Способ однопозиционного определения угловых координат на источник лазерного излучения

Иллюстрации

Показать все

Способ однопозиционного определения угловых координат заключается в применении в качестве фотоприемного устройства матричного фотоприемника, осуществляющего прием суммарного излучения сигнальной волны и волны гетеродина. В результате суперпозиции сигнальной волны и волны гетеродина на поверхности МФП формируется изображение в виде интерференционных полос. По ширине интерференционных полос и угла их наклона определяют угловые координаты источника лазерного излучения. Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение точности определения направления на источник лазерного излучения. 2 ил.

Реферат

Изобретение относится к области оценки угловых координат источника оптического излучения и может быть использовано в системах обеспечения вхождения в связь, нацеливания оптических лучей, траекторных измерений.

Наиболее близким по технической сущности (прототипом) к заявляемому изобретению является способ однопозиционного измерения координат источника лазерного излучения (ИЛИ) (см., например, А.Ю. Козирацкий, Ю.Л. Козирацкий, Р.В. Перевозов. Патент №2269795, Россия, G01S 17/06. Бюл. №4 от 10.02.2006. Способ однопозиционного измерения координат источника лазерного излучения и устройство для его реализации. - М: РОСПАТЕНТ, 2006), основанный на приеме лазерного излучения гетеродинным приемным устройством (ГПУ), осуществлении сканирования поля зрения в заданном секторе обзора за счет изменения положения фазового фронта сигнала гетеродина, определении момента времени достижения полезным сигналом максимального значения. Основным недостатком способа является наличие временного интервала, затрачиваемого на сканирование поля зрения гетеродинным приемником в заданном секторе, что в случае изменения угловых координат ИЛИ за период сканирования приведет к неточности их оценки. Использование сканирующих приводов также снижает точность определения угловых координат ИЛИ и увеличивает время их измерения.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение точности определения направления на ИЛИ.

Технический результат достигается тем, что в известном способе однопозиционного определения угловых координат на ИЛИ, основанном на приеме ИЛИ и смешивании его с опорным излучением, определяют параметры изображения смешиваемых излучений, по значениям параметров смешиваемых излучений измеряют ширину интерференционных полос и угол их наклона, по значениям которых определяют угловые координаты ИЛИ.

Сущность изобретения заключается в применении в качестве фотоприемного устройства матричного фотоприемника (МФП), осуществляющего прием суммарного излучения сигнальной волны и волны гетеродина. В результате суперпозиции сигнальной волны и волны гетеродина на поверхности МФП формируется изображение в виде интерференционных полос. По значениям параметров изображения суммарного поля определяют ширину интерференционных полос и угол их наклона. По значению измеренных характеристик интерференционных полос определяют угловые координаты ИЛИ.

На фиг.1 приведена схема, поясняющая способ (где обозначены: 1 - ГПУ; 2 - сигнальная волна от ИЛИ; 3 - оптическая система; 4 - полупрозрачное зеркало; 5 - гетеродин; 6 - опорная волна гетеродина; 7 - суммарная волна сигнальной и опорной волн; 8 - МФП; 9 - фоточувствительная поверхность МФП, 10 - сигнал с выхода МФП). Оптическая волна от ИЛИ 2 принимается ГПУ 1, через оптическую систему 3 падает на полупрозрачное зеркало 4 и смешивается с опорной волной гетеродина 5. Суммарная волна 7 падает на фоточувствительную поверхность 9 МФП 8, образуя изображение интерференционных полос 9. В результате выходные сигналы 10 МФП 9 будут характеризовать изображения с интерференционными характеристиками суммарной волны 7. По координатам фоточувствительных элементов МФП 8, имеющие максимальные значения выходных сигналов 10, определяют ширину интерференционных полос Δх и их наклон α, по значениям которых определяют угловые координаты ИЛИ.

На фиг.2 приведена схема устройства, реализующего предложенный способ. Устройство состоит из ГПУ 1 (соответствует фигуре 1) и микроконтроллера (МКР) 11.

Устройство функционирует следующим образом. На вход ГПУ 1, содержащего МФП, поступает сигнальная оптическая волна ИЛИ. В ГПУ 1 сигнальная волна смешивается с опорной волной гетеродина, суммарный сигнал МФП преобразуется в изображение, параметры которого поступают в МКР 11, МКР 11 осуществляет цифровую обработку интерференционного изображения, измеряет ширину интерференционных полос и угол их наклона, по их значениям определяют угловые координаты ИЛИ по формулам (1) и (2):

где λ - длина волны излучения, Δх - ширина интерференционных полос, α - угол наклона интерференционных полос, k - коэффициент преобразования, учитывающий характеристики входной оптической системы при формировании изображения ИЛИ на фоточувствительной поверхности МФП, β - угол места ИЛИ, θ - азимут ИЛИ.

Предлагаемое техническое решение является новым, поскольку из общедоступных сведений не известен способ однопозиционного определения угловых координат на ИЛИ, основанный на приеме излучения ИЛИ и смешивании его с опорным излучением, определении параметров изображения смешиваемых излучений, по значениям параметров изображения смешиваемых излучений измерении ширины интерференционных полос и угла их наклона, определении по их значениям угловых координат ИЛИ.

Предлагаемое техническое решение практически применимо, так как для его реализации могут быть использованы типовые оптические и радиотехнические узлы и устройства. Например, в качестве МФП - оптико-электронный координатор матричного типа, а для цифровой обработки изображений может быть использован микроконтроллер.

Способ однопозиционного определения угловых координат на источник лазерного излучения, основанный на приеме излучения источника лазерного излучения и смешивании его с опорным излучением, отличающийся тем, что определяют параметры изображения смешиваемых излучений, по значениям параметров изображения смешиваемых излучений измеряют ширину интерференционных полос и угол их наклона, по значениям которых определяют угловые координаты источника лазерного излучения.