, то прогнозная следующая передача

является нечетной. (5’)

Возвращаясь к Фиг.7А, можно увидеть, что показан выходной

сигнал с датчика 7 выбранной передачи для осевого направления (или по оси X), а также можно видеть, что для шестиступенчатой трансмиссии показано в качестве примера следующее:

Если PWM-сигнал = 10%, то выбрана плоскость передачи заднего

хода;

Если PWM-сигнал = 40%, то выбрана плоскость первой/второй передачи;

Если PWM-сигнал = 70%, то выбрана плоскость третьей/четвертой передачи;

Если PWM-сигнал = 90%, то выбрана плоскость пятой/шестой передачи.

Как ранее было сказано, для данных схем применимы отклонения в пределах допуска, чтобы предусмотреть износ или неточности конструкции, на практике модуль состояния трансмиссии может применять для осевого направления следующие логические проверки:

Если 10%< PWM-сигнал <15%, то выбрана плоскость передачи заднего хода; (6)

Если 37,5%< PWM-сигнал <42,5%, то выбрана плоскость первой/второй передачи; (7)

Если 67,5%< PWM-сигнал <12,5%, то выбрана плоскость третьей/четвертой передач; (8)

Если 85%< PWM-сигнал <90%, то выбрана плоскость пятой/шестой передач. (9)

Модуль 5 состояния трансмиссии может использовать логические проверки (4) и (5) вместе с одной из проверок (6)-(9) для прогнозирования следующей включаемой передачи (N2G), как показано ниже в таблице 1.

Таблица 1
Пройденная проверка Пройденная проверка (4) Пройденная проверка (5)
6 N2G = Задний ход /
7 N2G = Первая N2G = Вторая
8 N2G = Третья N2G = Четвертая
9 N2G = Пятая N2G = Шестая

Модуль 5 состояния трансмиссии после этого может подтвердить, когда передача уже включена, после чего данные о включенной передаче (EG) принимаются с датчика 7 выбранной передачи с использованием описанных выше логических проверок (1) и (2) в комбинации с одной из проверок (6)-(9), как показано ниже в таблице 2.

Таблица 2
Пройденная проверка Пройденная проверка (2) Пройденная проверка (1)
6 EG = Задний ход /
7 EG = Первая EG = Вторая
8 EG = Третья EG = Четвертая
9 EG = Пятая EG = Шестая

Следует отметить, что в отличие от угловой калибровки осевая калибровка может соответствовать 10% = шестая передача и 90% = передача заднего хода. В таком случае логические проверки для плоскости будут отличаться от указанных выше.

Несмотря на то, что система прогнозирования включения передачи была описана по отношению к использованию магнитного PWM-датчика, в котором используется двухкоординатный магнит и генерируется выходной PWM-сигнал, изобретение не ограничивается такими датчиками, и равно применимо для использования с датчиком перемещения, который вместо PWM-сигнала генерирует выходной сигнал переменного напряжения.

Также следует отметить, что система прогнозирования включения передачи не ограничивается использованием одного массива двухкоординатных магнитных датчиков 7 в качестве датчика выбранной передачи. Можно использовать трехмерный датчик и магнитную схему или два отдельных датчика: один для углового движения, другой - для осевого.

Также следует иметь в виду, что изобретение не ограничивается шестиступенчатой коробкой передач или расположением передачи заднего хода, показанным на Фиг.7А, а также что изобретение может быть применимо для трансмиссии с различным числом передач переднего хода или для различного расположения передачи заднего хода с тем же самым положительным эффектом.

На Фиг. 8А-8С показана часть второго варианта системы прогнозирования включения передачи, которая по большей части идентична описанной ранее и не будет снова подробно рассматриваться.

Основное различие между вторым и первым вариантами, описанными выше, заключается в том, что в дополнение к контрольным точкам плоскостей включения передач, относящимся к расположенным на плоскости точкам включения, также предоставляется множество контрольных точек промежуточных плоскостей, расположенных между плоскостями переключения передач.

На Фиг.8А изображен ряд контрольных точек Ra, 1a, 2а, 3а, 4а, 5а и 6а, расположенных в плоскостях переключения. Контрольные точки 1а, 3а и 5а соответствуют точкам включения нечетных передач (OPI), а контрольные точки 2а, 4а, и 6а соответствуют точкам включения четных передач (EPI). Система прогнозирования включения передачи работает, как описано выше применительно к данным контрольным точкам, и, как описано выше, она также способна прогнозировать следующую включаемую передачу.

В дополнение к этим контрольным точкам Ra, 1a, 2а, 3а, 4а, 5а и 6а также имеется ряд контрольных точек R/1b, 1/2b, 3/4b и 1/2а, 3/4а, 5/6а промежуточных плоскостей. Контрольные точки R/1b, 1/2b и 3/4b промежуточных плоскостей являются контрольными точками повышения передачи, а контрольные точки 1/2а, 3/4а и 5/6а промежуточных плоскостей являются контрольными точками понижения передачи.

Функцией контрольных точек промежуточных плоскостей является предварительное определение того, повышается передача или понижается. Данная информация полезна, если прогнозирования включения передачи используется, например, для предоставления информации системе согласования переключения передач, где регулировка частоты вращения двигателя должна быть осуществлена за очень короткий период времени во время переключения передачи между моментом выключения муфты сцепления 10 и моментом ее следующего включения.

Таким образом, контрольные точки промежуточных плоскостей используются модулем 5 состояния трансмиссии для определения, является ли текущее переключение передачи повышающим или понижающим, т. е., будет ли следующая передача более высокой передачей по отношению к текущей, или более низкой.

На Фиг.8В изображены контрольные точки R/1b, 1/2b, 3/4b, 1/2а, 3/4а и 5/6а промежуточных плоскостей в виде выходных PWM-сигналов выраженных в процентах от выходного сигнала датчика осевого перемещения и датчика 7 выбранной передачи. Фиг.8С дублирует Фиг.7В с изображением контрольных точек на Фиг.8С (Ra, 1a, 3а, 5а, 2а, 4а и 6а), соответствующих контрольным точкам OPI и EPI на Фиг.7В.

В каждом случае предыдущая передача, т. е. передача, которая была включена до определения нового переключения, используется для обеспечения ранней индикации следующей включаемой передачи.

Так как контрольные точки промежуточных плоскостей являются заданными точками, они не подвержены влиянию отклонений допуска в механизме, т. е. всегда можно использовать единственные значения.

Например, контрольные точки, изображенные на Фиг. 8А и 8В имеют следующие значения % PWM-сигнала:

R/1b = 17,5%

1/2а = 32,5%

1/2b = 45%

3/4а = 65%

3/3b = 75%

5/6а = 85%

Эти данные используются для заблаговременного определения в цикле смены передач того, понижается или повышается передача, основываясь на данных % PWM-сигнала включенной передачи.

Например, если включена четвертая передача, то можно использовать следующую проверку:

Если % PWM-сигнал <65%, предположительно передача будет понижаться;

Если % PWM-сигнал >75%, предположительно передача будет повышаться.

Аналогичным образом, если включена вторая передача, то можно использовать следующую проверку:

Если % PWM-сигнал <32,5%, предположительно, передача будет понижаться;

Если % PWM-сигнал >45%, предположительно передача будет повышаться.

Необходимо отметить, что, имея отдельные контрольные точки, между различными плоскостями переключения передач, осуществляется заблаговременное информирование, когда одна из контрольных точек пройдена, и этот гистерезис можно использовать для предотвращения резких изменений.

Например, если имеется лишь одна контрольная точка, скажем 55%, то уведомление о понижении передачи от плоскости 3/4 к плоскости 1/2 или при повышении от плоскости 1/2 к плоскости 3/4 будет поступать с задержкой. 65% по сравнению с 55% и 45% по сравнению с 55% соответственно.

Следует отметить, что это справедливо при использовании двойных контрольных точек, используемых между всеми смежными плоскостями переключения передач.

Таблица 3 ниж