Представление данных звуковых объектов с кажущимся размером в произвольные схемы расположения громкоговорителей
Иллюстрации
Показать всеИзобретение относится к средствам для представления данных звуковых объектов. Технический результат заключается в улучшении локализации звуковых объектов. Принимают данные звуковоспроизведения, включающие один или несколько звуковых объектов. Звуковые объекты включают звуковые сигналы и связанные метаданные. Метаданные включают по меньшей мере данные положения звукового объекта и данные размера звукового объекта. Вычисляют для звукового объекта значений коэффициента усиления виртуального источника от виртуальных источников при соответствующих местоположениях виртуального источника в пределах области или объема звукового объекта, определенного данными положения звукового объекта и данными размера звукового объекта. Вычисляют набор значений коэффициентов усиления звукового объекта для каждого из множества выходных каналов на основании по меньшей мере частично вычисленных значений коэффициента усиления виртуального источника. Каждый выходной канал соответствует по меньшей мере одному воспроизводящему громкоговорителю. 3 н. и 43 з.п. ф-лы, 22 ил.
Реферат
ПЕРЕКРЕСТНЫЕ ССЫЛКИ НА РОДСТВЕННЫЕ ЗАЯВКИ
[001] Настоящая заявка испрашивает приоритет согласно заявке на патент Испании № Р201330461, поданной 28 марта 2013 года, и предварительной заявке на патент США №61/833581, поданной 11 июня 2013 года, содержание каждой из которых полностью включено в настоящую заявку посредством ссылки.
ОБЛАСТЬ ТЕХНИЧЕСКОГО ПРИМЕНЕНИЯ
[002] Данное раскрытие относится к авторской разработке и представлению данных звуковоспроизведения. В частности, данное раскрытие относится к авторской разработке и представлению данных звуковоспроизведения для таких воспроизводящих сред, как системы звуковоспроизведения для кинематографии.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
[003] С момента представления в 1927 г. звука на пленке, происходило устойчивое развитие технологии, используемой для захвата авторского замысла звуковой дорожки кинокартины и для ее проигрывания в среде кинематографии. В 1930-х гг. синхронизированный звук на диске уступил место фонограмме переменной ширины на пленке, которая в дальнейшем развивалась в 1940-х гг. вместе с учетом особенностей акустики театров и совершенствованием конструкции громкоговорителей наряду с первым представлением многодорожечной записи и управляемого проигрывания (с использованием управляющих тонов для перемещения звуков). В 1950-х и 1960-х гг. нанесение магнитной дорожки на пленку сделало возможным многоканальное воспроизведение в театре, введение окружающих каналов и до пяти экранных каналов в театрах высокого класса.
[004] В 1970-х гг. Dolby представила шумоподавление как при окончательном монтаже кинопродукции, так и на пленке наряду с экономичными средствами кодирования и распределения микшированных звуковых дорожек с 3 экранными каналами и монофоническим окружающим каналом. Качество кинематографического звука было дополнительно улучшено в 1980-х гг. шумоподавлением Dolby Spectral Recording (SR) и такими программами аттестации, как ТНХ. В ходе 1990-х гг. Dolby привнесла в кинематографию цифровой звук с форматом каналов 5.1, который предусматривает отдельные левый, центральный и правый экранные каналы, левый и правый окружающие массивы и сверхнизкочастотный канал для низкочастотных эффектов. Представленная в 2010 году Dolby Surround 7.1 увеличила количество окружающих каналов путем разделения существующих левого и правого окружающих каналов на четыре "зоны".
[005] По мере увеличения количества каналов и перехода схемы размещения громкоговорителей от плоского двумерного (2D) массива к трехмерному (3D) массиву, включающему высоту расположения, задачи авторской разработки и представления данных для звуков становятся все более сложными. Желательно усовершенствование способов и устройств.
КРАТКОЕ ОПИСАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
[006] Некоторые аспекты предмета изобретения, описанного в данном раскрытии, могут быть реализованы в инструментальных средствах для представления данных звуковоспроизведения, которые включают звуковые объекты, созданные без ссылки на любую конкретную воспроизводящую среду. Как используется в данном документе, термин "звуковой объект" может относиться к потоку звуковых сигналов и связанных метаданных. Метаданные могут указывать по меньшей мере положение и кажущийся размер звукового объекта. Тем не менее, метаданные также могут указывать данные ограничения представления данных, данные типа содержимого (например, диалог, эффекты и т.п.), данные коэффициента усиления, данные траектории и т.д. Некоторые звуковые объекты могут быть статическими, в то время как другие могут иметь изменяющиеся во времени метаданные: такие звуковые объекты могут перемещаться, могут изменять размер и/или могут иметь другие свойства, которые изменяются с течением времени.
[007] Когда звуковые объекты наблюдаются или проигрываются в воспроизводящей среде, данные звуковых объектов могут быть представлены в соответствии по меньшей мере с метаданными положения и размера. Процесс представления данных может включать вычисление набора значений коэффициентов усиления звукового объекта для каждого канала из набора выходных каналов. Каждый выходной канал может соответствовать одному или нескольким воспроизводящим громкоговорителям воспроизводящей среды.
[008] Некоторые реализации, описанные в данном документе, включают процесс "настройки", который может происходить до представления данных любых конкретных звуковых объектов. Процесс настройки, который также может упоминаться в данной документе как первый этап или этап 1, может включать определение местоположений нескольких виртуальных источников в объеме, в пределах которого звуковые объекты могут перемещаться. Как используется в данном документе, термин "местоположение виртуального источника" означает местоположение статического точечного источника. В соответствии с такими реализациями процесс настройки может включать прием данных местоположения воспроизводящих громкоговорителей и предварительное вычисление значений коэффициентов усиления виртуального источника для каждого виртуального источника в соответствии с данными местоположения воспроизводящих громкоговорителей и местоположением виртуального источника. Как используется в данном документе, термин "данные местоположений громкоговорителей" может включать данные местоположения, указывающее положения некоторых или всех громкоговорителей воспроизводящей среды. Данные местоположения могут быть предоставлены в виде таких абсолютных координат местоположений воспроизводящих громкоговорителей, как декартовы координаты, сферические координаты и т.д. Альтернативно или дополнительно, данные местоположения могут быть предоставлены в виде координат (например, декартовых координат или угловых координат) по отношению к местоположению других воспроизводящих сред, таких как акустические "зоны комфортного прослушивания" воспроизводящей среды.
[009] В некоторых реализациях значения коэффициента усиления виртуального источника могут храниться в памяти и использоваться в течение "рабочего цикла", во время которого данные звуковоспроизведения представляются для громкоговорителей воспроизводящей среды. Во время рабочего цикла для каждого звукового объекта могут вычисляться вклады от местоположений виртуального источника в пределах области или объема, определяемого данными положения звукового объекта и данными размера звукового объекта. Процесс вычисления вкладов от местоположений виртуального источника может включать вычисление средневзвешенного значения нескольких предварительно вычисленных значений коэффициентов усиления виртуального источника, определенных в процессе настройки для местоположений виртуального источника, находящихся в пределах области или объема звукового объекта, определенного размером и местоположением звукового объекта. Набор значений коэффициентов усиления звукового объекта для каждого выходного канала воспроизводящей среды может по меньшей мере частично вычисляться на основании вычисленных вкладов виртуального источника. Каждый выходной канал может соответствовать по меньшей мере одному воспроизводящему громкоговорителю воспроизводящей среды.
[010] Таким образом, некоторые способы, описанные в данном документе, включают прием данных звуковоспроизведения, которые включают один или несколько звуковых объектов. Звуковые объекты могут включать звуковые сигналы и связанные метаданные. Метаданные могут включать по меньшей мере данные положения звукового объекта и данные размера звукового объекта. Эти способы могут включать вычисление вкладов от виртуальных источников в пределах области или объема звукового объекта, определенного данными положения звукового объекта и данными размера звукового объекта. Способы могут включать вычисление набора значений коэффициентов усиления звукового объекта для каждого из множества выходных каналов на основе по меньшей мере частично вычисленных вкладов. Каждый выходной канал может соответствовать по меньшей мере одному воспроизводящему громкоговорителю воспроизводящей среды. Например, воспроизводящей средой может являться среда звуковой системы для кинематографии.
[011] Процесс вычисления вкладов от виртуальных источников может включать вычисление средневзвешенного значения коэффициентов усиления виртуального источника из виртуальных источников в пределах области или объема звукового объекта. Весовые коэффициенты для средневзвешенного значения могут зависеть от положения звукового объекта, размера звукового объекта и/или местоположения каждого виртуального источника в пределах области или объема звукового объекта.
[012] Способы могут также включать прием данных воспроизводящей среды, включающих данные местоположения воспроизводящих громкоговорителей. Способы могут также включать определение множества местоположений виртуального источника в зависимости от данных воспроизводящей среды и вычисление для каждого местоположения виртуального источника значения коэффициента усиления виртуального источника для каждого из множества выходных каналов. В некоторых реализациях каждое из местоположений виртуального источника может соответствовать местоположению в пределах воспроизводящей среды. Тем не менее, в некоторых реализациях по меньшей мере некоторые из местоположений виртуального источника могут соответствовать местоположениям за пределами воспроизводящей среды.
[013] В некоторых реализациях местоположения виртуальных источников могут распределяться равномерно вдоль осей x, y и z. Однако, в некоторых реализациях распределение может не быть одинаковым во всех направлениях. Например, местоположения виртуального источника могут иметь первый равномерный интервал вдоль осей x и y и второй равномерный интервал вдоль оси z. Процесс вычисления набора значений коэффициентов усиления звукового объекта для каждого из множества выходных каналов может включать независимые вычисления вкладов от виртуальных источников вдоль осей x, y и z. В альтернативных реализациях местоположения виртуального источника могут быть расположены неравномерно.
[014] В некоторых реализациях процесс вычисления значения коэффициента усиления звукового объекта для каждого из множества выходных каналов может включать определение значения коэффициента усиления (gl(x0,y0,z0; s)) для звукового объекта размера (s) для представления данных в местоположении x0,y0,z0. Например, значение коэффициента усиления звукового объекта (gl(x0,y0,z0; s)) может быть выражено как:
где (xvs, yvs, zvs) представляет собой местоположение виртуального источника, gl(xvs, yvs, zvs) представляет собой значение коэффициента усиления для канала l для местоположения виртуального источника xvs, yvs, zvs и w(xvs, yvs, zvs; х0,у0, z0; s) представляет собой одну или несколько весовых функций для gl(xvs, yvs, zvs), определенного по меньшей мере частично на основании местоположения (x0,y0,z0) звукового объекта, размера (s) звукового объекта и местоположения (xvs, yvs, zvs) виртуального источника.
[015] В соответствии с некоторыми такими реализациями gl(xvs, yvs, zvs)=gl(xvs)gl(yvs)gl(zvs), где gl(xvs), gl(yvs) и gl(zvs) представляют собой независимые функции усиления от x, y и z. В некоторых таких реализациях весовые функции можно разложить на множители:
w(xvs, yvs, zvs; x0,y0, z0; s)=wx(xvs; x0; s)wy(yvs; y0; s)wz(zvs; z0; s),
где wx(xvs; x0; s), wy(yvs; y0; s) и wz(zvs,z0; s) представляют собой независимые весовые функции от xvs, yvs и zvs. В соответствии с такими реализациями p может быть функцией размера (s) звукового объекта.
[016] Некоторые такие способы могут включать хранение вычисленных значений коэффициентов усиления виртуального источника в системе памяти. Процесс вычисления вкладов от виртуальных источников в пределах области или объема звукового объекта может включать получение из системы памяти вычисленных значений коэффициентов усиления виртуального источника, соответствующих положению и размеру звукового объекта, и интерполяцию между вычисленными значениями коэффициентов усиления виртуального источника. Процесс интерполяции между вычисленными значениями коэффициентов усиления виртуального источника может включать: определение множества соседних местоположений виртуального источника в окрестности положения звукового объекта; определение вычисленных значений коэффициентов усиления виртуального источника для каждого из соседних местоположений виртуального источника; определение множества расстояний между положением звукового объекта и каждым из соседних местоположений виртуального источника; и интерполяцию между вычисленными значениями коэффициентов усиления виртуального источника в соответствии со множеством расстояний.
[017] В некоторых реализациях данные воспроизводящей среды могут включать данные границы воспроизводящей среды. Способ может включать определение того, что область или объем звукового объекта включают внешнюю область или объем за пределами границы воспроизводящей среды, и применение коэффициента плавного перехода, по меньшей мере частично обусловленного внешней областью или объемом. Некоторые способы могут включать определение того, что звуковой объект может находиться в пределах порогового расстояния от границы воспроизводящей среды, и отсутствие подачи на воспроизводящие громкоговорители на противоположной границе воспроизводящей среды сигналов, подаваемых на громкоговорители. В некоторых реализациях область или объем звукового объекта может быть прямоугольником, прямоугольной призмой, кругом, сферой, эллипсом и/или эллипсоидом.
[018] Некоторые способы могут включать декорреляцию по меньшей мере некоторых данных звуковоспроизведения. Например, способы могут включать декорреляцию данных звуковоспроизведения для звуковых объектов, имеющих размер звукового объекта, который превышает пороговое значение.
[019] В данном документе описываются и альтернативные способы. Некоторые такие способы включают прием данных воспроизводящей среды, включающих данные местоположения воспроизводящих громкоговорителей и данные границы воспроизводящей среды, и прием данных звуковоспроизведения, включающих один или несколько звуковых объектов и связанных метаданных. Метаданные могут включать данные положения звукового объекта и данные размера звукового объекта. Способы могут включать определение того, что область или объем звукового объекта, определенный данными положения звукового объекта и данными размера звукового объекта, включает внешнюю область или объем за пределами границы воспроизводящей среды, и определение коэффициента плавного перехода, по меньшей мере частично обусловленного внешней областью или объемом. Способы могут включать вычисление набора значений коэффициентов усиления для каждого из множества выходных каналов на основании по меньшей мере частично соответствующих метаданных и коэффициента плавного перехода. Каждый выходной канал может соответствовать по меньшей мере одному воспроизводящему громкоговорителю воспроизводящей среды. Коэффициент плавного перехода может быть пропорционален внешней области.
[020] Способы могут также включать определение того, что звуковой объект может находиться в пределах порогового расстояния от границы воспроизводящей среды, и отсутствие подачи на воспроизводящие громкоговорители на противоположной границе воспроизводящей среды сигналов, подаваемых на громкоговорители.
[021] Способы могут также включать вычисление вкладов от виртуальных источников в пределах области или объема звукового объекта. Способы могут включать определение множества местоположений виртуального источника в зависимости от данных воспроизводящей среды и вычисление для каждого местоположения виртуального источника значения коэффициента усиления виртуального источника для каждого из множества выходных каналов. Местоположения виртуального источника могут равномерно или неравномерно распределяться в зависимости от конкретной реализации.
[022] Некоторые реализации могут воплощаться на одном или нескольких постоянных носителях данных, содержащих хранящееся в их памяти программное обеспечение. Программное обеспечение может включать команды для управления одним или несколькими устройствами для приема данных звуковоспроизведения, включающих один или несколько звуковых объектов. Звуковые объекты могут включать звуковые сигналы и связанные метаданные. Метаданные могут включать по меньшей мере данные положения звукового объекта и данные размера звукового объекта. Программное обеспечение может включать команды для вычисления для звукового объекта из одного или нескольких звуковых объектов вкладов от виртуальных источников в пределах области или объема, определяемого данными положения звукового объекта и данными размера звукового объекта, и вычисления набора значений коэффициентов усиления звукового объекта для каждого из множества выходных каналов на основании по меньшей мере частично вычисленных вкладов. Каждый выходной канал может соответствовать по меньшей мере одному воспроизводящему громкоговорителю воспроизводящей среды.
[023] В некоторых реализациях процесс вычисления вкладов от виртуальных источников может включать вычисление средневзвешенного значения коэффициентов усиления виртуального источника из виртуальных источников в пределах области или объема звукового объекта. Весовые коэффициенты для средневзвешенного значения могут зависеть от положения звукового объекта, размера звукового объекта и/или местоположения каждого виртуального источника в пределах области или объема звукового объекта.
[024] Программное обеспечение может включать команды для приема данных воспроизводящей среды, включающих данные местоположения воспроизводящих громкоговорителей. Программное обеспечение может включать команды для определения множества местоположений виртуального источника в соответствии с данными воспроизводящей среды и вычисления для каждого из местоположений виртуального источника значений коэффициентов усиления виртуального источника для каждого из множества выходных каналов. Каждое из местоположений виртуального источника может соответствовать местоположению в пределах воспроизводящей среды. В некоторых реализациях по меньшей мере некоторые из местоположений виртуального источника могут соответствовать местоположениям за пределами воспроизводящей среды.
[025] В соответствии с некоторыми реализациями местоположения виртуального источника могут распределяться равномерно. В некоторых реализациях местоположения виртуального источника могут иметь первый равномерный интервал вдоль осей x и y и второй равномерный интервал вдоль оси z. Процесс вычисления набора значений коэффициентов усиления звукового объекта для каждого из множества выходных каналов может включать независимые вычисления вкладов от виртуальных источников вдоль осей x, y и z.
[026] В данном документе описываются различные приборы и устройства. Некоторые такие устройства могут содержать систему интерфейсов и логическую систему. Система интерфейсов может представлять собой сетевой интерфейс. В некоторых реализациях устройство может представлять собой запоминающее устройство. Система интерфейсов может представлять собой интерфейс между логической системой и запоминающим устройством.
[027] Логическая система может быть приспособлена для приема от системы интерфейсов данных звуковоспроизведения, включающих один или несколько звуковых объектов. Звуковые объекты могут включать звуковые сигналы и связанные метаданные. Метаданные могут включать по меньшей мере данные положения звукового объекта и данные размера звукового объекта. Логическая система может быть приспособлена для вычисления для звукового объекта из одного или нескольких звуковых объектов вкладов от виртуальных источников в пределах области или объема звукового объекта, определенного данными положения звукового объекта и данными размера звукового объекта. Логическая система может быть приспособлена для вычисления набора значений коэффициентов усиления звукового объекта для каждого из множества выходных каналов на основании по меньшей мере частично вычисленных вкладов. Каждый выходной канал может соответствовать по меньшей мере одному воспроизводящему громкоговорителю воспроизводящей среды.
[028] Процесс вычисления вкладов от виртуальных источников может включать вычисление средневзвешенного значения коэффициентов усиления виртуального источника из виртуальных источников в пределах области или объема звукового объекта. Весовые коэффициенты для средневзвешенного значения могут зависеть от положения звукового объекта, размера звукового объекта и местоположения каждого виртуального источника в пределах области или объема звукового объекта. Логическая система может быть приспособлена для приема от системы интерфейсов данных воспроизводящей среды, включающих данные местоположения воспроизводящих громкоговорителей.
[029] Логическая система может быть приспособлена для определения множества местоположений виртуального источника в соответствии с данными воспроизводящей среде и вычисления для каждого из местоположений виртуального источника значения коэффициента усиления виртуального источника для каждого из множества выходных каналов. Каждое из местоположений виртуального источника может соответствовать местоположению в пределах воспроизводящей среды. Тем не менее, в некоторых реализациях по меньшей мере некоторые из местоположений виртуального источника могут соответствовать местоположениям за пределами воспроизводящей среды. В зависимости от реализации местоположения виртуального источника могут равномерно или неравномерно распределяться. В некоторых реализациях местоположения виртуального источника могут иметь первый равномерный интервал вдоль осей x и y и второй равномерный интервал вдоль оси z. Процесс вычисления набора значений коэффициентов усиления звукового объекта для каждого из множества выходных каналов может включать независимые вычисления вкладов от виртуальных источников вдоль осей x, y и z.
[030] Устройство может также содержать пользовательский интерфейс. Логическая система может быть приспособлена с помощью пользовательского интерфейса для приема пользовательского ввода данных, таких как данные размера звукового объекта. В некоторых реализациях логическая система может быть приспособлена для масштабирования входных данных размера звукового объекта.
[031] Подробности одной или нескольких реализаций предмета изобретения, описываемые в данном описании, изложены ниже в сопроводительных графических материалах и описании. Другие характерные признаки, аспекты и преимущества будут очевидны из описания, графических материалов и формулы изобретения. Следует отметить, что относительные размеры на нижеследующих фигурах могут не быть вычерченными в масштабе.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
[032] На фиг. 1 показан пример воспроизводящей среды, имеющей конфигурацию Dolby Surround 5.1.
[033] На фиг. 2 показан пример воспроизводящей среды, имеющей конфигурацию Dolby Surround 7.1.
[034] На фиг. 3 показан пример воспроизводящей среды, имеющей конфигурацию окружающего звука Hamasaki 22.2.
[035] На фиг. 4А показан пример графического пользовательского интерфейса (GUI), который графически представляет зоны громкоговорителей на различных возвышениях в виртуальной воспроизводящей среде.
[036] На фиг. 4В показан пример другой воспроизводящей среды.
[037] На фиг. 5А приведена блок-схема, которая приводит обзор способов обработки звука.
[038] На фиг. 5В приведена блок-схема, которая представляет пример процесса настройки.
[039] На фиг. 5С приведена блок-схема, которая приводит пример процесса рабочего цикла вычисления значений коэффициентов усиления для принимаемых звуковых объектов в соответствии с предварительно вычисленными значениями коэффициентов усиления для местоположений виртуального источника.
[040] На фиг. 6А показан пример местоположений виртуального источника по отношению к воспроизводящей среде.
[041] На фиг. 6В показан альтернативный пример местоположений виртуального источника по отношению к воспроизводящей среде.
[042] На фиг. 6C-6F показаны примеры применения к звуковым объектам в разных местоположениях методик панорамирования в ближней зоне и дальней зоне.
[043] На фиг. 6G показан пример воспроизводящей среды, содержащей один громкоговоритель в каждом углу квадрата, имеющего длину стороны, равную 1.
[044] На фиг. 7 показан пример вкладов от виртуальных источников в пределах области, определенной данными положения звукового объекта и данными размера звукового объекта.
[045] На фиг. 8А и 8В показан звуковой объект в двух положениях в воспроизводящей среде.
[046] На фиг. 9 показана блок-схема, которая описывает способ определения коэффициента плавного перехода, по меньшей мере частично обусловленного тем, насколько область или объем звукового объекта выходят за пределы границы воспроизводящей среды.
[047] Фиг. 10 представляет собой блок-схему, которая приводит примеры компонентов устройства для авторской разработки и/или представления данных.
[048] Фиг. 11А представляет собой блок-схему, которая представляет некоторые компоненты, которые могут использоваться для создания звукового содержимого.
[049] Фиг. 11В представляет собой блок-схему, которая представляет некоторые компоненты, которые могут использоваться для проигрывания звука в воспроизводящей среде.
[050] Аналогичные ссылочные позиции и обозначения в различных графических материалах указывают аналогичные элементы.
ОПИСАНИЕ ПРИВЕДЕННЫХ В КАЧЕСТВЕ ПРИМЕРА ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
[051] Нижеследующее описание направлено на определенные реализации с целью описания некоторых изобретательских особенностей данного раскрытия, а также примеров ситуаций, в которых могут быть реализованы эти изобретательские особенности. Однако, идеи в данном документе могут применяться множеством разных способов. Например, несмотря на то, что различные реализации описаны в отношении конкретных воспроизводящих сред, идеи в данном документе широко применимы к другим известным воспроизводящим средам, а также к воспроизводящим средам, которые могут быть представлены в будущем. Кроме того, описанные реализации могут быть реализованы в различных инструментах авторской разработки и/или представления данных, которые могут быть реализованы в различных аппаратных средствах, программном обеспечении, программно-аппаратном обеспечении и т.д. Соответственно, идеи в данном документе не подразумеваются ограниченными реализациями, показанными на фигурах и/или описанными в данном документе, но вместо этого имеют широкую применимость.
[052] На фиг. 1 показан пример воспроизводящей среды, имеющей конфигурацию Dolby Surround 5.1. Dolby Surround 5.1 разрабатывалась в 1990-х гг., но эта конфигурация по-прежнему широко распространена в средах звуковых систем для кинематографии. Проектор 105 может быть выполнен для проецирования видеоизображений, например, кинокартины, на экран 150. Данные звуковоспроизведения могут быть синхронизированы с видеоизображениями и обработаны устройством 110 для обработки звука. Усилители 115 мощности могут подавать на громкоговорители воспроизводящей среды 100 сигналы, подаваемые на громкоговорители.
[053] Конфигурация Dolby Surround 5.1 включает левый окружающий массив 120 и правый окружающий массив 125, каждый из которых включает группу громкоговорителей с групповым управлением единственным каналом. Конфигурация Dolby Surround 5.1 также содержит отдельные каналы для левого экранного канала 130, центрального экранного канала 135 и правого экранного канала 140. Для низкочастотных эффектов (LFE) предусматривается отдельный канал для сверхнизкочастотного громкоговорителя 145.
[054] В 2010 г. Dolby представила усовершенствования цифрового звука для кинематографии, представив Dolby Surround 7.1. На фиг. 2 показан пример воспроизводящей среды, имеющей конфигурацию Dolby Surround 7.1. Цифровой проектор 205 может быть выполнен с возможностью приема цифровых видеоданных и проецирования видеоизображений на экран 150. Данные звуковоспроизведения могут быть обработаны устройством 210 для обработки звука. Усилители 215 мощности могут подавать на громкоговорители воспроизводящей среды 200 сигналы, подаваемые на громкоговорители.
[055] Конфигурация Dolby Surround 7.1 содержит левый боковой окружающий массив 220 и правый боковой окружающий массив 225, каждый из которых может управляться единственным каналом. Как и Dolby Surround 5.1, конфигурация Dolby Surround 7.1 содержит отдельные каналы для левого экранного канала 230, центрального экранного канала 235, правого экранного канала 240 и сверхнизкочастотного громкоговорителя 245. Однако, Dolby Surround 7.1 увеличивает количество окружающих каналов путем разделения левого и правого окружающих каналов Dolby Surround 5.1 на четыре зоны: в дополнение к левому боковому окружающему массиву 220 и правому боковому окружающему массиву 225 включены отдельные каналы для левых тыловых окружающих громкоговорителей 224 и правых тыловых окружающих громкоговорителей 226. Увеличение количества окружающих зон в пределах воспроизводящей среды 200 может значительно улучшать локализацию звука.
[056] В попытке создать среду, создающую больший эффект присутствия, некоторые воспроизводящие среды могут быть выполнены с повышенными количествами громкоговорителей, управляемых повышенными количествами каналов. Более того, некоторые воспроизводящие среды могут содержать громкоговорители, развернутые на разных возвышениях, некоторые из которых могут находиться над опорной поверхностью воспроизводящей среды.
[057] На фиг. 3 показан пример воспроизводящей среды, имеющей конфигурацию окружающего звука Hamasaki 22.2. Hamasaki 22.2 разрабатывалась в NHK Science & Technology Research Laboratories в Японии как компонент окружающего звука для телевидения сверхвысокой четкости. Hamasaki 22.2 предусматривает 24 канала громкоговорителей, которые могут использоваться для управления громкоговорителями, расположенными в трех слоях. Верхний слой 310 громкоговорителей воспроизводящей среды 300 может управляться 9 каналами. Средний слой 320 громкоговорителей может управляться 10 каналами. Нижний слой 330 громкоговорителей может управляться 5 каналами, два из которых предназначены для сверхнизкочастотных громкоговорителей 345а и 345b.
[058] Соответственно, современным направлением является включение не только большего количества громкоговорителей и большего количества каналов, но также включение громкоговорителей на разных высотах. По мере увеличения количества каналов и перехода схемы размещения громкоговорителей от двумерного массива к трехмерному массиву, задачи определения положения и представления данных для звуков становятся все более и более сложными. Соответственно, настоящее раскрытие предусматривает различные инструментальные средства, а также относящиеся к ним пользовательские интерфейсы, что увеличивает функциональные возможности и/или снижает сложность авторской разработки для акустической системы трехмерного звука. Некоторые из этих инструментальных средств подробно описаны со ссылками на фиг. 5A-19D в предварительной заявке на патент США №61/636102, поданной 20 апреля 2012 года и озаглавленной "System and Tools for Enhanced 3D Audio Authoring and Rendering" (the "Authoring and Rendering Application"), которая включена в данный документ посредством ссылки.
[059] На фиг. 4А показан пример графического пользовательского интерфейса (GUI), который графически представляет зоны громкоговорителей на различных возвышениях в виртуальной воспроизводящей среде. GUI 400 может, например, отображаться на дисплейном устройстве в соответствии с командами из логической системы, в соответствии с сигналами, полученными от устройств пользовательского ввода данных и т.д. Некоторые из таких устройств описываются ниже со ссылкой на фиг. 10.
[060] Как используется в данном документе, со ссылкой на виртуальные воспроизводящие среды, такие как виртуальная воспроизводящая среда 404, термин "зона громкоговорителей" обычно относится к логической структуре, которая может обладать или может не обладать взаимнооднозначным соответствием с воспроизводящим громкоговорителем фактической воспроизводящей среды. Например, "местоположение зоны громкоговорителей" может соответствовать или не соответствовать местоположению конкретного воспроизводящего громкоговорителя воспроизводящей среды для кинематографии. Вместо этого, термин "местоположение зоны громкоговорителей" обычно может относиться к зоне виртуальной воспроизводящей среды. В некоторых реализациях зона громкоговорителя виртуальной воспроизводящей среды может соответствовать виртуальному громкоговорителю, например, посредством использования такой технологии виртуализации, как Dolby Headphone™, (иногда именуемой Mobile Surround™), которая создает виртуальную среду окружающего звука в режиме реального времени с использованием набора двухканальных стереофонических наушников. В GUI 400 имеется семь зон 402а громкоговорителей на первом возвышении и две зоны 402b громкоговорителей на втором возвышении, что в сумме составляет девять зон громкоговорителей в виртуальной воспроизводящей среде 404. В данном примере, зоны 1-3 громкоговорителей находятся в передней области 405 виртуальной воспроизводящей среды 404. Передняя область 405 может соответствовать, например, области воспроизводящей среды для кинематографии, в которой расположен экран 150, к области дома, в которой расположен телевизионный экран и т.д.
[061] В данном документе зона 4 громкоговорителей обычно соответствует громкоговорителям в левой области 410, а зона 5 громкоговорителей соответствует громкоговорителям в правой области 415 виртуальной воспроизводящей среды 404. Зона 6 громкоговорителей соответствует левой тыловой области 412, а зона 7 громкоговорителей соответствует правой тыловой области 414 виртуальной воспроизводящей среды 404. Зона 8 громкоговорителей соответствует громкоговорителям в верхней области 420а, а зона 9 громкоговорителей соответствует громкоговорителям в верхней области 420b, которая может представлять собой область виртуального потолка. Соответственно, и как более подробно описано в Authoring and Rendering Application, местоположения зон 1-9 громкоговорителей, которые показаны на фиг. 4А, могут соответствовать или не соответствовать местоположениям воспроизводящих громкоговорителей фактической воспроизводящей среды. Кроме того, другие реализации могут содержать больше или меньше зон громкоговорителей и/или возвышений.
[062] В различных реализациях, описанных в Authoring and Rendering Application, пользовательский интерфейс, такой как GUI 400, может использоваться как часть инструментального средства авторской разработки и/или инструментального средства представления данных. В некоторых реализациях инструментальное средство авторской разработки и/или инструментальное средство представления данных может быть реализовано посредством программного обеспечения, хранящегося в памяти одного или нескольких постоянных носителей данных. Инструментальное средство авторской разработки и/или инструментальное средство представления данных могут быть реализованы (по меньшей мере частично) аппаратным обеспечением, программно-аппаратным обеспечением и т.д., такими как логическая система, и другими устройствами, описываемыми ниже со ссылкой на фиг. 10. В некоторых реализациях связанное инструментальное средство авторской разработки может использоваться с целью создания метаданных для связанных аудиоданных. Метаданные могут, например, включать данные, указывающие на положение и/или траекторию звукового объекта в трехмерном пространстве, данные ограничения з