Методика инициации порообразования

Иллюстрации

Показать все

В изобретении представлена методика (способ) инициации образования пор в полимерном материале, который содержит термопластичную композицию. Термопластичная композиция содержит добавки микровключения и нановключения, диспергированные в непрерывной фазе, которая включает матричный полимер. Для инициации образования пор полимерный материал подвергают механическому вытягиванию (например, изгибанию, растягиванию, скручиванию и т.д.) для придания энергии поверхности раздела непрерывной фазы и добавкам включения, что обеспечивает возможность отделения добавок включения от поверхности раздела с созданием пористой сети. Материал также вытягивают в твердом состоянии в том смысле, что его поддерживают при температуре ниже температуры плавления матричного полимера. 25 з.п. ф-лы, 13 ил., 17 табл., 21 пр.

Реферат

РОДСТВЕННЫЕ ЗАЯВКИ

ДАННАЯ ЗАЯВКА ИСПРАШИВАЕТ ПРИОРИТЕТ СОГЛАСНО ПРЕДВАРИТЕЛЬНЫМ ЗАЯВКАМ НА ПАТЕНТ США С РЕГИСТРАЦИОННЫМИ НОМЕРАМИ 61/833989, ПОДАННОЙ 12 ИЮНЯ 2013 Г., И 61/907556, ПОДАННОЙ 22 НОЯБРЯ 2013 Г., КОТОРЫЕ ПОЛНОСТЬЮ ВКЛЮЧЕНЫ В НАСТОЯЩИЙ ДОКУМЕНТ ПОСРЕДСТВОМ ССЫЛКИ НА НИХ.

Предпосылки изобретения

Были приложены значительные усилия для получения полимерных материалов низкой плотности для улучшения использования природных ресурсов и снижения углеродного следа в конечных продуктах. Типичный подход в получении таких материалов низкой плотности заключается во вспенивании полимера с помощью физических или химических газообразующих средств, создающих заполненные газом поры во всем объеме. Химические газообразующие средства представляют собой соединения, подвергающиеся химической реакции, при которой выделяется газ, который создает пористую структуру по всему объему полимера. Физические газообразующие средства обычно представляют собой сжатые газы, которые диспергированы в полимере и расширяются, образуя поры. Независимо от этого, типичные процессы вспенивания вызывают ориентацию низкомолекулярных соединений, поскольку образование пор происходит когда полимер находится в расплавленном состоянии. Это снижает прочность расплава, тем самым приводя к трещинам в высокопроизводительных производственных процессах с высокими скоростями деформации (например, прядении волокон, пленкообразовании, формовке и т.д.).

В связи с этим в настоящее время существует потребность в улучшенной методике для создания пор в полимерных материалах.

Сущность изобретения

В соответствии с одним вариантом осуществления по настоящему изобретению раскрыт способ инициации образования пор в полимерном материале, который содержит термопластичную композицию. Термопластичная композиция включает непрерывную фазу, в которой добавка микровключения и добавка нановключения диспергированы в виде дискретных доменов, при этом непрерывная фаза включает матричный полимер. Способ включает механическое вытягивание полимерного материала в твердом состоянии с образованием пористой сети, где пористая сеть включает множество нанопор со средним размером поперечного сечения приблизительно 800 нанометров или меньше.

Другие признаки и аспекты настоящего изобретения более подробно рассматриваются ниже.

Краткое описание графических материалов

Полное и достаточное описание настоящего изобретения, включая лучший способ его осуществления, для специалиста в данной области техники изложено ниже, в частности, в оставшейся части описания, со ссылками на соответствующие фигуры, на которых:

фигура 1 представляет собой вид в перспективе рифленых роликов, которые можно использовать для механического вытягивания полимерного материала в соответствии с одним вариантом осуществления по настоящему изобретению;

фигура 2 представляет собой вид в поперечном разрезе, показывающий зацепление между двумя из рифленых роликов с фигуры 1;

фигуры 3-4 представляют собой СЭМ-микрофотографии невытянутой пленки из примера 7 (пленка была отрезана параллельно ориентации машинного направления);

фигуры 5-6 представляют собой СЭМ-микрофотографии вытянутой пленки из примера 7 (пленка была отрезана параллельно ориентации машинного направления);

фигуры 7-8 представляют собой СЭМ-микрофотографии невытянутой пленки из примера 8, где пленка была отрезана перпендикулярно машинному направлению на фиг. 7 и параллельно машинному направлению на фиг. 8;

фигуры 9-10 представляют собой СЭМ-микрофотографии вытянутой пленки из примера 8 (пленка была отрезана параллельно ориентации машинного направления);

фигура 11 представляет собой СЭМ-микрофотографию (1000X) волокна из примера 9 (полипропилен, полимолочная кислота и полиэпоксид) после разлома с заморозкой в жидком азоте;

фигура 12 представляет собой СЭМ-микрофотографию (5000X) волокна из примера 9 (полипропилен, полимолочная кислота и полиэпоксид) после разлома с заморозкой в жидком азоте; и

фигура 13 представляет собой СЭМ-микрофотографию (10000X) поверхности волокна из примера 9 (полипропилен, полимолочная кислота и полиэпоксид).

Повторяющееся использование ссылочных позиций в настоящем описании и графических материалах предназначено для представления одинаковых или аналогичных признаков или элементов настоящего изобретения.

Подробное описание типичных вариантов осуществления

Далее будет представлено подробное описание со ссылками на различные варианты осуществления по настоящему изобретению, один или несколько примеров которых приведены ниже. Каждый пример приведен для пояснения настоящего изобретения и не ограничивает его. В сущности, специалистам в данной области техники должно быть очевидно, что по отношению к настоящему изобретению могут быть выполнены различные модификации и изменения без отклонения от объема или сущности настоящего изобретения. Например, отличительные признаки, показанные или описанные как часть одного варианта осуществления, могут быть использованы в другом варианте осуществления для получения еще одного варианта осуществления. Таким образом, имеется в виду, что настоящее изобретение охватывает такие модификации и изменения, которые подпадают под объем прилагаемой формулы изобретения и ее эквивалентов.

В целом, настоящее изобретение направлено на методику инициации образования пор в полимерном материале, который содержит термопластичную композицию. Термопластичная композиция содержит добавки микровключения и нановключения, диспергированные в непрерывной фазе, которая включает матричный полимер. Для инициации образования пор полимерный материал подвергают механическому вытягиванию (например, изгибанию, растягиванию, скручиванию и т.д.) для придания энергии поверхности раздела непрерывной фазы и добавок включения, что обеспечивает возможность отделения добавок включения от поверхности раздела с созданием пористой сети. Материал также вытягивают в твердом состоянии в том смысле, что его поддерживают при температуре (“температура вытягивания”) ниже температуры плавления матричного полимера. Помимо прочего, это позволяет обеспечить неизменность полимерных цепей до такой степени, чтобы пористая сеть стала нестабильной. Например, материал можно вытягивать при температуре от приблизительно -50°C до приблизительно 125°C, в некоторых вариантах осуществления от приблизительно -25°C до приблизительно 100°C и в некоторых вариантах осуществления от приблизительно -20°C до приблизительно 50°C. Температура вытягивания может также быть ниже температуры стеклования компонента, имеющего самую высокую температуру стеклования (например, матричного полимера, добавки микровключения и т.д.). Например, температура вытягивания может быть по меньшей мере приблизительно на 10°C, в некоторых вариантах осуществления по меньшей мере приблизительно на 20°C и в некоторых вариантах осуществления по меньшей мере приблизительно на 30°C ниже температуры стеклования матричного полимера и/или добавки микровключения.

Добавки микровключения и нановключения также можно выбрать таким образом, чтобы они были по меньшей мере частично несовместимыми с матричным полимером с тем, чтобы они становились диспергированными в непрерывной фазе в виде дискретных микроразмерных и наноразмерных фазовых доменов, соответственно. Таким образом, в ходе механического вытягивания, когда композиция подвергается деформирующему и удлиняющему натяжению, эти микроразмерные и наноразмерные фазовые домены способны взаимодействовать уникальным образом с созданием сети пор, значительная часть которых имеют нанометровый размер. А именно, полагают, что удлиняющее натяжение может инициировать интенсивные локализованные зоны сдвига и/или зоны интенсивности напряжения (например, нормальные напряжения) около микроразмерных дискретных фазовых доменов в результате концентраций напряжения, которые возникают в результате несовместимости материалов. Эти зоны интенсивности сдвига и/или напряжения вызывают некоторое начальное нарушение адгезии у полимерной матрицы вплотную к микроразмерным доменам. Однако примечательно, что локализованные зоны интенсивности сдвига и/или напряжения также можно создать около наноразмерных дискретных фазовых доменов, которые перекрываются с микроразмерными зонами. Такое перекрытие зон интенсивности сдвига и/или напряжения вызывает возникновение дальнейшего нарушения адгезии в полимерной матрице, таким образом создавая значительное число нанопор вплотную к наноразмерным доменам и/или микроразмерным доменам. Кроме того, поскольку поры располагаются вплотную к дискретным доменам, между границами пор может образовываться мостик, функционирующий в качестве внутренних структурных “креплений”, которые стабилизируют сеть и повышают ее способность к рассеиванию энергии.

С помощью вышеуказанных методик можно образовать уникальную пористую сеть в полимерном материале с тем, чтобы средний процентный объем, занимаемый порами внутри заданной единицы объема материала, мог составлять от приблизительно 15% до приблизительно 80% на см3, в некоторых вариантах осуществления от приблизительно 20% до приблизительно 70%, а в некоторых вариантах осуществления от приблизительно 30% до приблизительно 60% на кубический сантиметр материала. С таким объемом пор данный материал может иметь относительно низкую плотность, как например, приблизительно 1,2 грамма на кубический сантиметр (“г/см3”) или меньше, в некоторых вариантах осуществления приблизительно 1,0 г/см3 или меньше, в некоторых вариантах осуществления от приблизительно 0,2 г/см3 до приблизительно 0,8 г/см3 и в некоторых вариантах осуществления от приблизительно 0,1 г/см3 до приблизительно 0,5 г/см3. Значительная часть пор в пористой сети также имеют “нанометровый” размер (“нанопоры”), как например, поры со средним размером поперечного сечения приблизительно 800 нанометров или меньше, в некоторых вариантах осуществления от приблизительно 5 до приблизительно 700 нанометров и в некоторых вариантах осуществления от приблизительно 10 до приблизительно 500 нанометров. Выражение “размер поперечного сечения” обычно относится к характеристическому размеру (например, ширине или диаметру) поры, который практически перпендикулярен ее главной оси (например, длине) и также типично практически перпендикулярен направлению усилия, прилагаемого во время вытягивания. Такие нанопоры могут, например, составлять приблизительно 15 об. % или больше, в некоторых вариантах осуществления приблизительно 20 об. % или больше, в некоторых вариантах осуществления от приблизительно 30 об. % до 100 об. % и в некоторых вариантах осуществления от приблизительно 40 об. % до приблизительно 90 об. % от общего объема пор в полимерном материале.

Помимо сниженной плотности, нанопористая структура может также наделять полученный полимерный материал рядом функциональных преимуществ. Например, такая структура может способствовать ограничению потока текучих сред сквозь материал и быть в целом непроницаемой для текучих сред (например, жидкой воды), тем самым позволяя материалу изолировать поверхность от проникновения воды. В этом отношении полимерный материал может иметь относительно высокое значение гидростатического давления приблизительно 50 сантиметров (“см”) или больше, в некоторых вариантах осуществления приблизительно 100 см или больше, в некоторых вариантах осуществления приблизительно 150 см или больше, а в некоторых вариантах осуществления от приблизительно 200 см до приблизительно 1000 см, определенные в соответствии с ATTCC 127-2008. Могут также быть достигнуты другие выгодные свойства. Например, полученный полимерный материал может быть обычно проницаем для водяных паров. Проницаемость материала для водяного пара можно охарактеризовать его относительно высокой скоростью проникновения водяных паров (“СПВП”), которая представляет собой скорость, с которой водяной пар проникает сквозь материал, измеренную в единицах граммах на квадратный метр за 24 часа (г/м2/24 ч.). Например, полимерный материал может проявлять СПВП приблизительно 300 г/м2 - 24 часа или больше, в некоторых вариантах осуществления приблизительно 500 г/м2 - 24 часа или больше, в некоторых вариантах осуществления приблизительно 1000 г/м2 - 24 часа или больше, и в некоторых вариантах осуществления от приблизительно 3000 до приблизительно 15000 г/м2 - 24 часа, определенные в соответствии с ASTM E96/96M-12, Procedure B или INDA Test Procedure IST-70.4 (01). Полимерный материал может также функционировать в качестве теплового барьера, проявляющего относительно низкую теплопроводность, такую как приблизительно 0,40 ватт на метр-кельвин (“Вт/м-К”) или меньше, в некоторых вариантах осуществления приблизительно 0,20 Вт/м-К или меньше, в некоторых вариантах осуществления приблизительно 0,15 Вт/м-К или меньше, в некоторых вариантах осуществления от приблизительно 0,01 до приблизительно 0,12 Вт/м-К, а в некоторых вариантах осуществления от приблизительно 0,02 до приблизительно 0,10 Вт/м-К. Необходимо отметить, что материал может достигать таких низких значений теплопроводности при относительно малых значениях толщинах, что может позволить материалу иметь большую степень гибкости и способность принять нужную форму, а также уменьшить объем, который он занимает в изделии. По этой причине полимерный материал может также проявлять относительно низкий “коэффициент теплопередачи”, который равен теплопроводности материала, деленной на его толщину, и выражается в единицах ватт на квадратный метр-кельвин (“Вт/м2К”). Например, материал может проявлять коэффициент теплопередачи приблизительно 1000 Вт/м2К или меньше, в некоторых вариантах осуществления от приблизительно 10 до приблизительно 800 Вт/м2К, в некоторых вариантах осуществления от приблизительно 20 до приблизительно 500 Вт/м2К, а в некоторых вариантах осуществления от приблизительно 40 до приблизительно 200 Вт/м2К. Реальная толщина полимерного материала может зависеть от его конкретной формы, но типично находится в диапазоне от приблизительно 5 микрометров до приблизительно 100 миллиметров, в некоторых вариантах осуществления от приблизительно 10 микрометров до приблизительно 50 миллиметров, в некоторых вариантах осуществления от приблизительно 200 микрометров до приблизительно 25 миллиметров.

Далее будут более подробно описаны различные варианты осуществления настоящего изобретения.

I. Термопластичная композиция

A. Матричный полимер

Как указано выше, термопластическая композиция содержит непрерывную фазу, в которой диспергированы добавки микровключения и нановключения. Непрерывная фаза содержит один или несколько матричных полимеров, которые типично составляют от приблизительно 60 масс. % до приблизительно 99 масс. %, в некоторых вариантах осуществления от приблизительно 75 масс. % до приблизительно 98 масс. %, а в некоторых вариантах осуществления от приблизительно 80 масс. % до приблизительно 95 масс. % термопластичной композиции. Природа матричного полимера (полимеров), используемого для образования непрерывной фазы, не критична и обычно можно применять любой подходящий полимер, такой как cложные полиэфиры, полиолефины, стирольные полимеры, полиамиды и т.д. В определенных вариантах осуществления в композиции для образования полимерной матрицы можно применять, например, сложные полиэфиры. Обычно можно применять любой из множества сложных полиэфиров, таких как сложные алифатические полиэфиры, такие как поликапролактон, сложные полиамидоэфиры, полимолочная кислота (PLA) и ее сополимеры, полигликолевая кислота, полиалкиленкарбонаты (например, полиэтиленкарбонат), поли-3-гидроксибутират (PHB), поли-3-гидроксивалерат (PHV), сополимеры поли-3-гидроксибутират-4-гидроксибутирата, поли-3-гидроксибутират-3-гидроксивалерата (PHBV), сополимер поли-3-гидроксибутирата-3-гидроксигексаноата, сополимер поли-3-гидроксибутирата-3-гидроксиоктаноата, сополимер поли-3-гидроксибутират-3-гидроксидеканоата, сополимер поли-3-гидроксибутирата-3-гидроксиоктадеканоата и алифатические полимеры на основе сукцината (например, полибутиленсукцинат, полибутиленсукцинат адипинат, полиэтиленсукцинат, и т.д.); сложные алифатическо-ароматические coполиэфиры (например, полибутиленадипинаттерефталат, полиэтиленадипинаттерефталат, полиэтиленадипинатизофталат, полибутиленадипинатизофталат, и т.д.); сложные ароматические полиэфиры (например, полиэтилентерефталат, полибутилентерефталат и т.д.); и так далее.

В определенных случаях термопластичная композиция может содержать по меньшей мере один сложный полиэфир, который является жестким по природе и, следовательно, имеет относительно высокую температуру стеклования. Например, температура стеклования (“Tg”) может составлять приблизительно 0°C или больше, в некоторых вариантах осуществления от приблизительно 5°C до приблизительно 100°C, в некоторых вариантах осуществления от приблизительно 30°C до приблизительно 80°C, а в некоторых вариантах осуществления от приблизительно 50°C до приблизительно 75°C. Сложный полиэфир может также иметь температуру плавления от приблизительно 140°C до приблизительно 300°C, в некоторых вариантах осуществления от приблизительно 150°C до приблизительно 250°C, а в некоторых вариантах осуществления от приблизительно 160°C до приблизительно 220°C. Температуру плавления можно определять с помощью дифференциальной сканирующей калориметрии (“DSC”) в соответствии с ASTM D-3417. Температуру стеклования можно определять динамическим механическим анализом в соответствии с ASTM E1640-09.

Одним особенно подходящим жестким сложным полиэфиром является полимолочная кислота, которая обычно может происходить из мономерных блоков любого изомера молочной кислоты, такого как левовращающая молочная кислота (“L-молочная кислота”), правовращающая молочная кислота (“D-молочная кислота”), мезо-молочная кислота или их смеси. Мономерные блоки могут также быть образованы из ангидридов любого изомера молочной кислоты, включая L-лактид, D-лактид, мезо-лактид или их смеси. Можно также применять циклические димеры таких молочных кислот и/или лактидов. Для полимеризации молочной кислоты можно применять любой известный способ полимеризации, такой как поликонденсация или полимеризация с раскрытием цикла. Можно также задействовать небольшое количество средства для удлинения цепи (например, диизоцианатного соединения, эпоксидного соединения или ангидрида кислоты). Полимолочная кислота может быть гомополимером или сополимером, например, содержащим мономерные блоки, происходящие из L-молочной кислоты, и мономерные блоки, происходящие из D-молочной кислоты. Хотя этого и не требуется, степень содержания одного из мономерных блоков, происходящих из L-молочной кислоты, и мономерных блоков, происходящих из D-молочной кислоты, составляет предпочтительно приблизительно 85 моль% или больше, в некоторых вариантах осуществления приблизительно 90 моль% или больше, а в некоторых вариантах осуществления приблизительно 95 моль% или больше. Можно смешивать несколько полимолочных кислот, каждая из которых имеет различное соотношение между мономерным блоком, происходящим из L-молочной кислоты, и мономерным блоком, происходящим из D-молочной кислоты, при произвольном процентном содержании. Естественно, полимолочную кислоту можно также смешивать с другими типами полимеров (например, полиолефинами, сложными полиэфирами и т.д.).

В одном конкретном варианте осуществления полимолочная кислота имеет следующую общую структуру:

Одним конкретным примером подходящего полимера полимолочной кислоты, который можно применять в настоящем изобретении, является коммерчески доступный от Biomer, Inc., Краилинг, Германия) под названием BIOMER™ L9000. Другие подходящие полимеры полимолочной кислоты коммерчески доступны от Natureworks LLC, Миннетонка, Миннесота (NATUREWORKS®) или Mitsui Chemical (LACEA™). Еще одни подходящие полимолочные кислоты описаны в патентах США № 4797468; 5470944; 5770682; 5821327; 5880254 и 6326458.

Полимолочная кислота типично имеет среднечисловую молекулярную массу (“Mn”) в диапазоне от приблизительно 40000 до приблизительно 180000 грамм на моль, в некоторых вариантах осуществления от приблизительно 50000 до приблизительно 160000 грамм на моль, а в некоторых вариантах осуществления от приблизительно 80000 до приблизительно 120000 грамм на моль. Аналогично, полимер также типично имеет среднемассовую молекулярную массу (“Mw”) в диапазоне от приблизительно 80000 до приблизительно 250000 грамм на моль, в некоторых вариантах осуществления от приблизительно 100000 до приблизительно 200000 грамм на моль, а в некоторых вариантах осуществления от приблизительно 110000 до приблизительно 160000 грамм на моль. Отношение среднемассовой молекулярной массы к среднечисловой молекулярной массе (“Mw/Mn”), т.е. “коэффициент полидисперсности”, также является достаточно низким. Например, коэффициент полидисперсности типично варьирует в диапазоне от приблизительно 1,0 до приблизительно 3,0, в некоторых вариантах осуществления от приблизительно 1,1 до приблизительно 2,0, а в некоторых вариантах осуществления от приблизительно 1,2 до приблизительно 1,8. Среднемассовую и среднечисловую молекулярные массы можно определять способами, известными специалистам в данной области.

Полимолочная кислота может также иметь кажущуюся вязкость от приблизительно 50 до приблизительно 600 паскаль-секунд (Па⋅с), в некоторых вариантах осуществления от приблизительно 100 до приблизительно 500 Па⋅с и в некоторых вариантах осуществления от приблизительно 200 до приблизительно 400 Па⋅с, определенную при температуре 190°C и скорости сдвига 1000 сек-1. Показатель текучести расплава полимолочной кислоты (на сухой основе) может также варьировать в диапазоне от приблизительно 0,1 до приблизительно 40 грамм за 10 минут, в некоторых вариантах осуществления от приблизительно 0,5 до приблизительно 20 грамм за 10 минут, а в некоторых вариантах осуществления от приблизительно 5 до приблизительно 15 грамм за 10 минут, определенные при нагрузке 2160 грамм и при 190°C.

Некоторые типы чистых сложных полиэфиров (например, полимолочная кислота) могут поглощать воду из окружающей среды так, что содержание влаги в них составляет от приблизительно 500 до 600 частей на миллион (“ppm”) или даже выше на основе сухой массы исходной полимолочной кислоты. Содержание влаги можно определять с помощью ряда способов, известных в данной области, например, в соответствии с ASTM D 7191-05, как описано ниже. Поскольку присутствие воды во время переработки расплава может гидролитически разрушать сложный полиэфир и снижать его молекулярную массу, иногда желательно осушать сложный полиэфир перед смешиванием. В большинстве вариантов осуществления, например, желательно, чтобы содержание влаги в сложном полиэфире составляло приблизительно 300 частей на миллион ("ppm") или меньше, в некоторых вариантах осуществления приблизительно 200 ppm или меньше, в некоторых вариантах осуществления от приблизительно 1 до приблизительно 100 ppm перед смешиванием с добавками микровключения и нановключения. Сушка сложного полиэфира может проходить, например, при температуре от приблизительно 50°C до приблизительно 100°C, а в некоторых вариантах осуществления от приблизительно 70°C до приблизительно 80°C.

B. Добавка микровключения

Используемое в данном документе выражение “добавка микровключения”, в целом, относится к любому материалу, который способен диспергироваться в полимерной матрице в виде дискретных доменов микрометрового размера. Например, перед вытягиванием домены могут иметь средний размер поперечного среза от приблизительно 0,05 мкм до приблизительно 30 мкм, в некоторых вариантах осуществления от приблизительно 0,1 мкм до приблизительно 25 мкм, в некоторых вариантах осуществления от приблизительно 0,5 мкм до приблизительно 20 мкм и в некоторых вариантах осуществления от приблизительно 1 мкм до приблизительно 10 мкм. Выражение “размер поперечного сечения” обычно относится к характеристическому размеру (например, ширине или диаметру) домена, который практически перпендикулярен его главной оси (например, длине) и также типично практически перпендикулярен направлению усилия, прилагаемого во время вытягивания. Хотя они, как правило, образуются из добавки микровключения, следует также понимать, что микроразмерные домены также могут образовываться из комбинации добавок микровключения и нановключения и/или других компонентов композиции.

Конкретная природа добавки микровключения не критична и может включать жидкости, полутвердые вещества или твердые вещества (например, аморфные, кристаллические или полукристаллические). В определенных вариантах осуществления добавка микровключения является полимерной по природе и характеризуется относительно высокой молекулярной массой для содействия улучшению прочности расплава и устойчивости термопластичной композиции. Как правило, полимер добавки микровключения может быть, в целом, несовместимым с матричным полимером. Таким образом, добавка может стать более диспергированной в виде дискретных фазовых доменов в непрерывной фазе матричного полимера. Дискретные домены способны поглощать энергию, являющуюся результатом воздействия внешней силы, что увеличивает общее сопротивление разрыву и прочность получаемого в результате материала. Домены могут иметь ряд различных форм, таких как эллиптическая, сферическая, цилиндрическая, пластинчатая, трубчатая и т.д. В одном варианте осуществления, например, домены имеют главным образом эллиптическую форму. Физический размер отдельного домена типично достаточно мал, чтобы минимизировать распространение трещин по полимерному материалу при приложении внешнего усилия, но достаточно велик, чтобы инициировать микроскопическую пластическую деформацию и допустить образование зон интенсивности сдвига и/или усилия на включениях частиц и вокруг них.

Хотя полимеры могут быть несмешивающимися, тем не менее, можно выбрать добавку микровключения, характеризующуюся параметром растворимости, который является относительно подобным таковому у матричного полимера. Это может улучшить совместимость между поверхностями и физическое взаимодействие границ дискретной и непрерывной фаз, и тем самым снижает вероятность разрушения композиции. В связи с этим, отношение параметра растворимости для матричного полимера к таковому у добавки составляет, как правило, от приблизительно 0,5 до приблизительно 1,5 и в некоторых вариантах осуществления от приблизительно 0,8 до приблизительно 1,2. Например, добавка микровключения может характеризоваться параметром растворимости от приблизительно 15 до приблизительно 30 МДжоулей1/23/2 и в некоторых вариантах осуществления от приблизительно 18 до приблизительно 22 МДжоулей1/23/2, тогда как полимолочная кислота может характеризоваться параметром растворимости приблизительно 20,5 МДжоулей1/23/2. Выражение “параметр растворимости” при использовании в данном документе относится к “параметру растворимости Гильдебранда”, который представляет собой квадратный корень из плотности энергии когезии и вычисляется согласно следующему уравнению:

,

где

ΔHv = теплота испарения

R = Постоянная идеального газа

T = Температура

Vm = Молекулярный объем.

Параметры растворимости Гильдебранда для многих полимеров также доступны из Solubility Handbook of Plastics, Wyeych (2004), которая включена в данный документ посредством ссылки.

Добавка микровключения может также иметь определенный показатель текучести расплава (или вязкость) для того, чтобы обеспечить достаточную поддержку дискретных доменов и полученных пор. Например, если показатель текучести расплава добавки слишком высок, она проявлется склонность к неконтролируемой течи и диспергироваться по непрерывной фазе. Это приводит к слоистым, пластинчатым доменам или совместным с непрерывной фазой структурам, которые сложно поддерживать и которые также склонны к преждевременному разрушению. Наоборот, если показатель текучести расплава добавки слишком низок, она склонна комковаться и образовывать очень большие эллиптические домены, которые трудно диспергировать при перемешивании. Это может вызвать неравномерное распределение добавки по всей непрерывной фазе. В связи с этим, авторы настоящего изобретения обнаружили, что отношение показателя текучести расплава добавка микровключения к показателю текучести расплава матричного полимера составляет, как правило, от приблизительно 0,2 до приблизительно 8, в некоторых вариантах осуществления от приблизительно 0,5 до приблизительно 6 и в некоторых вариантах осуществления от приблизительно 1 до приблизительно 5. Добавка микровключения может, например, иметь показатель текучести расплава от приблизительно 0,1 до приблизительно 250 грамм на 10 минут, в некоторых вариантах осуществления от приблизительно 0,5 до приблизительно 200 грамм на 10 минут, а в некоторых вариантах осуществления от приблизительно 5 до приблизительно 150 грамм на 10 минут, определенные при нагрузке 2160 грамм и при 190°C.

Помимо упомянутых выше свойств, для достижения желаемой пористой сети можно также выбирать механические характеристики добавки микровключения. Например, если смесь матричного полимера и добавки микровключения наносить с внешним усилием, можно инициировать концентрации напряжений (например, включая нормальные или сдвиговые напряжения) и зоны выделения сдвига и/или пластической деформации на дискретных фазовых доменах и вокруг них в результате концентрации напряжений, которые возникают из разницы в модулях упругости добавки и матричного полимера. Большие концентрации напряжений вызывают более интенсивную локализованную пластическую деформацию на доменах, что позволяет им становиться значительно удлиненными при приложении усилий. Эти удлиненные домены могут позволить композиции проявлять более гибкое и мягкое поведение, чем матричный полимер, например, когда он является жесткой полиэфирной смолой. Для усиления концентраций напряжения добавку микровключения можно выбрать так, чтобы она имела относительно низкий модуль упругости Юнга по сравнению с матричным полимером. Например, отношение модуля упругости матричного полимера к таковому у добавки составляет, как правило, от приблизительно 1 до приблизительно 250, в некоторых вариантах осуществления от приблизительно 2 до приблизительно 100 и в некоторых вариантах осуществления от приблизительно 2 до приблизительно 50. Модуль упругости добавки микровключения может, например, варьировать в диапазоне от приблизительно 2 до приблизительно 1000 мегапаскалей (МПа), в некоторых вариантах осуществления от приблизительно 5 до приблизительно 500 МПа и в некоторых вариантах осуществления от приблизительно 10 до приблизительно 200 МПа. Напротив, модуль упругости полимолочной кислоты, например, составляет, как правило, от приблизительно 800 МПа до приблизительно 3000 МПа.

Хотя можно применять широкий ряд первых добавок микровключения, имеющих определенные выше свойства, особенно подходящие примеры таких добавок могут включать синтетические полимеры, такие как полиолефины (например, полиэтилен, полипропилен, полибутилен и т.д.); стирольные сополимеры (например, стирол-бутадиен-стирол, стирол-изопрен-стирол, стирол-этилен-пропилен-стирол, стирол-этилен-бутадиен-стирол и т.д.); политетрафторэтилены; полиэфиры (например, рециклизованный сложный полиэфир, полиэтилентерефталат и т.д.); поливинилацетаты (например, полиэтиленвинилацетат, поливинилхлорид ацетат и т.д.); поливиниловые спирты (например, поливиниловый спирт, полиэтиленвиниловый спирт и т.д.); поливинилбутирали; акриловые смолы (например, полиакрилат, полиметилакрилат, полиметилметакрилат и т.д.); полиамиды (например, нейлон); поливинилхлориды; поливинилиденхлориды; полистиролы; полиуретаны и т.д. Подходящие полиолефины могут, например, включать этиленовые полимеры (например, полиэтилен низкой плотности (“LDPE”), полиэтилен высокой плотности (“HDPE”), линейный полиэтилен низкой плотности (“LLDPE”) и т.д.), гомополимеры пропилена (например, синдиотактический, атактический, изотактический и т.д.), сополимеры пропилена и так далее.

В одном конкретном варианте осуществления полимер представляет собой полимер пропилена, такой как гомополипропилен или сополимер пропилена. Полимер пропилена можно, например, образовывать из главным образом изотактического гомополимера полипропилена или сополимера, содержащего равное или меньшее количество, чем приблизительно 10 масс. % другого мономера, т.е. по меньшей мере приблизительно 90% по массе пропилена. Температура плавления таких гомополимеров может составлять от приблизительно 160°C до приблизительно 170°C.

В еще одном варианте осуществления полиолефин может быть сополимером этилена или пропилена с другим α-олефином, таким как C3-C20α-олефин или C3-C12α-олефин. Конкретные примеры подходящих α-олефинов включают 1-бутен; 3-метил-1-бутен; 3,3-диметил-1-бутен; 1-пентен; 1-пентен с одним или больше метильным, этильным или пропильным заместителями; 1-гексен с одним или больше метильным, этильным или пропильным заместителями; 1-гептен с одним или больше метильным, этильным или пропильным заместителями; 1-октен с одним или больше метильным, этильным или пропильным заместителями; 1-нонен с одним или больше метильным, этильным или пропильным заместителями; этил-, метил- или диметилзамещенный 1-децен; 1-додецен и стирол. Особенно желательными α-олефиновыми сомономерами являются 1-бутен, 1-гексен и 1-октен. Содержание этилена или пропилена в таких сополимерах может составлять от приблизительно 60 моль% до приблизительно 99 моль%, в некоторых вариантах осуществления от приблизительно 80 моль% до приблизительно 98,5 моль%, а в некоторых вариантах осуществления от приблизительно 87 моль% до приблизительно 97,5 моль%. Содержание α-олефинов может аналогично варьировать в диапазоне от приблизительно 1 моль% до приблизительно 40 моль%, в некоторых вариантах осуществления от приблизительно 1,5 моль% до приблизительно 15 моль%, а в некоторых вариантах осуществления от приблизительно 2,5 моль% до приблизительно 13 моль%.

Типичные олефиновые сополимеры для применения в настоящем изобретении включают сополимеры на основе этилена, доступные под названием EXACT™ от ExxonMobil Chemical Company, Хьюстон, Техас. Другие подходящие сополимеры этилена доступны под названием ENGAGE™, AFFINITY™, DOWLEX™ (LLDPE) и ATTANE™ (ULDPE) от Dow Chemical Company, Мидленд, Мичиган. Другие подходящие полимеры этилена описаны в патентах США № 4937299, выданном Ewen et al.; 5218071, выданном Tsutsui et al.; 5272236, выданном Lai et al.; и 5278272, выданном Lai et al. Подходящие сополимеры пропилена также коммерчески доступны под обозначениями VISTAMAXX™ от ExxonMobil Chemical Co., Хьюстон, Техас; FINA™ (например, 8573) от Atofina Chemicals, Фелю, Бельгия; TAFMER™, доступный от Mitsui Petrochemical Industries, и VERSIFY™, доступный от Dow Chemical Co., Мидленд, Мичиган. Подходящие гомополимеры полипропилена могут также включать полипропилен Exxon Mobil 3155, смолы Exxon Mobil Achieve™ и смолу Total M3661 PP. Другие примеры подходящих полимеров пропилена описаны в патентах США № 6500563, выданном Datta et al.; 5539056, выданном Yang et al.; и 5596052, выданном Resconi et al.

Для образования олефиновых сополимеров обычно можно применять любую из множества известных методик. Например, олефиновые полимеры можно образовывать с использованием свободнорадикального или комплексного катализатора (например, Циглера - Натта). Предпочтительно олефиновый полимер образуют из комплексного катализатора с единым центром полимеризации, такого как металлоценовый катализатор. Такая каталитическая система обеспечивает сополимеры этилена, в которых coмономер случайно распределен в молекулярной цепи и равномерно распределен по фракциям с различной молекулярной массой. Полиолефины, полученные посредством катализа металлоценами, описаны, например, в патентах США № 5571619, выданном McAlpin et al.; 5322728, выданном Davis et al.; 5472775, выданном Obijeski et al.; 5272236, выданном Lai et al.; и 6090325, выданном Wheat et al. Примеры металлоценовых ка