Высокофункциональные сложные полиэфирполиолы

Настоящее изобретение относится к ароматическим сложным полиэфирполиолам, подходящим для использования при получении пенополиуретана. Описан высокофункциональный характеризующийся умеренной вязкостью ароматический сложный полиэфирполиол, по существу свободный от простого полиэфирполиола, подходящий для использования в качестве единственного полиола при получении пенополиуретанов, которые характеризуются категорией класса один в туннельном испытании на огнестойкость Е-84, при этом упомянутый ароматический сложный полиэфирполиол характеризуется функциональностью в диапазоне от 2,8 до 3,2 и умеренной вязкостью в диапазоне 4000-10000 сПз при 25°С включительно, где упомянутый полиол получают в результате проведения переэтерификации или этерификации смеси, содержащей: 34-66% (мас./мас.) гликоля, 24-34% (мас./мас.) источника терефталата, 5,02-17% (мас./мас.) глицерина, 0-14% (мас./мас.) пентаэритрита, 0-5% (мас./мас.) метилглюкозида, 0-10% (мас./мас.) сорбита и 0-15% (мас./мас.) натурального растительного масла, модифицированного натурального растительного масла или жирнокислотных производных растительного масла. Описана композиция для получения пенополиуретана, включающая: компонент стороны А, содержащий полиизоцианат, и компонент стороны В, содержащий катализатор, поверхностно-активное вещество, антипирен, пенообразователь и в основной части указанный выше полиольный компонент, по существу свободный от простого полиэфирполиола. Также описан пенополиуретан, содержащий продукт указанной выше композиции. Описан способ нанесения пено-полиуретана, включающий стадии: получения компонента стороны А, содержащего полиизоцианат, и компонента стороны В, содержащего катализатор, поверхностно-активное вещество, антипирен, пенообразователь и в основной части указанный выше полиольный компонент, по существу свободный от простого полиэфирполиола, подготовки поверхности, на которую требуется наносить пеноматериал; проведения реакции между компонентами стороны А и стороны В и распыление реагирующих компонентов на поверхность. Технический результат – получение высокофункционального ароматического сложного полиэфирполиола, характеризующегося умеренной вязкостью. 4 н. и 8 з.п. ф-лы, 26 табл., 14 пр.

Реферат

Данная заявка заявляет преимущества приоритета предварительной заявки США № 61/622,293, поданной 10 апреля 2012 года, которая во всей своей полноте включена в настоящий документ посредством ссылки.

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к определенным ароматическим сложным полиэфирполиолам, подходящим для использования при получении пено-полиуретана, и к способам получения таких полиолов. В частности, изобретение относится к ароматическим сложным полиэфирполиолам, характеризующимся высокой функциональностью (большей, чем 2,8) и умеренной вязкостью (меньшей, чем приблизительно 10000 сПз). Настоящее изобретение дополнительно относится к пено-полиуретанам, полученным из таких композиций на основе высокофункциональных сложных полиэфирполиолов, и к способам получения таких пено-полиуретанов.

УРОВЕНЬ ТЕХНИКИ

Большинство ароматических сложных полиэфирполиолов, использующихся при получении пено-полиуретанов (PU), демонстрируют низкую функциональность в диапазоне 2-2,5. По мере увеличения функциональности до 2,5 увеличивается и вязкость. Обычная вязкость ароматического сложного полиэфирполиола, характеризующегося функциональностью, приближающейся к 2,5, превышает 10000 сПз, что чрезмерно высоко для использования в качестве единственного источника полиола вследствие ограничений по вязкости для оборудования по получению пено-PU. Таким образом, для получения пено-PU, имеющих коммерческое значение, его объединяют с простыми полиэфирполиолами, характеризующимися высокой функциональностью/низкой вязкостью.

Ароматические сложные полиэфирполиолы в течение некоторого времени использовали в пено-полиуретанах и -полиизоциануратах. В патентах США №№ 4,604,410 и 4,701,477 описывают способ получения жестких пено-полиуретанов и -полиизоциануратов, который включает прохождение реакции между избытком органического полиизоцианата и этерифицированным модифицированным ароматическим полиолом на основе простого эфира. Этерифицированный модифицированный ароматический полиол на основе простого эфира получают в результате варки вторично используемых полиалкилентерефталатных (PET) полимеров совместно с низкомолекулярным полиолом, таким как диэтиленгликоль. После этого получающийся в результате продукт перемешивают с низкомолекулярным полиолом, таким как альфа-метилглюкозид. Промежуточный продукт подвергают этерифицированию с образованием простого эфира при использовании пропиленоксида и/или этиленоксида.

В патенте США № 4,469,824 описывается способ получения жидких терефталевых сложных эфиров, которые являются подходящими для использования в качестве полиольных удлинителей цепей в жидких пено-полиуретанах и в качестве единственного полиольного компонента в пено-полиизоциануратах. Терефталевые сложные эфиры получают сохраняющимися в жидкой форме в результате проведения реакции между вторично используемым полиэтилентерефталатом (PET) и диэтиленгликолем и одним или несколькими оксиалкиленгликолями. После этого этиленгликоль отпаривают из реакционной смеси для получения смеси сложного эфира, который свободен от твердого вещества при стоянии. Вследствие предела по растворимости для увеличения функциональности получающегося в результате продукта может быть добавленок максимум 5% альфа-метилглюкозида.

В патенте США № 4,644,019 описывается способ получения пено-изоцианурата, который подобен способам, описанным выше, но данный способ включает проведение реакции между этоксилатом алкилфенола, предпочтительно нонилфенола, и полиэтилентерефталатом при одновременном проведении варки.

В патенте США № 5,360,900 описывается способ получения высокой функциональности и высокого уровня содержания ароматического соединения при обычной вязкости в результате объединения этоксилированного метилглюкозида или пропоксилированного метилглюкозида со сложным полиэфиром на полиэтилентерефталатной основе.

Ни один из описанных выше полиолов не может быть использован в качестве единственного полиола при получении пено-полиуретанов вследствие невозможности демонстрации ими достаточно высокой функциональности. Для устранения данной проблемы настоящее изобретение предлагает последовательность из высокофункциональных сложных полиэфирполиолов.

КРАТКОЕ ИЗЛОЖЕНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение относится к новому и особенно подходящему для использования классу ароматических сложных полиэфирполиолов, подходящих для использования при получении пено-полиуретанов. Настоящее изобретение дополнительно относится к композициям на полиольной основе, полученным при использовании таких полиолов и пенообразователя. Настоящее изобретение дополнительно относится к пено-полиуретанам, полученным из таких композиций на полиольной основе, и к способам получения таких пено-полиуретанов.

Полиолы по данному изобретению характеризуются умеренной вязкостью, очень высокой функциональностью и высоким уровнем содержания ароматических соединений. Данная уникальная комбинация свойств делает их подходящими для использования в качестве единственного полиола при получении пено-полиуретанов. В рецептуре отсутствуют какие-либо простые полиэфирполиолы. При минимальном количестве антипиренов пеноматериал на основе данного единственного ароматического сложного полиэфирполиола демонстрирует категорию свойств горючести класса один Е-84. Ароматические сложные полиэфирполиолы данного изобретения характеризуются наличием функциональности в диапазоне от 2,8 до 3,2 при одновременной демонстрации умеренной вязкости в диапазоне 4000-10000 сПз при 25°С. Один типичный высокофункциональный сложный полиэфирполиол по настоящему изобретению характеризуется гидроксильным числом в диапазоне 320-400, вязкостью 4000-10000 сПз при 25°С. Обычно функциональность будет находиться в диапазоне от 2,8 до 3,2, а процентный уровень содержания фенила будет находиться в диапазоне от 14,75 до 19,58.

Полиол по изобретению получают в результате проведения переэтерификации или этерификации смеси, содержащей:

34-66% (масс./масс.) гликолей,

24-34% (масс./масс.) источника терефталата,

0-17% (масс./масс.) глицерина, очищенного глицерина, сырого глицерина,

0-14% (масс./масс.) пентаэритрита, дипентаэритрита, трипентаэритрита,

0-5% (масс./масс.) метилглюкозида,

0-10% (масс./масс.) сорбита,

0-15% (масс./масс.) натурального растительного масла, модифицированного натурального растительного масла, такого как эпоксидированное соевое масло или жирная кислота таллового масла.

Данное изобретение также предлагает композицию для получения пено-PU. Обычная рецептура пено-PU, использующаяся при распылительных нанесениях, содержит два компонента: сторону А, содержащую полиизоцианат, и сторону В, содержащую смесь из нескольких ингредиентов, в том числе катализатора, поверхностно-активного вещества, антипирена, пенообразователя и в основной части полиольного компонента, состоящего по существу из характеризующегося высокой функциональностью и умеренной вязкостью ароматического сложного полиэфирполиола по данному изобретению. Обычно полиольный компонент будет составлять 65-80% (масс./масс.) компонента стороны В. Полиольный компонент не содержит какой-либо простой полиэфир.

Один дополнительный аспект изобретения предлагает способ нанесения пено-полиуретана, включающий стадии: получения компонента стороны А, содержащего полиизоцианат, и компонента стороны В, содержащего катализаторы, поверхностно-активное вещество, антипирены, пенообразователи и в основной части полиольный компонент, по существу состоящий из характеризующегося высокой функциональностью и умеренной вязкостью ароматического сложного полиэфирполиола изобретения, подготовки поверхности, на которую требуется наносить пеноматериал; проведения реакции между компонентами стороны А и стороны В; и нанесения реагирующих компонентов на поверхность. Способ получения пено-PU преимущественно реализуют при нанесении на поверхность кровли, несущей стены, изолированной полости, резервуара для хранения или технологической емкости.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Обычная рецептура предшествующего уровня техники для пено-PU, использующегося при распылительных нанесениях, продемонстрирована в таблице 1. Данный тип нанесения требует двух компонентов: стороны А - полиизоцианата и стороны В - смеси из нескольких ингредиентов, в том числе ароматического сложного полиэфирполиола и простого полиэфирполиола.

Полиизоцианатный компонент стороны А рецептур настоящего изобретения предпочтительно включает те соединения, которые известны специалистам в данной области техники, и не предполагается ограничение компонента стороны А теми соединениями, которые конкретно проиллюстрированы в настоящем документе. Например, полиизоцианатный компонент стороны А рецептур по настоящему изобретению предпочтительно может быть выбран из органических полиизоцианатов, модифицированных полиизоцианатов, форполимеров на изоцианатной основе и их смесей. Они могут включать алифатические и циклоалифатические изоцианаты, но предпочтительными являются ароматические, а в особенности многофункциональные ароматические изоцианаты, и наиболее предпочтительными являются полифенилполиметиленполиизоцианаты (PMDI). Коммерчески доступные продукты PMDI, такие как те, которые являются предпочтительными, включают Mondur.RTM. MR Lite от компании Bayer Corporation, Rubinate.RTM. M от компании Huntsman Corporation и тому подобное. Наиболее предпочтительный полиизоцианат, предназначенный для использования в настоящем изобретении, представляет собой PMDI в любой из своих форм.

Требования для успешной стороны В представляют собой: (1) визуальную прозрачность; (2) стабильную реакционную способность в течение определенного периода времени; (3) подходящую для использования рабочую вязкость. После этого получают пено-полиуретан (PU) в результате проведения реакции для стороны В и стороны А при объемах, равных один к одному, при использовании распылительного оборудования высокого давления, обладающего возможностями по нагреванию и пропорциональному дозированию. Распыляемый пено-PU должен быть: (1) стабильным по геометрическим размерам, (2) характеризоваться минимальным пределом прочности при сжатии и растяжении при номинальной плотности в два фунта (907 г); (3) демонстрировать категорию свойств горючести класса I Е-84 для изолирующего использования внутри помещения. Категория класса I E-84 базируется на результатах по возгоранию пеноматериала при распространении пламени, меньшем или равном 25, и плотности дыма, меньшей или равной 450. Наибольшая проблема для составителей рецептуры заключается в демонстрации меньшей или равной 450 плотности дыма для их пено-PU.

Обычная сбалансированная рецептура стороны В предшествующего уровня техники в таблице 1 удовлетворяет всем вышеупомянутым требованиям. Говоря подробно, ароматический сложный полиэфирполиол представляет собой Terol 256 (который производит и продает компания Oxid LP); простые полиэфиры представляют собой комбинацию из JEFFOL R470X и Carpol GSP 280 при массовых процентах, соответственно, 15 и 8. Антипирен 1 представляет собой трис(1-хлор-2-пропил)фосфат (ТСРР), а антипирен 2 представляет собой PHT4diol - бромированный фталевый ангидридированный полиол. Поверхностно-активное вещество представляет собой регулятор размера ячеек на основе кремния. Совместные пенообразователи представляют собой воду и HFC 245FA (1,1,1,3,3-пентафторпропан) при массовых процентах, соответственно, 2,2 и 8.

Таблица 1
% (масс.)
Полиол 1 Сложный полиэфир Terol 256 44,3
Полиол 2 Простой полиэфир Jeffol R470X 15,0
Полиол 3 Простой полиэфир Carpol GSP 280 8,0
Антипирен 1 PHT4 Diol 6
Антипирен 2 ТСРР 11
Поверхностно-активное вещество 1
Совокупный катализатор 4,5
Пенообразователь 1 Вода 2,2
Пенообразователь 2 HFC245fa 8
Сторона В в совокупности 100

Другие пенообразователи, которые могут быть использованы, включают 365mfc/227 (смесь 1,1,1,3,3-пентафторбутана и 1,1,1,2,3,3,3-гептафторпропана от компании Solvay), Solstice™-1233zd(Е) (транс-1-хлор-3,3,3-трифторпропан от компании Honeywell) и FEA-1100 (гексафтор-2-бутен от компании DuPont). Компонент стороны В включает по меньшей мере один аминовый катализатор. Коммерчески доступные аминовые катализаторы, подходящие для использования в настоящем изобретении, включают Polycat.RTM. 9, Polycat.RTM. 12 и Dabco.RTM. BL-19 от компании Air Products; Toyocat DM 70 от компании Tosoh Speciality Chemicals USA, Inc. В настоящем изобретении также могут быть использованы поверхностно-активные вещества, такие как коммерчески доступные под обозначением LK-443 и Dabco.RTM. DC-193 от компании Air Products и тому подобное. В дополнение к этому, в компоненте стороны В настоящего изобретения могут быть использованы антипирены, такие как Great Lakes PHT-4 Diol, Akzo-Nobel Fyrol.RTM.PCF, ICL Industrial Fyrol 6 и тому подобное.

Предпочтительно объемное соотношение изоцианаты:В составляет 1:1. Хотя это и нежелательно, но допустимым является 10% отклонение для данного соотношения.

Словарь терминов/определения:

Функциональность полиола - среднее количество реакционно-способных групп в расчете на один моль полиола. Ее определяют по среднечисленной молекулярной массе полиола (Mn), поделенной на эквивалентную массу полиола (Eqwt). Значение Mn может быть измерено методами гель-проникающей хроматографии (GPC) или осмометрии с использованием давления паров (VPO). Значение Eqwt может быть получено в результате деления 56100 на гидроксильное число полиола. Существует множество способов определения гидроксильного числа полиола. Наиболее популярным способом является титрование по влажному способу.

Ароматичность - терефталат обозначает одну фенильную группу, содержащую 4 присоединенных водорода и 2 карбонильных группы, молекулярная масса составляет 132. Фенил обозначает бензольное кольцо, содержащее четыре присоединенных водорода, молекулярная масса составляет 76.

Растворимость пенообразователя (BA) - это результат измерения количества граммов BA в 100 г полиола до достижения точки насыщения (раствор становится мутным), выраженный в частях в расчете на сто частей полиола (ч./сто ч. полиола).

Предел прочности при сжатии - он базируется на документе ASTM D 1621-73 - результат измерения способности пеноматериала выдерживать воздействие давящего усилия, направленного аксиально.

Стабильность геометрических размеров - она базируется на документе ASTM D2126-87 - результат измерения способности пеноматериала сохранять точную форму в различных средах по температуре и относительной влажности. Для пеноматериала, подвергнутого старению, представляют градацию по категориям. А является наилучшим вариантом, а D и менее являются неприемлемыми.

Прочность в невулканизованном состоянии - результат измерения способности пеноматериала выдерживать воздействие усилия до прохождения полного отверждения. Пеноматериал, характеризующийся во всех случаях большей функциональностью, будет демонстрировать меньшее вдавливание (проникновение) в сопоставлении с тем, что имеет место для пеноматериала, характеризующегося меньшей функциональностью при тех же самых плотности и реакционных способностях.

SDR - средняя плотность дыма для пеноматериала (три возгорания) из дымовой коробки.

Jeffol R470X, R425X - простой полиэфирполиол на основе основания Манниха, полученный в компании Huntsman.

Caprol GSP 280 - простой полиэфирполиол на основе сахарозы/глицерина, полученный в компании E. R. Carpenter.

DM 70 - Toyocat DM70 представляет собой аминовый полиуретановый катализатор от компании Tosoh USA.

DC 193 - регулятор размера ячеек на основе кремния от компании Air Products.

BL 17 - аминовый полиуретановый катализатор от компании Air Products.

РС 9 - аминовый полиуретановый катализатор от компании Air Products.

Сырой глицерин - собираемый в биодизельном способе, обычно содержит воду, глицерин, свободную жирную кислоту, метиловый сложный эфир жирной кислоты, мыло, золу и катализатор переэтерификации, такой как гидроксид калия.

Процент твердого вещества для полиола - его определяют при использовании устройства Universal Centrifuge (3000 об/мин в течение 15 минут) для отбора пробы в 50% растворителя и 50% полиола.

Таблица 2 обобщенно представляет преимущества и недостатки для каждого ингредиента в рецептуре стороны В предшествующего уровня техники. Terol 256 представляет собой ароматический сложный полиэфир, характеризующийся гидроксильным числом 265, вязкостью 11000 сПз при 25°С и функциональностью 2,3. Jeffol-470X представляет собой ароматический амин, характеризующийся гидроксильным числом 470, вязкостью 10000 сПз при 25°С и функциональностью 3,10. GSP 280 представляет собой простой полиэфирполиол на основе пропиленоксида, инициированный при использовании сахарозы/глицерина, характеризующийся гидроксильным числом 280, вязкостью 3000 сПз при 25°С и функциональностью 7,0. ТСРР представляет собой трис(1-хлор-2-пропил)фосфат, характеризующийся вязкостью 65 сПз при 25°С. Он содержит 9,5% фосфата и 32% хлора. PHT4diol представляет собой бромированный сложный полиэфирполиол (сложный эфир тетрабромфталевой кислоты), характеризующийся гидроксильным числом 215 и вязкостью 100000 сПз при 25°С. Он содержит 46% брома. HFC 245 представляет собой 1,1,1,3,3-пентафторпропан.

Таблица 2
Ингредиент % фенила Функциональность % Р % Cl % Br Преимущества Недостатки
Terol 256 21,59 2,3 Ароматичность Недостаток функциональности
Jeffol-470X 8,1 3,1 Ароматичность и функциональность Незначительное увеличение количества дыма
GSP 280 7 Функциональность Увеличение количества дыма
ТСРР 0 9,45 32 Низкая вязкость и тепловая изоляция Увеличение количества дыма и действие в качестве пластификатора
PHT4 Diol 10,36 2 46 Ароматичность и бром Высокая вязкость и материальные затраты
Сторона В в совокупности 11,4 2,16 1,04 3,52 2,76

Terol 256 представляет собой основные ароматичность/фенил для подавления плотности дыма и улучшения обугливания пено-PU, но он характеризуется недостаточной функциональностью, поскольку, таким образом, больше уже нельзя использовать сложный полиэфирполиол, потому что получающийся в результате пено-PU не будет соответствовать стандарту по стабильности геометрических размеров и пределу прочности при сжатии. Простые полиэфирполиолы придают пеноматериалу функциональность, но они также увеличивают плотность дыма вследствие своего уровня содержания пропиленоксида.

Что касается свойств горючести пеноматериала, то ТСРР прекращает распространение пламени по пеноматериалу в результате создания теплозащитного обугливания. Хлор в ТСРР и бром в РНТ4 diol подвергаются термическому разложению и высвобождают радикалы хлорида и бромида, которые уменьшают газофазное распространение пламени и выделение дыма. Еще одно преимущество ТСРР заключается в уменьшении вязкости стороны В. Однако, он также исполняет роль и пластификатора, и в действительности оказывает негативное воздействие на стабильность геометрических размеров, а также на механические свойства пеноматериала. Для удовлетворения категории класса один Е84 пеноматериалы предшествующего уровня техники требуют присутствия в рецептуре как ТСРР, так и PHT4diol (правое соотношение).

Структура стоимости каждого ингредиента в порядке уменьшения представляет собой PHT4diol, TCPP, простые полиэфирполиолы и ароматические сложные полиэфирполиолы. Составители рецептуры предпочли бы использование большего количества ароматического сложного полиэфира, меньшего количества антипиренов и неиспользование полиэфирполиолов на основе простых эфиров. Таким образом, пено-PU будут обладать лучшими свойствами горючести и иметь меньшую стоимость, но, если только ароматический сложный полиэфирполиол не демонстрировал высокую функциональность, этого невозможно было добиться вплоть до разработки полиолов по данному изобретению.

При использовании новой композиции HF-сложного полиэфирполиола по данному изобретению может быть составлена рецептура новой стороны В, как это следует из таблицы 3:

Таблица 3
% (масс.)
Полиол 1 Сложный полиэфир HF-сложный полиэфир 64,3- 79,2
Полиол 2 Простой полиэфир 0-10
Антипирен ТСРР 7-10
Поверхностно-активное вещество 1
Совокупные катализаторы 4,5-6
Пенообразователь 1 Вода 2,0-2,3
Пенообразователь 2 HFC245fa 7,9-9
Смесь В в совокупности 100
Внешний вид смеси В Прозрачный
Вязкость смеси В при 25С 400-1700
% фенила в В 10,74-14,13
% терефталата в В 18,65-24,55
% Р в В 0,756
% Cl в В 2,56

После этого пено-полиуретан, полученный из стороны B в соответствии с таблицей 3 и полиизоцианата, может удовлетворить текущие требования к распыляемому пено-PU.

Для устранения данной проблемы компания Oxid разработала последовательность из высокофункциональных полиэфирополиолов на основе сложных эфиров. Один типичный высокофункциональный (HF) сложный полиэфирполиол характеризуется гидроксильным числом в диапазоне 320-400, вязкостью 4000-10000 сПз при 25°С, функциональностью, большей, чем 2,8, и процентным уровнем содержания фенила, большим, чем 14,75, (обычно уровень содержания терефталата (TERE) составляет более чем 25,62). Таблица 4 демонстрирует типичную рецептуру переэтерификации или прямой этерификации с образованием сложных эфиров в целях получения HF-сложного полиэфирполиола изобретения.

Таблица 4
Обычно В широком диапазоне
Гликоли 50 34-66
TERE 30 24-34
Глицерин 10 0-17
Пентаэритрит 5 0-10
Метилглюкозид 3 0-5
Сорбит 4 0-10
Натуральное и модифицированное масло/жирная кислота 5 0-15
В совокупности 100 100

В широком смысле гликоли включают этиленгликоль, диэтиленгликоль, триэтиленгликоль, тетраэтиленгликоль, полиэтиленгликоль, пропиленгликоль, дипропиленгликоль, трипропиленгликоль, тетрапропиленгликоль и полипропиленгликоль.

Глицерин включает источник из вторично используемого биодизеля марки сырого и очищенного продукта на основе нефтяного происхождения, на основе растительного происхождения, на основе животного происхождения.

Пентаэритрит (РЕ) включает источник из моно-продукта, технического продукта, дипентаэритрита, трипентаэритрита и побочного продукта изготовления РЕ.

Метилглюкозид включает альфа/бета-метилглюкозид.

TERE представляет собой терефталат, и он поступает из полиэтилентерефталата (PET), промышленного вторично используемого PET, PET после использования продукции, терефталевой кислоты (ТА), промышленной вторично используемой ТА (побочный продукт ароматической карбоновой кислоты), фталевого ангидрида, изофталевой кислоты и метафталевой кислоты.

Натуральное масло/жирная кислота включают касторовое масло, пальмовое масло, хлопковое масло, соевое масло, кукурузное масло, льняное масло, тунговое масло, жирную кислоту, димерную кислоту и тримерную кислоту таллового масла. Модифицированное масло включает эпоксидированное натуральное масло.

Также известно, что для замены глицерина или РЕ в данной области применения могут быть использованы триметилолпропан (ТМР) и сорбит.

Следующие далее примеры иллюстрируют настоящее изобретение и никоим образом не предполагают ограничения объема изобретения.

ПРИМЕР 1

Сначала добавляли 113 г диэтиленгликоля, 1359 г триэтиленгликоля, 566 г тетраэтиленгликоля, 426 г глицерина, 1917 г полиэтилентерефталата и 4 г Tyzor TE (триэтаноламинтитанатный хелат) в 4-горлый 5-литровый стеклянный реактор, который снабжали дефлегматором, разделительной колонкой, приемником верхнего продукта и термопарой.

После этого реактор нагревали до 450°F (232°С) и выдерживали температуру реактора при 450°F (232°С) в течение 2 часов. После этого реактору давали возможность охладиться до 250°F (131°С).

При достижении температуры 250°F (131°С) добавляли 154 г моно-РЕ и 412 г касторового масла. Реактор нагревали вплоть до 460°F (238°С) при вакуумметрическом давлении 150 мм ртутного столба. Соотношение между возвратом и приемом задавали равным три к одному. Продолжали проводить процесс реакционной дистилляции вплоть до отгонки из реакционной смеси теоретического количества в 599 г этиленгликоля.

Полиол, полученный в соответствии с вышеупомянутым способом переэтерификации с образованием сложных эфиров, обладает следующими далее свойствами:

Гидроксильное число 313
Кислотное число 0,50
Вязкость при 77°F (25°С) 9400 сПз

Гидроксильное число увеличивают до 333 в результате добавления некоторого количества диэтиленгликоля. Конечные свойства представляют собой нижеследующее:

Гидроксильное число 333
Кислотное число 0,50
Вязкость при 77°F (25°С) 7800 сПз
Внешний вид полиола Прозрачная янтарная жидкость
Функциональность полиола в виде результата вычисления 3,0
% фенила в полиоле 17,45

Растворимость HFC 245fa в ч./сто ч. полиола 30
Растворимость Solstice™-1233zd(E) в ч./сто ч. полиола 32,9
Растворимость FEA-1100 в ч./сто ч. полиола 13,3

Полиол маркируют в виде DS-16059-1.

ПРИМЕР 2

Сначала добавляли 218 г диэтиленгликоля, 1376 г триэтиленгликоля, 571 г тетраэтиленгликоля, 223 г глицерина, 1827 г полиэтилентерефталата и 4 г Tyzor TE (триэтаноламинтитанатный хелат) в 4-горлый 5-литровый стеклянный реактор, который снабжали дефлегматором, разделительной колонкой, приемником верхнего продукта и термопарой.

После этого реактор нагревали до 450°F (232°С) и выдерживали температуру реактора при 450°F (232°С) в течение 2 часов. После этого давали возможность реактору охладиться до 250°F (131°С).

При достижении температуры 250°F (131°С) добавляли 259 г моно-РЕ и 403 г касторового масла. Реактор нагревали вплоть до 460°F (238°С) при вакуумметрическом давлении 150 мм ртутного столба. Соотношение между возвратом и приемом задают равным три к одному. Продолжали проводить процесс реакционной дистилляции вплоть до отгонки из реакционной смеси теоретического количества в 571 г этиленгликоля.

Полиол, полученный в соответствии с вышеупомянутым способом переэтерификации с образованием сложных эфиров, обладает следующими далее свойствами:

Гидроксильное число 333
Кислотное число 0,40
Вязкость при 77°F (25°С) 4600 сПз
Внешний вид полиола Прозрачная янтарная жидкость
Функциональность полиола в виде результата вычисления 2,9

% фенила в полиоле 16,79
Растворимость HFC 245fa в ч./сто ч. полиола 31
Растворимость Solstice™-1233zd(E) в ч./сто ч. полиола 34
Растворимость FEA-1100 в ч./сто ч. полиола 14

Полиол маркируют в виде DS-16060-1.

ПРИМЕР 3

Сначала добавляли 49 г диэтиленгликоля, 884 г триэтиленгликоля, 1153 г тетраэтиленгликоля, 358 г глицерина, 1707 г полиэтилентерефталата и 4 г Tyzor TE (триэтаноламинтитанатный хелат) в 4-горлый 5-литровый стеклянный реактор, который снабжали дефлегматором, разделительной колонкой, приемником верхнего продукта и термопарой.

После этого реактор нагревали до 450°F (232°С) и выдерживали температуру реактора при 450°F (232°С) в течение 2 часов. После этого давали возможность реактору охладиться до 250°F (131°С).

При достижении температуры 250°F (131°С) добавляли 132 г моно-РЕ. Реактор нагревали вплоть до 460°F (238°С) при вакуумметрическом давлении 150 мм ртутного столба. Соотношение между возвратом и приемом задавали равным три к одному. Продолжали проводить процесс реакционной дистилляции вплоть до отгонки из реакционной смеси теоретического количества в 534 г этиленгликоля.

Полиол, полученный в соответствии с вышеупомянутым способом переэтерификации с образованием сложных эфиров, обладает следующими далее свойствами:

Гидроксильное число 333
Кислотное число 0,40
Вязкость при 77°F (25°С) 5211 сПз
Внешний вид полиола Прозрачная янтарная жидкость
Функциональность полиола в виде результата вычисления 2,8