Кондиционер с трехроторной системой осушительного и испарительного охлаждения

Иллюстрации

Показать все

Изобретение относится к области кондиционеров. Кондиционер содержит приточную камеру и вытяжную камеру удаляемого из помещения воздуха, разделенные между собой горизонтальной перегородкой с основным и дополнительным окнами, охладитель приточного воздуха, который выполнен в виде системы осушительного и испарительного охлаждения, состоящей из двух роторных рекуператоров - рекуператора-осушителя и рекуператора-охладителя, и двух адиабатических увлажнителей приточного и вытяжного воздуха с подводящими водопроводами деминерализованной воды, один из которых размещен в приточной камере на выходе из рекуператора-охладителя, а другой в вытяжной камере на входе в рекуператор-охладитель. Рекуператор-осушитель выполнен в виде роторного регенератора адсорбционного типа, который встроен в основное окно перегородки, а рекуператор-охладитель - в виде роторного теплообменника, который встроен в дополнительное окно перегородки, выполнен с инвертором и контроллером и совместно с рекуператором-осушителем имеют противоположно направленные линии притока и вытяжки. Приточная камера содержит входной и выпускной патрубки, воздухоочиститель, установленный на входе в камеру, и вентиляторный блок. Вытяжная камера содержит верхнюю панель, входной и выпускной патрубки, воздухоочиститель, установленный на входе в камеру, и вентиляторный блок, установленный на выходе из камеры. Кондиционер снабжен дополнительной вытяжной камерой и окном, размещенным в верхней панели основной вытяжной камеры между рекуператором-осушителем и рекуператором-охладителем. Дополнительная вытяжная камера размещена над верхней панелью основной вытяжной камеры и содержит верхнюю панель, входной и выпускной патрубки, воздухоочиститель, размещенный на входе в камеру, роторный рекуператор-теплообменник с инвертором и вентиляторный блок, размещенный на выходе из камеры. Роторный рекуператор-теплообменник встроен в окно верхней панели основной вытяжной камеры, герметично установлен между горизонтальной перегородкой кондиционера и верхней панелью дополнительной вытяжной камеры и имеет противоположно направленные линии вытяжки горячего воздуха, полученного с использованием отходящих дымовых газов и вытяжки удаляемого из помещения воздуха. Роторный рекуператор-теплообменник обеспечивает нагревание вытяжного воздуха, удаляемого из производственного помещения, на перепад температур, образуемый при работе кондиционера, между температурой вытяжного воздуха на входе в рекуператор-осушитель и температурой вытяжного воздуха на выходе из рекуператора-охладителя. Технический результат - обеспечение нулевого энергопотребления на охлаждение и нагревание приточного воздуха. 2 табл., 4 ил.

Реферат

Заявляемое решение относится к области кондиционеров, обслуживающих производственные помещения как металлургических комбинатов и литейных заводов, так и заводов, которые имеют заводскую котельную и агрегаты для сушки различных материалов, выбрасывающих в атмосферу отходящие дымовые газы. В кондиционерах используется горячий воздух с температурой необходимой при нагревании и охлаждении приточного воздуха, и получаемый с использованием отходящих дымовых газов.

Кондиционеры предназначены для обслуживания производственных помещений с высокой относительной влажностью воздуха в рабочей зоне (ϕр.з.>75%), а также производственных помещений с «нормальной» относительной влажностью (ϕр.з.=50%), в случае смешения кондиционированного воздуха, имеющего высокую относительную влажность (ϕк>75%) с более сухим очищенным в рукавном фильтре рециркулируемым воздухом (ϕр.з.=50%), при работе как в теплый период года в диапазоне изменения температуры наружного воздуха t1=11÷32°C, так и в холодный период года при изменении температуры наружного воздуха в диапазоне t1=10÷(-30)°C.

Кондиционеры используют вытяжной воздух, забираемый из рабочей зоны производственного помещения:

- с температурой относительной влажностью и влагосодержанием сух. возд. в холодный период года;

- с температурой относительной влажностью и влагосодержанием сух. возд. в теплый период года.

Кондиционеры используют горячий воздух с температурой tг=90÷80°C:

- в холодный период года для нагревания приточного воздуха с последующим его адиабатическим увлажнением, обеспечивающим косвенное охлаждение приточного воздуха до заданной конечной температуры;

- в теплый период года для нагревания приточного воздуха, обеспечивающего увеличенный перепад температур воздушных потоков на входах в рекуператор-охладитель и, как следствие, охлаждение приточного воздуха до заданного значения температуры, необходимой для последующего адиабатического увлажнения и дополнительного косвенного охлаждения приточного воздуха до заданной конечной температуры.

Заявляемое решение может быть использовано в различных отраслях промышленности (металлургической, литейной, мусоросжигающей, мукомольной, текстильной, табачной, целлюлозно-бумажной, фанерной, спичечной, деревообрабатывающей, химической, производства древесностружечных плит и лекарственных препаратов).

Из источников научно-технической и патентной информации известно большое количество модификаций кондиционеров. Среди них выбраны кондиционеры с осушительным и испарительным охлаждением воздуха, которые не обеспечивают нулевое энергопотребление при нагревании приточного воздуха в холодный период года, и нулевое энергопотребление при охлаждении приточного воздуха в теплый период года, что обеспечивает возможность их усовершенствования в направлении, указанном в формуле изобретения заявляемого решения.

Известна принципиальная схема кондиционера, реализующего технологию охлаждения DEC, описанная в статье Н.В. Шилкина «Климатический центр Klimahaus в Бремерхафене», которая опубликована в журнале «АВОК» №2, 2012 г., с. 84-93, и в Интернет на сайте http://www.abok.ru/for_spec/articles.php?nid=5181, принятая за прототип.

Кондиционер-прототип состоит из приточной и вытяжной камер, разделенных между собой горизонтальной промежуточной перегородкой с двумя окнами, охладителя приточного воздуха, выполненного в виде системы осушительного и испарительного охлаждения - Desiccative and Evaporative Cooling (DEC), состоящей из двух роторных рекуператоров (рекуператора-осушителя и рекуператора-охладителя приточного воздуха), встроенных в окна горизонтальной промежуточной перегородки, и имеющих противоположно направленные линии вытяжки и притока, регенеративного нагревателя вытяжного воздуха, размещенного между роторными рекуператорами, и двух адиабатических увлажнителей вытяжного и приточного воздуха с подводящим водопроводом, приточная и вытяжная камеры содержат воздухоочистители, установленные на входе в камеры, и вентиляторные блоки, установленные на выходе из камер. Подводящие водопроводы деминерализованной воды к адиабатическим увлажнителям на принципиальной схеме кондиционера не показаны. При этом рекуператор-осушитель приточного воздуха выполнен роторным регенератором адсорбционного типа, а рекуператор-охладитель приточного воздуха - роторным теплообменником. Инвертор и контроллер к электроприводу роторного рекуператора-охладителя на принципиальной схеме кондиционера не показаны. Адиабатический увлажнитель вытяжного воздуха установлен на входе в роторный теплообменник, а адиабатический увлажнитель приточного воздуха - на выходе из роторного теплообменника. Роторный регенератор адсорбционного типа имеет ячейки аккумулирующей матрицы ротора, покрытые композитным материалом, в который внедрен активный Selicagel, являющийся сорбентом влаги, содержащейся в наружном воздухе. При этом аккумулирующая матрица адсорбционного ротора нагревается потоком вытяжного воздуха. Приточный воздух, проходя через нагретые ячейки адсорбционного ротора нагревается в них и одновременно осушивается за счет адсорбции содержащейся в нем влаги. При повороте адсорбционного ротора, ячейки аккумулирующей матрицы, сорбирующая поверхность которых наполнена влагой, поступают в зону вытяжки. При этом нагретый поток вытяжного воздуха, проходя через ячейки аккумулирующей матрицы ротора, осуществляет десорбцию содержащейся в них влаги, а по отношению к сорбенту - его регенерацию, одновременно увлажняясь, после чего выбрасывается в атмосферу вытяжным вентиляторным блоком. Процесс нагревания и осушки приточного воздуха осуществляется при сухой эффективности рекуперации теплоты роторного рекуператора-осушителя, равной (в долях ед.).

Роторный рекуператор-охладитель охлаждает приточный воздух при постоянном влагосодержании. Теплота, снятая аккумулирующей матрицей роторного теплообменника с приточного воздуха передается при повороте ротора вытяжному воздуху. Адиабатический увлажнитель вытяжного воздуха обеспечивает косвенное адиабатическое охлаждение вытяжного воздуха ~ на 6°C, и предназначен для увеличения перепада температур на входах в роторный рекуператор что обеспечивает увеличение фактического перепада температур на выходах из роторного рекуператора-теплообменника:

- на охлаждение приточного воздуха °C;

- на нагревание вытяжного воздуха °C.

При этом в теплый период года

где - - сухая эффективность рекуперации теплоты роторного теплообменника, (в долях ед.), - температура вытяжного (удаляемого) воздуха на выходе из адиабатического увлажнителя, т.е. на входе в рекуператор-охладитель, °C, tвх - температура приточного воздуха на входе в рекуператор-охладитель, °C, tвх=t2.

В статье рассматривается режим охлаждения приточного воздуха, который в соответствии с приведенным графиком процесса на i-d-диаграмме осуществляется при постоянных значениях температуры наружного воздуха t1=31°C и вытяжного воздуха t5=25°C, имеющих влагосодержание d1=11,9 г/кг сух. возд. и d5=10,3 г/кг сух. возд.

Система охлаждения DEC, используемая в кондиционере-прототипе, обеспечивает при t1=31°C и t5=25°C получение заданных значений температуры приточного воздуха t4=19°C и относительной влажности ϕ4=60% на выходе из адиабатического увлажнителя (нагревание приточного воздуха в вентиляторе не учитывается).

Указанные параметры приточного воздуха (t4=19°C и ϕ4=60%) при заданных температурах наружного воздуха t1=31°C и t5=25°C вытяжного воздуха, имеющих влагосодержания d1=11,9 и d5=10,3 г/кг сух. возд. в статье предлагается осуществлять:

1) при косвенном охлаждении приточного и вытяжного воздуха адиабатическими увлажнителями на перепад температур Δtохл=6°C, который обеспечивает получение температур:

- вытяжного воздуха на входе в рекуператор-охладитель приточного воздуха

- приточного воздуха на выходе из рекуператора-охладителя

2) при значениях сухой эффективности рекуперации теплоты рекуператора-осушителя приточного воздуха и рекуператора-охладителя приточного воздуха которые обеспечивают получение температур:

- приточного воздуха на выходе из рекуператора-осушителя:

- вытяжного воздуха на выходе из рекуператора-охладителя приточного воздуха, который одновременно нагревает вытяжной воздух с температуры t6 до t7

- вытяжного воздуха на выходе из регенеративного воздухонагревателя

- вытяжного воздуха на выходе из рекуператора-осушителя приточного воздуха

Несмотря на большое количество совпадающих признаков прототипа и заявляемого решения, отсутствие в прототипе отличительных признаков последнего не обеспечивает получение технического результата - обеспечение нулевого энергопотребления на нагревание и охлаждение приточного воздуха по следующим причинам.

1. Кондиционер-прототип имеет одну линию вытяжки с температурой вытяжного воздуха производственного помещения в холодный период года t5=18°C и влагосодержанием d5=6,42 г/кг сух. возд., которая требует для нагревания приточного воздуха в DEC-системе до конечной температуры t4=15°C и его относительной влажности ϕ4=0,868÷0,832 при изменении температуры наружного воздуха в диапазоне t1=10÷(-30)°C наличия регенеративного воздухонагревателя вытяжного воздуха, т.е. не обеспечивает нулевое энергопотребление на нагревание приточного воздуха в холодный период года.

2. Кондиционер-прототип имеет одну линию вытяжки с температурой вытяжного воздуха производственного помещения в теплый период года t5=18÷24°C и влагосодержанием d5=6,42÷9,33 г/кг сух. возд., которая требует для охлаждения приточного воздуха в DEC-системе до конечной температуры t4=21°C и его относительной влажности ϕ4=0,784÷0,932 при изменении температуры наружного воздуха в диапазоне t1=11÷32°C наличия регенеративного воздухонагревателя вытяжного воздуха, т.е. не обеспечивает нулевое энергопотребление на охлаждение приточного воздуха в теплый период года.

По п. 1 недостатков кондиционера-прототипа.

Необходимость наличия регенеративного воздухонагревателя в линии вытяжки кондиционера-прототипа в холодный период года обусловлена тем, что конечная температура нагретого приточного воздуха t4=15°C, получаемая в кондиционере при температуре вытяжного воздуха t5=18°C и наружного воздуха t1=10÷(-30)°C обеспечивается за счет дополнительного нагревания вытяжного воздуха в регенеративном нагревателе до температуры t8=70°C, т.е. на перепад температур

При t8=70°C расчетная мощность регенеративного воздухонагревателя Np, кВт прямо пропорциональна перепаду температур на нагревание вытяжного воздуха и массовому потоку сухого вытяжного воздуха кг/ч.

Наличие только одной линии вытяжки в кондиционере-прототипе с ее последовательным проходом через рекуператор-охладитель и рекуператор-осушитель не позволяет при подаче в рекуператор-осушитель вытяжного воздуха с температурой t8=70°C и влагосодержанием d8=6,42 г/кг сух. возд. обеспечить получение конечной температуры приточного воздуха t4=15°C и относительной влажности ϕ4=0,868÷0,832% при изменении температуры наружного воздуха в диапазоне t1=10÷(-30)°C без применения воздухонагревателя вытяжного воздуха.

По п. 2 недостатков кондиционера-прототипа.

Необходимость наличия регенеративного воздухонагревателя в линии вытяжки кондиционера-прототипа в теплый период года обусловлена тем, что конечная температура охлажденного приточного воздуха t4=21°C, получаемая в кондиционере при температуре вытяжного воздуха t5=18÷24°C и наружного воздуха t1=11÷32°C обеспечивается за счет дополнительного нагревания вытяжного воздуха в регенеративном нагревателе до температуры t8=70°C, т.е. на перепад температур

Наличие только одной линии вытяжки в кондиционере-прототипе с ее последовательным проходом через рекуператор-охладитель и рекуператор-осушитель не позволяет при подаче в рекуператор-осушитель вытяжного воздуха с температурой t8=70°C и влагосодержанием d8=6,42÷9,33 г/кг сух. возд. обеспечить получение конечной температуры приточного воздуха t4=21°C и относительной влажности ϕ4=0,784÷0,932% при изменении температуры наружного воздуха в диапазоне t1=11÷32°C без применения воздухонагревателя вытяжного воздуха.

Задача создания кондиционера с трехроторной системой осушительного и испарительного охлаждения - Desiccative and Evaporative Cooling (DEC), обеспечивающей энергосберегающие режимы нагревания и охлаждения приточного воздуха до заданных значений температуры и относительной влажности в производственных помещениях заводов, на осуществление которой направлено заявляемое решение, состояла в дальнейшем усовершенствовании известной конструкции кондиционера с DEC-системой охлаждения приточного воздуха, и получении технического результата - обеспечение нулевого энергопотребления на нагревание и охлаждение приточного воздуха:

- на нагревание приточного воздуха в холодный период года до конечной температуры t5=15°C и его относительной влажности ϕ5=0,868÷0,832 при температуре вытяжного воздуха, удаляемого из производственного помещения t6=18°C, влагосодержании d6=6,42 г/кг сух. возд. и изменении температуры наружного воздуха в диапазоне t1=10÷(-30)°C без адиабатического увлажнения вытяжного воздуха;

- на охлаждение приточного воздуха в теплый период года до конечной температуры t5=21°C и его относительной влажности ϕ5=0,784÷0,801 при температуре вытяжного воздуха, удаляемого из производственного помещения t6=18°C, влагосодержании d6=6,42 г/кг сух. возд. и изменении температуры наружного воздуха в диапазоне t1=11÷25°C без адиабатического увлажнения вытяжного воздуха;

- на охлаждение приточного воздуха в теплый период года до конечной температуры t5=21°C и его относительной влажности ϕ5=0,848÷0,932 при температуре вытяжного воздуха, удаляемого из производственного помещения t13=19÷24°C, влагосодержании d13=6,84÷9,33 г/кг сух. возд. и изменении температуры наружного воздуха в диапазоне t1=26÷32°C.

Достижение вышеуказанного технического результата обеспечивается тем, что кондиционер с трехроторной системой осушительного и испарительного охлаждения, содержащий приточную камеру и основную вытяжную камеру удаляемого из производственного помещения воздуха, разделенные между собой горизонтальной промежуточной перегородкой с основным и дополнительным окнами, охладитель приточного воздуха, выполненный в виде системы осушительного и испарительного охлаждения, состоящей из двух роторных рекуператоров - рекуператора-осушителя и рекуператора-охладителя, и двух адиабатических увлажнителей приточного и вытяжного воздуха с подводящими водопроводами деминерализованной воды, один из которых размещен в приточной камере на выходе из рекуператора-охладителя, а другой - в основной вытяжной камере на входе в рекуператор-охладитель, при этом рекуператор-осушитель выполнен в виде роторного регенератора адсорбционного типа, который встроен в основное окно горизонтальной промежуточной перегородки, а рекуператор-охладитель - в виде роторного теплообменника с инвертором и контроллером, который встроен в дополнительное окно горизонтальной промежуточной перегородки и совместно с рекуператором-осушителем имеют противоположно направленные линии притока наружного воздуха и вытяжки удаляемого из производственного помещения воздуха, приточная камера содержит входной и выпускной патрубки, воздухоочиститель, установленный на входе в камеру, и вентиляторный блок, основная вытяжная камера содержит верхнюю панель, входной и выпускной патрубки, воздухоочиститель, установленный на входе в камеру, и вентиляторный блок, установленный на выходе из камеры, отличающийся тем, что кондиционер снабжен дополнительной вытяжной камерой и окном, размещенным в верхней панели основной вытяжной камеры между рекуператором-осушителем и рекуператором-охладителем, дополнительная вытяжная камера размещена над верхней панелью основной вытяжной камеры и содержит верхнюю панель, входной и выпускной патрубки, воздухоочиститель, размещенный на входе в камеру, роторный рекуператор-теплообменник с инвертором и вентиляторный блок, размещенный на выходе из камеры, при этом роторный рекуператор-теплообменник встроен в окно верхней панели основной вытяжной камеры, герметично установлен между горизонтальной промежуточной перегородкой кондиционера и верхней панелью дополнительной вытяжной камеры, имеет противоположно направленные линии вытяжки горячего воздуха, и вытяжки удаляемого из производственного помещения воздуха и обеспечивает нагревание вытяжного воздуха, удаляемого из производственного помещения, на перепад температур, образуемый при работе кондиционера, между требуемой температурой вытяжного воздуха на входе в рекуператор-осушитель и температурой вытяжного воздуха на выходе из рекуператора-охладителя.

Доказательство существенности отличий заявляемого кондиционера и связь отличительных признаков с достигаемым техническим результатом раскрывается в следующем порядке.

1. Обеспечение нулевого энергопотребления на нагревание приточного воздуха в холодный период года до конечной температуры приточного воздуха t5=15°C и его относительной влажности ϕ5=0,868÷0,832 при температуре вытяжного воздуха, удаляемого из производственного помещения t6=18°C, его влагосодержании d6=6,42 г/кг сух. возд. и изменении температуры наружного воздуха в диапазоне t1=10÷(-30)°C без адиабатического увлажнения вытяжного воздуха.

2. Обеспечение нулевого энергопотребления на охлаждение приточного воздуха в теплый период года до конечной температуры приточного воздуха t5=21°C и его относительной влажности ϕ5=0,784÷0,801 при температуре вытяжного воздуха, удаляемого из производственного помещения t6=18°C, его влагосодержании d6=6,42 г/кг сух. возд. и изменении температуры наружного воздуха в диапазоне t1=11÷25°C без адиабатического увлажнения вытяжного воздуха.

3. Обеспечение нулевого энергопотребления на охлаждение приточного воздуха в теплый период года до конечной температуры приточного воздуха t5=21°C и его относительной влажности ϕ5=0,848÷0,932 при температуре вытяжного воздуха, удаляемого из производственного помещения t13=19÷24°C, его влагосодержании d13=6,84÷9,33 г/кг сух. возд. и изменении температуры наружного воздуха в диапазоне t1=26-32°C.

Для обоснования нулевого энергопотребления в заявляемом кондиционере на нагревание и охлаждение приточного воздуха разработаны алгоритмы расчета параметров воздушных потоков с формулами для их расчета и результатами расчетов, представленных в табл. 1 и табл. 2. Расчеты, приведенные в табл. 1 и 2, выполнены с применением температур вытяжного воздуха производственного помещения в холодный и теплый период года, характерных для деревообрабатывающих цехов металлургических комбинатов.

В табл. 1 представлены расчеты для холодного периода года (режим 1), а в табл. 2 - расчеты для теплого периода года (режимы 2, 3, 4).

В заявляемом кондиционере в качестве рекуператора-осушителя (рекуператора №1) применен адсорбционный роторный регенератор Fläkt Woods, работающий без инвертора и имеющий значения эффективности рекуперации:

а) по передаваемой теплоте

б) по передаваемой влаге

Приведенные значения и приняты по данным статьи: С.А. Панфилов. Fläkt Woods «Два колеса - Twin Wheel лучше, чем одно», опубликованной в журнале АВОК №5, 2014 г., с. 52-54 и на сайте http:/www.abok.ru/for_spec/articles.php?nid=5896.

На рис. 2 указанной статьи приведена принципиальная схема действующей Twin Wheel System, на которой представлены параметры приточного и вытяжного воздуха в различных зонах вентиляционной установки (температура ti, °C, влагосодержание di, г/кг сух. возд.; относительная влажность ϕi, %) при охлаждении приточного воздуха до конечной температуры t4=15°C при температуре наружного воздуха t1=32°C. При этом приточный и вытяжной воздух на входе и выходе из адсорбционного ротора имели следующие параметры:

а) приточный воздух на входе в адсорбционный ротор: t1=32°C, d1=15 г/кг сух. возд., ϕ1=50%;

б) вытяжной воздух на входе в адсорбционный ротор: t6=19,8°C, d6=9,3 г/кг сух. возд., ϕ6=64,7%;

в) приточный воздух на выходе из адсорбционного ротора: t2=22,7°C, d2=10,6 г/кг сух. возд., ϕ2=61,6%.

На основании приведенных в статье С.А. Панфилова значений параметров приточного воздуха на входе и выходе из адсорбционного ротора и входе вытяжного воздуха в адсорбционный ротор были рассчитаны значения эффективностей рекуперации по передаваемой теплоте и передаваемой влаге адсорбционного ротора Fläkt Woods по известным формулам.

Эффективность рекуперации адсорбционного ротора Fläkt Woods по передаваемой теплоте составила

Эффективность рекуперации адсорбционного ротора Fläkt Woods по передаваемой влаге составила

Полученные значения и для адсорбционного ротора были приняты для расчета параметров воздушных потоков по зонам заявляемого кондиционера, приведенных в табл. 1 и 2.

Нулевое энергопотребление на нагревание приточного воздуха в холодный период года до конечной температуры t5=15°C и его относительной влажности ϕ5=0,868÷0,832 при температуре вытяжного воздуха t6=18°C, его влагосодержании d6=6,42 г/кг сух. возд., и изменении температуры наружного воздуха в диапазоне t1=10÷(-30)°C без адиабатического увлажнения вытяжного воздуха обеспечивается следующими преимуществами заявляемого решения перед прототипом.

1. Заявляемый кондиционер снабжен дополнительной вытяжной камерой с роторным рекуператором-теплообменником (рекуператор №3), который встроен в основную вытяжную камеру вытяжного воздуха производственного помещения и имеет электропривод с инвертором, позволяющий вести процесс кондиционирования приточного воздуха в холодный период года при постоянном значении эффективности рекуперации холода рекуператором-охладителем (рекуператор №2), равном т.е. без применения инвертора в электроприводе роторного рекуператора №2.

Применение инвертора в электроприводе рекуператора-охладителя при температуре вытяжного воздуха на входе рекуператор-охладитель (рекуператор №1), равной t9=70°C=const приводит к получению значений эффективности рекуперации холода рекуператором-охладителем находящимися за пределами технически достижимых значений для роторных рекуператоров-теплообменников, что видно из следующих расчетов.

Температура приточного воздуха на выходе из рекуператора-осушителя (рекуператор №1) которая составляет:

- для t1=10°C t2=10+0,762(70-10)=55,7°C

- для t1=0°C t2=0+0,762(70-0)=53,3°C

- для t1=-30°C t2=-30+0,762(70+30)=46,2°C.

Эффективность рекуперации холода рекуператором №2

которая составляет:

- для t1=10°C и t3=21°C

- для t1=0°C и t3=22,4°C

- для t1=-30°C и t3=23,6°C

2. Рекуператор №3 выполняет функцию регенеративного воздухонагревателя вытяжного воздуха кондиционера-прототипа, но без энергозатрат на нагревание вытяжного воздуха.

Рекуператор №3 рекуперирует теплоту горячего воздуха, поступающего в дополнительную вытяжную камеру, и имеющего температуру и передает ее вытяжному воздуху производственного помещения, нагревая его на перепад температур Δt9,8=t9-t8, °C, образуемый при работе кондиционера между требуемой температурой вытяжного воздуха на входе в рекуператор-осушитель t9, изменяющейся в диапазоне t9=40,8÷69,7°C, и температурой вытяжного воздуха на выходе из рекуператора-охладителя t8, изменяющейся в диапазоне t8=30,4÷40,4°C при эффективности рекуперации холода рекуператора-охладителя (рекуператор №2) и изменении температуры наружного воздуха в холодный период года в диапазоне t1=10÷(-30)°C.

Значения эффективности рекуперации теплоты рекуператора №3 определяемые по формуле для температуры горячего воздуха, поступающего в дополнительную вытяжную камеру, и изменяющейся в диапазоне температуры вытяжного воздуха производственного помещения на входе в роторный рекуператор №3 t8=30,4÷40,4°C и на его выходе t9=40,8÷69,7°C, составляют:

Полученные значения эффективности рекуператора №3 обеспечиваются инвертором рекуператора №3 и являются технически достижимыми для роторного рекуператора-теплообменника.

3. Наличие в заявляемом кондиционере линии дополнительной вытяжки горячего воздуха, подаваемого на рекуператор №3, и имеющего температуру, изменяющуюся в диапазоне t12=90÷80°C, обеспечивает при температуре наружного воздуха, изменяющейся в диапазоне t1=11÷25°C требуемое охлаждение приточного воздуха одним рекуператором-охладителем (рекуператор №2) без применения адиабатического увлажнения вытяжного воздуха, обеспечивающего дополнительное косвенное охлаждение вытяжного воздуха.

При использовании заявляемого кондиционера только в холодный период года заявляемый кондиционер выполняется без адиабатического увлажнителя вытяжного воздуха и без инвертора в электроприводе роторного рекуператора-охладителя, что снижает начальную стоимость кондиционера и эксплуатационные затраты на адиабатическое увлажнение.

Движение воздушных потоков в заявляемом кондиционере в холодный период года (режим №1) проиллюстрировано на фиг. 4.

Отсутствие в основной вытяжной камере заявляемого кондиционера регенеративного воздухонагревателя, вызывающего энергозатраты, обеспечение нагрева вытяжного воздуха рекуператором №3 с температуры t8=30÷40,4°C до температуры t9=40,8÷69,7°C при изменении температуры наружного воздуха в диапазоне t1=10÷(-30)°C, за счет подачи в рекуператор №3 горячего воздуха, имеющего температуру t12=90÷80°C, и полученного с использованием отходящих дымовых газов, ранее выбрасывавшихся в атмосферу, а также работа рекуператоров №1, 2, 3 в технически достижимом диапазоне эффективностей рекуперации теплоты обеспечивают нулевое энергопотребление на нагревание приточного воздуха в холодный период года без адиабатического увлажнения вытяжного воздуха.

Получение указанных преимуществ в заявляемом кондиционере обеспечивается всей совокупностью признаков заявляемого решения.

Нулевое энергопотребление на охлаждение приточного воздуха в теплый период года до конечной температуры t5=21°C и его относительной влажности ϕ5=0,784÷0,801 при температуре вытяжного воздуха, удаляемого из производственного помещения t6=18°C, его влагосодержании d6=6,34 г/кг сух. возд., и изменении температуры наружного воздуха в диапазоне t1=11÷25°C без адиабатического увлажнения вытяжного воздуха обеспечивается следующими преимуществами заявляемого решения перед прототипом.

1. Заявляемый кондиционер снабжен дополнительной вытяжной камерой с роторным рекуператором-теплообменником (рекуператор №3), который встроен в основную вытяжную камеру вытяжного воздуха производственного помещения и имеет электропривод с инвертором, позволяющий вести процесс кондиционирования приточного воздуха при температуре наружного воздуха, изменяющейся в диапазоне t1=11÷25°C, при постоянном значении температуры вытяжного воздуха на входе в рекуператор-осушитель (рекуператор №1), равной t9=70°C, которая при эффективности рекуперации теплоты рекуператора №1 обеспечивает на выходе из рекуператора №1 получение температуры приточного воздуха (п. 39, табл. 2) t2=(55,9÷59,3)°C, которая в сочетании с температурой приточного воздуха на выходе из рекуператора-охладителя (рекуператор №2) (п. 38, табл. 2) t3=(34,9÷33,2)°C и температурой вытяжного воздуха на входе в рекуператор №2 t7=18°C обеспечивает требуемое охлаждение приточного воздуха только в рекуператоре-охладителе без адиабатического увлажнения вытяжного воздуха, обеспечивающего дополнительное косвенное охлаждение вытяжного воздуха. При этом эффективность рекуперации холода рекуператором №2, определяемая по формуле

составит (п. 40, табл. 2)

- для t1=11°C

- для t1=25°C

Полученные значения обеспечиваются инвертором электропривода роторного рекуператора №2 и являются технически достижимыми значениями для роторных теплообменников.

2. Рекуператор №3 выполняет функцию регенеративного воздухонагревателя вытяжного воздуха кондиционера-прототипа, но без энергозатрат на нагревание вытяжного воздуха.

Рекуператор №3 рекуперирует теплоту горячего воздуха, поступающего в дополнительную вытяжную камеру и имеющего температуру и передает ее вытяжному воздуху производственного помещения, нагревая его на перепад температур Δt9,8=t9-t8, °C, образуемый при работе кондиционера между требуемой температурой вытяжного воздуха на входе в рекуператор-осушитель t9=70°C и температурой вытяжного воздуха на выходе из рекуператора-охладителя t8, изменяющейся в диапазоне t8=39÷44,1°C при изменении температуры наружного воздуха в теплый период года в диапазоне t1=11-25°C.

Значения эффективности рекуперации теплоты рекуператора №3 определяемые по формуле для температуры горячего воздуха, поступающего в дополнительную вытяжную камеру, и изменяющейся в диапазоне температуры вытяжного воздуха на входе в роторный рекуператор №3 t8=39÷44,1°C и на его выходе t9=70°C составляют:

Полученные значения эффективности рекуперации теплоты рекуператора №3 обеспечиваются инвертором рекуператора №3 и являются технически достижимыми для роторного рекуператора-теплообменника.

Движение воздушных потоков в заявляемом кондиционере в теплый период года (режим №2) проиллюстрировано на фиг. 4.

Отсутствие в основной вытяжной камере заявляемого кондиционера регенеративного воздухонагревателя, вызывающего энергозатраты, обеспечение нагрева вытяжного воздуха рекуператором №3 с температуры t8=39÷44,1°C до температуры t9=70°C при изменении температуры наружного воздуха в диапазоне t1=11÷25°C, за счет горячего воздуха, имеющего температуру, изменяющуюся в диапазоне t12=90÷80°C, и полученного с использованием отходящих дымовых газов, ранее выбрасывавшихся в атмосферу, а также работа рекуператоров №1, 2, 3 в технически достижимом диапазоне эффективностей рекуперации теплоты обеспечивают нулевое энергопотребление на охлаждение приточного воздуха в теплый период года при температуре наружного воздуха, изменяющейся в диапазоне t1=11÷25°C без адиабатического увлажнения вытяжного воздуха.

Получение указанных преимуществ в заявляемом кондиционере обеспечивается всей совокупностью признаков заявляемого решения.

Нулевое энергопотребление на охлаждение приточного воздуха в теплый период до конечной температуры t5=21°C и его относительной влажности ϕ5=0,848÷0,932 при температуре вытяжного воздуха, удаляемого из производственного помещения t13=19÷24°C, его влагосодержании d13=6,84÷9,33 г/кг сух. возд., и изменении температуры наружного воздуха в диапазоне t1=26÷32°C обеспеч