Сгруппированные в кластеры периодические зазоры для измерений в гетерогенной сети

Иллюстрации

Показать все

Изобретение относится к мобильной связи. Способ для конфигурирования и использования структур зазора измерений, выполняемый в сетевом узле сети беспроводной сети связи, включает в себя выбор (410) структуры зазора измерений, предназначенной для использования мобильным терминалом, имеющей последовательность пакетов зазора измерений, таким образом, что пакеты зазоров измерений отделены периодом повторения, и каждый пакет зазоров измерений содержит два или больше зазора измерений, и передачу (420) сигналов о структуре зазора измерений в мобильный терминал. Период повторения выбирают таким образом, что период повторения структуры зазора измерений и длина цикла длинного DRX взаимосвязаны друг с другом через целочисленную степень N. Технический результат заключается в уменьшении издержек, связанных с автоматической регулировкой усиления для первого измерения в пакете. 4 н. и 34 з.п. ф-лы, 7 ил.

Реферат

Область техники, к которой относится изобретение

Технология, раскрытая здесь, в общем, относится к сетям беспроводной передачи данных и, более конкретно, относится к технологиям для выполнения измерений мобильности в таких сетях.

Уровень техники

Гетерогенные сети

В типичной сотовой радиосистеме мобильные терминалы (также называемые оборудованием пользователя, UE, беспроводными терминалами и/или мобильными станциями) связываются с сетью радиодоступа (RAN), с одной или больше базовыми сетями, которые обеспечивают доступ к сетям передачи данных, таким как Интернет, и/или к телефонной коммутируемой сети общего пользования (PSTN). RAN охватывает географическую область, которую разделяют на области сот, и каждая область соты обслуживается базовой станцией (также называемой базовой станцией, узлом RAN, "NodeB", и/или расширенным NodeB или "eNodeB"). Область соты представляет собой географическую область, в которой радиоохват обеспечивается оборудованием базовой станции на месте расположения базовой станции. Базовая станция связывается через каналы радиопередачи с беспроводными терминалами в пределах дальности действия базовой станции.

Операторы систем сотовой передачи данных начали предлагать услуги широковещательной мобильной передачи данных на основе, например, беспроводных технологий, таких, как WCDMA (широкополосной множественный доступ с кодовым разделением), HSPA (высокоскоростной пакетный доступ), и Долгосрочное развитие (LTE). Благодаря вводу новых устройств, разработанных для приложений, работающих с данными, требования к характеристикам конечного пользователя продолжают повышаться. Все более широкое распространение мобильной широкополосной передачи данных привело существенному росту трафика, обрабатываемого сетями высокоскоростной беспроводной передачи данных. В соответствии с этим требуются технологии, которые позволяют операторам сотовой сети более эффективно администрировать сетями.

Технологии для улучшения рабочих характеристик нисходящего канала передачи могут включать в себя технологии передачи с множеством антенн с множеством входов - множеством выходов (MIMO), технологии многопоточной передачи данных, технологии развертывания множества несущих и т.д. Поскольку спектральная эффективность для каждого соединения может приближаться к теоретическим пределам, следующие этапы могут включать в себя улучшение спектральной эффективности на единичную площадь. Кроме того эффективность для беспроводных сетей может быть достигнута, например, путем изменения топологии традиционных сетей для обеспечения улучшенной однородности ожиданий пользователя во всей соте. В настоящее время, так называемые, гетерогенные сети разрабатываются членами проекта Партнерства 3-его поколения (3GPP), как описано, например, в: RP-121436,, Study on UMTS Heterogeneous Networks, TSG RAN Meeting # 57, Chicago, USA, 4th-7th September 2012; Rl-124512, Initial considerations on Heterogeneous Networks for UMTS, Ericsson, ST-Ericsson, 3GOO TSG RAN WG1 Meeting #70bis, San Diego, CA, USA, 8th-12th October 2012; and Rl-124513, Heterogeneous Network Deployment Scenarios, Ericsson, ST-Ericsson, 3GPP TSG-RAN WG1 #70bis, San Diego, CA, USA, 8th-12th October 2012.

Гомогенная сеть представляет собой сеть, состоящую из базовых станций (также называемых NodeB, расширенным NodeB или eNB) в планируемой компоновке, предоставляющей услуги по передаче данных для набора терминалов пользователя (также называемых узлами оборудования пользователя, UE, и/или беспроводными терминалами), в которой все базовые станции обычно имеют аналогичные уровни мощности передачи, структуры антенн, уровни собственных шумов приемника и/или возможности обратной передачи данных в сеть передачи данных. Кроме того, все базовые станции в гомогенных сетях могут, в общем, предлагать неограниченный доступ к терминалам пользователя в сети, и каждая базовая станция может обслуживать приблизительно одинаковое количество терминалов пользователя. Существующие в настоящее время системы сотовой беспроводной связи в данной категории могут включать в себя, например, GSM (Глобальная система мобильной связи), WCDMA, HSDPA (Высокоскоростной пакетный доступ по нисходящему каналу передачи), LTE (Долгосрочное развитие), WiMAX (Общемировая совместимость широкополосного микроволнового доступа) и т.д.

В гетерогенной сети базовые станции с малой мощностью (также называемые узлами малой мощности (LPN), микроузлами, пикоузлами, фемтоузлами, узлами релейной передачи, узлами удаленного радиомодуля, узлами RRU, малыми сотами, RRU и т.д.) могут быть развернуты вместе с или с наложением на планируемые и/или регулярно размещенные макробазовые станции. Макробазовая станция (MBS) может, таким образом, предоставить услугу в относительно большой области макросоты, и каждый LPN может предоставить услугу для соответствующей области относительно малой соты LPN в пределах относительно большой области макросоты.

Мощность передачи LPN может быть относительно малой, например, 2 ватта, по сравнению с мощностью, передаваемой макробазовой станцией, которая может составлять 40 ватт для типичной макробазовой станции. LPN может быть развернута, например, для уменьшения/устранения пробела (пробелов) зоны охвата при охвате, обеспечиваемом макробазовыми станциями, и/или для разгрузки трафика макробазовых станций, например, чтобы повысить пропускную способность в местах с большим трафиком или в, так называемых, горячих пятнах. Благодаря их малой мощности передачи и малому физическому размеру, LPN может предлагать большую гибкость при получении места.

Таким образом, в гетерогенной сети предусматривается развертывание многоуровневых узлов большой мощности (HPN), таких как макробазовые станции, и узлов с малой мощностью (LPN), таких как, так называемое, пикобазовые станции или пикоузлы. LPN и HPN в данной области гетерогенной сети могут работать на одинаковой частоте, в этом случае развертывание может называться гетерогенным развертыванием с совместными каналом, или на разных частотах, и в этом случае развертывание может называться многочастотным гетерогенным развертыванием на разных частотах или с множеством несущих.

Максимальная выходная мощность HPN может составлять, например, от 43 до 49 дБм (20-80 ватт). Пример HPN представляет собой макроузел (например, охватывающую значительную территорию базовую станцию). Примеры узлов с малой мощностью включают в себя микроузлы (например, базовые станции со средней площадью охвата), пикоузлы (например, базовые станции с локальной областью охвата), фемтоузлы (например, домашние базовые станции или HBS), узел передачи данных и т.д. Максимальная выходная мощность узла с малой мощностью может составлять от 20 дБм до 38 дБм (100 мВт - 6,3 мВт), например, в зависимости от класса мощности. Например, пикоузел обычно имеет максимальную выходную мощность 24 дБм (250 мВт), в то время как HBS может иметь максимальную выходную мощность 20 дБм (100 мВт).

Координация взаимных помех между сотами

Взаимные помехи между сотами представляет большую проблему для поддержания рабочих характеристик для пользователей, расположенных на краю соты. В гетерогенной сети влияние взаимной помехи между сотами может быть хуже, чем, в общем, наблюдается в гомогенных сетях, из-за значительных различий между уровнем мощности передачи макробазовых станций и LPN. Это представлено на фиг. 1, на которой показано развертывание 100 гетерогенной сети, в которой два пикоузла 130 имеют зоны охвата, которые попадают в пределы области 120 охвата макроузла 110. Области 140 с перекрестной штриховкой на фиг. 1 охватывают область между внешним кругом и внутренним кругом вокруг каждого LPN. Внутренний круг представляет область, где принимаемая мощность из LPN выше, чем от макробазовой станции. Внешний круг представляет область, где потеря на пути передачи в базовую станцию LPN меньше, чем в макробазовую станцию.

Область 140 с перекрестной штриховкой между внутренним и внешним кругами часто называется "зоной несбалансированности". Такая зона 140 несбалансированности потенциально может представлять собой область расширения дальности действия LPN, поскольку с точки зрения восходящего канала передачи (из терминала в базовую станцию), в системе предпочтительно, чтобы терминал все еще обслуживался LPN в пределах этой области. Однако, с точки зрения нисходящего канала передачи (из базовой станции в терминал), терминалы на внешней кромке такой зоны несбалансированности, такие как терминал 150а на фиг. 1, сталкиваются с очень значительным различием принимаемой мощности между макроуровнем и уровнем LPN. Например, если уровни мощности передачи составляют 40 ватт и 1 ватт для макроузла и LPN, соответственно, такое различие мощности может составлять до 16 дБ. В отличие от этого, это не влияет терминалы, расположенные относительно далеко от пикоузлов 130, такие как мобильный терминал 150b, поскольку принимаемая мощность из LPN существенно меньше, чем принимаемая мощность из макробазовой станции 110.

В результате такого различия мощности, если терминал в зоне увеличения дальности обслуживается сотой LPN, и макросота в это же время обслуживает другой терминал, используя те же радиоресурсы, тогда терминал, обслуживаемый LPN, подвергается очень значительной взаимной помехе со стороны макробазовой станции.

Координация взаимной помехи между сотами (ICIC) поддерживается в сетях LTE и администрируется сигналами, передаваемыми между eNodeB через интерфейс eNodeB-в-eNodeB Х2. Каждая ячейка может передавать сигнал в свои соседние соты, идентифицируя блоки ресурса с высокой мощностью в областях частоты или времени. Это позволяет соседним сотам планировать пользователей на кромке соты таким образом, чтобы исключить эти блоки ресурса с высокой мощностью. Такой механизм может использоваться для уменьшения влияния взаимной помехи между сотами.

Для уменьшения и возможности обработки взаимной помехи в гетерогенных сетях, в LTE, была установлена расширенная в области времени координация взаимной помехи между сотами ICIC (eICIC), в выпуске 10 для LTE. В соответствии со схемой eICIC, структура в области времени подфреймов с малым уровнем взаимной помехи, иногда называемая "структурой передачи с низкой взаимной помехой", сконфигурирована в узле - агрессоре, например, в создающем помеху макро-eNB. Более конкретно, такие структуры называются структурами практически чистого подфрейма (ABS). Структура ABS сконфигурирована в соте - агрессора для защиты ресурсов в подфреймах, в соте - жертве (например, в пикосоте), которая подвергается сильным взаимным помехам между сотами со стороны узла агрессора.

Подфреймы ABS обычно конфигурируют с уменьшенной мощностью передачи или без мощности передачи, и/или с уменьшенной активностью по некоторым из физических каналов. В под фрейме ABS основные общие физические каналы, такие как опорный сигнал, специфичный для соты (CRS), сигнал первичной/вторичной синхронизации (PSS/SSS), физический канал широковещательной передачи данных (РВСН), и блок 1 системной информации (SIB1) передают для обеспечения операции без стыков "унаследованных UE", то есть таких UE, которые соответствуют только более ранними выпускам стандартов 3GPP. Структура ABS также может быть разделена по категориям, как не-MBSFN (не являющаяся сетью с множественной широковещательной передачей на одной частоте) и MBSFN. В структуре не-MBSFN ABS, ABS может быть сконфигурирована с любым из подфреймов, независимо от того, являются ли подфреймы конфигурируемыми по MBSFN или нет. В структуре ABS MBSFN, ABS может быть сконфигурирована только в подфреймах конфигурируемых MBSFN, то есть в подфреймах 1, 2, 3, 6, 7 и 8 в режиме дуплексирования с частотным разделением (FDD), и в подфреймах 3, 4, 7, 8 и 9 в режиме дуплексирования с временным разделением (TDD).

Обслуживающий eNB (например, пико-eNB) передает сигналы в одну или больше структур измерения, иногда называемых структурами ограничения ресурса измерения, для информирования UE о ресурсах или подфреймах, которые UE должно использовать для выполнения измерений для целевой соты - жертвы (например, обслуживающей пикосоты и/или соседних пикосот). Структуры могут отличаться для измерений обслуживающей соты, измерений соседней соты и т.д. Ресурсы или подфреймы, в которых должны быть выполнены измерения, перекрываются UE с подфреймами ABS в соте (сотах) - агрессоре. Поэтому, такие ресурсы или подфреймы в пределах структуры измерений защищены от взаимной помехи соты - агрессора, и, таким образом, могут называться защищенными подфреймами или даже ограниченными подфреймами. Обслуживающий eNB обеспечивает то, что каждая структура измерений содержит, по меньшей мере, достаточно защищенные подфреймы в каждом радиофрейме, чтобы способствовать регулярному измерению UE защищенных подфреймов, например, по одному или двум защищенным подфреймам на фрейм. В противном случае, UE не может удовлетворять заранее определенным техническим условиям измерений, при конфигурировании с измерительными структурами, относящимися к операции в гетерогенной сети.

Передача данных машинного типа

Так называемая передача данных из машины в машину (М2М), часто называемая в документации 3GPP передачей данных машинного типа (МТС), используется для установления обмена данными между устройствами и между устройствами и людьми. Передача данных может содержать обмен специфичными для приложения данными, такими как данные измерения, а также обмен сигналами управления, информацией конфигурации и т.д. Размер устройств М2М может изменяться от устройства с размером бумажника до размера базовой станции.

Устройства М2М довольно часто используются для таких приложений, как определение условий окружающей среды (например, измерение температуры), подсчет или измерение (например, используемого электричества и т.д.), определение отказа или детектирование ошибок и т.д. Во многих из таких приложений устройства М2М являются активными только периодически, но в течение длительности и с частотой, которые зависят от типа услуги, например, приблизительно 200 миллисекунд один раз каждые 2 секунды приблизительно 500 миллисекунд каждые 60 минут и т.д. Следует отметить, что устройство М2М может также выполнять радиоизмерение или измерения на других частотах и использовать технологии радиодоступа (RAT).

Измерения UE

Для поддержания разных функций, таких как мобильность, которая в свою очередь включает в себя функции выбора соты, повторного выбора соты, передачи терминала, восстановления RRC, разъединения соединения с перенаправлением и т.д., а также поддержки других функций, таких как минимизация при тестировании управления, самоорганизующаяся сеть (SON), определение местоположения и т.д., требуется, чтобы UE выполняло одно или больше радиоизмерений (например, измерений временных характеристик, измерений силы сигнала или других измерений качества сигнала) для сигналов, передаваемых соседними сотами, то есть другими сотами, чем соты, обслуживающие UE. Переде выполнением таких измерений UE обычно должно идентифицировать соту, из которой передают сигнал, и определять физическую идентичность соты (PCI) для этой соты. Поэтому, определение PCI также можно рассматривать, как измерения определенного типа.

UE принимает конфигурацию измерений или вспомогательных данных/информации, которая представляет собой сообщение или информационный элемент (IE), переданный сетевым узлом (например, обслуживающим eNode В, узлом определения положения и т.д.), для конфигурирования UE, для выполнения запрашиваемых измерений. Например, конфигурация измерений может содержать информацию, относящуюся к частоте несущей, предназначенной для измерений, технологии радиодоступа (RAT) или к RAT, предназначенной для измерений, к типу измерений (например, принимаемой мощности опорного сигнала или RSRP), где должна выполняться фильтрация в области времени на более высоком уровне, измерению параметров, относящихся к полосе пропускания, и т.д.

Измерения выполняются с помощью UE для обслуживающей соты, а также для соседних сот, через определенные известные символы или пилотные последовательности. Измерения выполняют для сот на внутричастотной несущей, на несущих на разных частотах, а также на несущих между RAT (в зависимости от возможностей UE поддержки конкретных RAT. Для обеспечения возможности измерений на разных частотах и между разными RAT, в которых требуются зазоры (то есть интервалы, в которых приемник мобильного терминала может повторно настроиться на другую частоту и/или сконфигурироваться самостоятельно на другую RAT), сеть должна конфигурировать возможность измерений зазоров для UE. Две периодических структуры зазора измерений, обе с длиной зазора измерений 6 миллисекунд, определены для LTE:

- структура №0 зазора измерений с периодом повторения 40 миллисекунд; и

- структура №1 зазора измерений с периодом повторения 80 миллисекунд.

В сетях Высокоскоростного пакетного доступа (HSPA), измерения на разных частотах и внутри RAT выполняются с зазорами сжатого режима, которые также представляют собой определенный тип зазора измерений, сконфигурированного в сети.

Некоторые измерения также могут потребовать, чтобы UE измеряло сигналы, передаваемые UE в восходящем канале передачи. Измерения выполняются с использованием UE в состоянии, подключенном к RRC или в состоянии CELL_DCH (в HSPA), а также в состояния RRC с малой активностью (например, состояние простоя, состояние CELL_FACH в HSPA, URA_PCH и состояниях CELL_PCH в HSPA, и т.д.). При сценарии объединения множества несущих или несущей (CA), UE может выполнять измерения по сотам, по первичной составляющей несущей (РСС), а также по сотам по одной или больше вторичным составляющим несущей (SCC).

Эти измерения выполняются с различным назначением. Некоторые примеры назначения измерений представляют собой: мобильность, определение положения, самоорганизующаяся сеть (SON), минимизация тестирования управления (MDT), операция и обслуживание (О&М), планирование и оптимизация сети, и т.д. Измерения обычно выполняются в течение длительности времени порядка от нескольких сотен миллисекунд до нескольких секунд. Те же измерения, в общем, применимы для обоих сценариев с одной несущей и объединением несущих. Однако в сценариях с объединением несущих определенные требования к измерениям могут быть разными. Например, период измерений может быть отличным в сценариях объединения несущих; то есть он может быть ослабленным или более усиленным, в зависимости от того, является ли вторичная составляющая несущая (SCC) активированной или нет. Это также может зависеть от возможности UE, то есть может ли UE, выполненное с возможностью, объединения несущих, выполнять измерения по SCC с зазорами или без зазоров.

Примеры измерений мобильности в LTE включают в себя:

- принимаемая мощность опорного символа (RSRP); и

- принимаемое качество опорного символа (RSRQ).

Примеры измерений мобильности в HSPA представляют собой следующие:

- Общая принимаемая мощность входа принимаемого пилотного канала (CPICH RSCP); и

- CPICH ЕС/№

Пример измерений мобильности в GSM/GERAN представляет собой:

- RSSI несущей GSM.

Примеры измерений мобильности в системах CDMA2000 представляет собой следующие:

- Сила пилотного сигнала для CDMA2000 1×RTT; и

- Сила пилотного сигнала для HRPD.

Измерения мобильности также могут включать в себя этап идентификации или детектирования соты, которая может принадлежать LTE, HSPA, CDMA2000, GSM и т.д. Детектирование соты содержит идентификацию, по меньшей мере, идентичности физической соты (PCI) и последующее выполнение измерений сигнала (например, RSRP) для идентифицированной соты. UE, вероятно, также может потребоваться получать глобальный ID соты (CGI) для UE. В HSPA и LTE обслуживающая сота может запрашивать UE для получения системной информации (SI) для целевой соты. Более конкретно, SI считывается UE для получения глобального идентификатора соты (CGI), который уникально идентифицирует соту целевой соты. UE также можно запрашивать для получения другой информации, такой как показатель CSG детектирования близости CSG и т.д., из целевой соты.

Примеры измерений определения положения в LTE представляют собой следующие:

- Разность времени опорного сигнала (RSTD); и

- Измерение разности времени RX-TX в UE.

Измерение разности времени RX-TX в UE требует, чтобы UE выполняло измерение по нисходящему опорному сигналу, а также по восходящим передаваемым сигналам.

Примеры других измерений, которые могут использоваться для поддержания радиосоединения, MDT, SON или для других назначений, представляют собой:

- Частота отказов или оценка качества канала управления, например,

Частота отказов в пейджинговом канале, и

Частота отказов канала широковещательной передачи;

- Детектирование проблем физического уровня, например,

Детектирование отсутствия синхронизации (отсутствие синхронизации),

Детектирование наличия синхронизации (наличие синхронизации),

Отслеживание радиосоединения, и

Определение или мониторинг отказа радиосоединения.

Тем не менее, другие измерения, выполняемые UE, включают в себя измерения информации состояния канала (CSI), которые используются для планирования, адаптации соединения и т.д. в сети. Примеры измерений CSI представляют собой CQI, PMI, PI и т.д.

Радиоизмерения, выполняемые UE, используются в UE для одной или больше задач для выполнения радиоопераций. Примеры таких задач представляют собой отчетность об измерениях сети, которая в свою очередь может использовать их для различных задач. Например, в соединенном состоянии RRC UE предоставляет отчеты с радиоизмерениями в обслуживающий узел. В ответ на предоставляемые в отчете измерения UE, узел обслуживающей сети принимает определенные решения, например, он может передавать команду мобильности в UE с целью изменения соты. Примеры изменения соты представляют собой передачу мобильного терминала, повторное установление соединения RRC, разъединение соединения с RRC с перенаправлением, изменение первичной соты (PCell) в СА, изменение первичной составляющей несущей (РСС) в РСС и т.д. Пример изменения соты в режиме ожидания или в состоянии низкой активности представляет собой повторный выбор соты. В другом примере UE может само использовать радиоизмерения для выполнения задач, например, выбор соты, повторный выбор соты и т.д.

Измерения UE с целью освобождения от излишней нагрузки

В последнее время рабочая группа RAN2 в 3GPP обсуждала измерения UE (детектирование соты и измерения соты), предназначенные для использования с целью разгрузки в развернутой многочастотной гетерогенной сети, в которых макросоты по одной несущей частоте выполняют функции, относящиеся к мобильности, в то время как пикосоты по второй несущей частоте обеспечивают дополнительные возможности в горячих точках. (См., например, 3GPP RAN WG2, "LS on relaxed performance requirements", R2-132239, доступен по адреу http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_82/Docs/R2-132239.zip.)

В то время как измерения мобильности, в основном, выполняют, когда обслуживающий сигнал соты становится слабым, измерения с целью разгрузки могут осуществляться даже в случае, когда обслуживающая сота является сильной, например, когда UE соединено с макросотой. Такой подход обеспечивает требуемые преимущества для уровня системы, а также для индивидуальных пользователей. Разгрузка UE из макросоты в пикосоты может обеспечить повышенную пропускную способность, как для оставшихся UE в макросоте, так и для UE, которые были переданы в соседнюю пикосоту, работающую на разных частотах.

Регулировка усиления

Когда UE настраивается на межчастотную несущую, оно обычно должно выполнить оценку силы сигнала для установки усиления, которое позволяет квантовать принимаемые сигналы на ограниченное количество битов без потери существенной информации. Время, требуемое для выполнения такой оценки силы сигнала, в сумме с временем на радиопереключение, уменьшает время зазора измерений, которое можно использовать для поиска соты и выполнения измерений RSRP/RSRQ.

Если существует большая разница между оценкой силы сигнала (например, силой сигнала, наблюдаемой в последнее время, когда происходило использование данной несущей), и фактической силой сигнала, коррекция усиления, в общем, потребует большей величины зазора для измерений, чем в случае малой разницы. Для e-UTRA (сети LTE), это может привести к тому, что меньше чем 5,1 миллисекунд, которые требуются для детектирования соты с произвольными временными характеристиками фрейма, будет доступно в зазоре для измерений. Следовательно, соты с определенными временными характеристиками фрейма будет невозможно детектировать, используя обычные подходы для поиска соты e-UTRAN. Эта проблема также может привести к уменьшенной точности измерений RSRP/RSRQ, поскольку меньшее количество опорных символов может находиться в доступных пределах. Обе проблемы могут негативно повлиять на функцию мобильности.

Возможные подходы к уменьшению этой проблемы включают в себя представление принятых выборок, используя существенно большее количеством битов, таким образом, что потеря информации предотвращается даже в случае неточных установок усиления, и увеличение динамического диапазона аналоговых частей приемника. Однако такой подход приводит к тому, что требуется больше памяти для радиовыборок, что приводит к увеличению стоимости и потреблению мощности для приемника. Другой подход состоит в том, чтобы планировать периодические зазоры измерений, которые относительно близки друг к другу. Однако такой подход приводит к большему количеству частых прерываний при активном соединении для передачи данных, чем желательно, или к более частым и/или более длительным интервалам активной работы для мобильного терминала, который находится в состоянии ожидания. В соответствии с этим требуются улучшенные технологии для выполнения обработки разгрузки измерений при развертывании гетерогенной сети.

Сущность изобретения

В соответствии с несколькими вариантами осуществления раскрытых в настоящее время технологий, представляется новый вид структуры зазора измерений с целью разгрузки измерений. Такая структура зазора измерений имеет последовательность пакетов зазора измерений, таким образом, что пакеты зазоров измерений разделены периодом повторения, и каждый пакет зазоров измерений содержит два или больше зазора измерений. В некоторых вариантах осуществления период повторения выбирают таким образом, что он хорошо выравнивается циклами короткого DRX и/или циклами длинного DRX. Например, период повторения структуры зазора измерений и длительность цикла длинного DRX в некоторых вариантах осуществления связаны друг с другом, используя целочисленную степень N, например, N=2 или N=4.

Варианты осуществления раскрытых технологий включают в себя, например, способ, в сетевом узле сети беспроводной передачи данных, для конфигурирования измерений в мобильном терминале. Такой примерный способ включает в себя выбор структуры зазора измерений, предназначенной для использования мобильным терминалом, структура зазора измерений, имеющая последовательность пакетов зазора измерений таким образом, что пакеты зазоров измерений отделены периодом повторения, и каждый пакет зазоров измерений содержит два или больше зазора измерений, и передачу сигналов о структуре зазора измерений в мобильный терминал.

В некоторых вариантах осуществления, выбор структуры зазора измерений содержит: выбирают период повторения или выбирают количество зазоров измерений для каждого пакета зазора измерений, или для них обоих. Это может быть основано, например, на пределе пропускной способности соты для обслуживающей соты для мобильного терминала, и/или на одном или больше из: количества несущих частот, на которых мобильный терминал должен выполнять измерения; типе измерений; частоте зазоров в пакете; типе цикла DRX; длительности цикла DRX; и состояния радиоканала.

В некоторых вариантах осуществления период повторения может быть выбран таким образом, что выбранный период повторения представляет собой целочисленное кратное длины цикла длительного DRX для мобильного терминала. В некоторых из таких вариантов осуществления период повторения может быть выбран таким образом, что отношение выбранного периода повторения к длине цикла длительного DRX для мобильного терминала представляет собой целочисленную степень 2.

В некоторых вариантах осуществления способ дополнительно включает в себя выбирают смещения структуры зазора измерений для структуры зазора измерений и передают сигналы со смещением структуры зазора измерений в мобильный терминал, где выбор смещения структуры зазора измерений содержит выбор смещения структуры зазора измерений таким образом, чтобы исходный зазор измерений в пакете зазора измерений был расположен рядом с или перекрывался с интервалом длительности включения цикла длительного DRX для мобильного терминала.

В некоторых вариантах осуществления, передача в виде сигналов структуры зазора измерений в мобильный терминал содержит: передают в мобильный терминал идентификатор, соответствующий одной из двух или больше заданных структур измерений, известных для мобильного терминала. В других вариантах осуществления в мобильный терминал передают показатель одного или больше из следующих: количество зазоров в пакете; расстояние по времени между зазорами измерений в пакете; период повторения между пакетами; и смещение зазора измерений.

В некоторых вариантах осуществления способ дополнительно включает в себя: принимают показатель из мобильного терминала, показатель из мобильного терминала, обозначающий рекомендуемое или требуемое значение для одного или больше из количества зазоров в пакете, расстояние по времени между зазорами измерений в пакете, период повторения между пакетами и смещение зазора измерений. В этих вариантах осуществления выбор структуры зазора измерений может быть основан на показателе, принимаемом из мобильного терминала.

В некоторых из этих и в некоторых других вариантах осуществления, примерный способ, кратко представленный выше, может дополнительно содержать: принимают показатель возможностей из мобильного терминала, показатель возможностей, обозначающий, что мобильный терминал, по меньшей мере, выполнен с возможностью выполнения одного или больше измерений, используя структуру зазора измерений, имеющую последовательность измеренных пакетов зазора таким образом, что пакеты зазоров измерений разделены периодом повторения, и каждый пакет зазоров измерений содержит два или больше зазора измерений. В этих вариантах осуществления выбор структуры зазора измерений и передача сигналов структуры зазора измерений в мобильный терминал соответствует приему показателя возможности.

Соответствующий примерный вариант осуществления, в соответствии с технологиями, раскрытыми здесь, пригоден для воплощения в мобильном терминале, работающем в сети беспроводной передачи данных и обслуживается первой сотой, работающей на первой несущей частоте. Способ включает в себя: принимают сигналы, обозначающие структуру зазора измерений, которая будет использоваться мобильным терминалом, структура зазора измерений, имеющая последовательность пакетов зазора измерений таким образом, что пакеты зазоров измерений разделены периодом повторений, и каждый пакет зазоров измерений содержит два или больше зазора измерений. Способ дополнительно включает в себя: выполняют одно или больше измерений, по меньшей мере, для одной соты на второй несущей частоте, в соответствии с переданной с сигналами структурой зазора измерений. В некоторых вариантах осуществления измерения, выполняемые, по меньшей мере, в одной соте, работающей на второй несущей частоте, представляют собой измерения разгрузки, и измерения разгрузки выполняют в UE, независимо от качества сигнала для измерений, выполняемых UE для первой соты.

В некоторых вариантах осуществления передаваемая с сигналами структура зазора измерений имеет период повторения, который представляет собой целочисленное кратное длины цикла длинного DRX для мобильного терминала. В некоторых из этих вариантов осуществления отношение периода повторения к длине цикла длинного DRX для мобильного терминала представляет собой целочисленную степень 2.

В некоторых вариантах осуществления мобильный терминал принимает сигналы, обозначающие структуру зазора измерений путем приема идентификатора, соответствующего одной из двух или больше заданных структур измерений, известных мобильному терминалу. В других вариантах осуществления мобильный терминал принимает показатель одного или больше из следующего: количество зазоров в пакете; расстояние по времени между зазорами измерений в пакете; период повторения между пакетами; и смещение зазора измерений.

В некоторых вариантах осуществления мобильный терминал вначале передает показатель в сетевой узел в сети беспроводной передачи данных, такой показатель, обозначающий рекомендуемое или требуемое значение для одного или больше из количества зазоров в пакете, расстояния по времени между зазорами измерений в пакете, периода повторения между пакетами, и смещения зазора измерений. В некоторых из этих и в некоторых других вариантах осуществления мобильный терминал передает показатель пропускной способности в сетевой узел в сети беспроводной передачи данных, показатель возможности, обозначающий, что мобильный терминал, по меньшей мере, выполнен с возможностью выполнения одного или больше измерений, используя структуру зазора измерений, имеющую последовательность пакетов зазора измерений таким образом, что, пакеты зазоров измерений разделяют периодом повторения, и каждый пакет зазоров измерений содержит два или больше зазора измерений.

Другие варианты осуществления технологии, раскрытой здесь, включают в себя устройство сетевого узла и устройство мобильного терминала, каждый из которых сконфигурирован для выполнения одного из примерных способов, кратко представленных выше, или их вариантов. Одно такое устройство сетевого узла, например, включает в себя схему интерфейса передачи данных, выполненную с возможностью обмена данными с мобильным терминалом или обмена данными с одним или больше другими сетевыми узлами, или выполненную с возможностью обмена данными с мобильным терминалом и одним или больше другими сетевыми узлами, и дополнительно включает в себя схему обработки, где схема обработки выполнена, например, с использованием соответствующих программных средств для выбора структуры зазора измерений, предназначенной для использования мобильным терминалом, структура зазора измерений, имеющая последовательность пакетов зазора измерений таким образом, что пакеты зазоров измерений разделены периодом повторения, и каждый пакет зазоров измерений содержит два или больше зазора измерений. Схема обработки дополнительно выполнена с возможностью передавать сигналы о структуре зазора измерений в мобильный терминал, используя схему интерфейса передачи данных, либо непосредственно, или через один или больше других сетевых узлов.

Аналогично, примерный мобильный терминал, в соответствии с некоторыми из вариантов осуществления, описанными здесь, выполнен с возможностью выполнения операций в сети беспроводной передачи данных и включает в себя схему приемопередатчика, выполненную с возможностью связи с узлом радиосети в сети беспроводной передачи данных. Мобильный терминал дополнительно включает в себя схему обработки, которая выполнена с возможностью приема сигналов, обозначающих структуру зазора измерений, предназначенную для использования мобильным терминалом, структура зазора измерений, имеющая последовательность пакетов зазора измерений таким образом, что пакеты зазоров измерений отделяются периодом повторения, и каждый пакет зазоров измерений содержит два или больше зазоров измерений, и для выполнения измерений в соответствии с передаваемой с сигналами структурой зазора измерений.

Краткое описание чертежей

На фиг. 1 показана схема, иллюстрирующая часть примера сети, в которой могут быть воплощены описанные здесь технологии.

На фиг. 2 показаны компоненты архит