Композитные материалы

Иллюстрации

Показать все

Изобретение может быть использовано в аэрокосмической промышленности. Отверждаемый композитный материал содержит по меньшей мере один структурный слой армирующих волокон, пропитанных отверждаемой смолистой матрицей, и по меньшей мере одну проводящую композитную частицу, расположенную рядом или вблизи с указанными армирующими волокнами. Указанная проводящая композитная частица содержит проводящий компонент и полимерный компонент. Указанный полимерный компонент содержит один или более термопластичных полимеров. Термопластичные полимеры первоначально находятся в твердой фазе и по существу не растворимы в отверждаемой смолистой матрице до отверждения композитного материала, но способны подвергаться по меньшей мере частичному фазовому переходу в жидкую фазу за счет растворения в смолистой матрице во время цикла отверждения композитного материала. Термопластичные полимеры имеют температуру стеклования (Тст) более 200°С. Изобретение позволяет повысить электрическую проводимость композита в направлении толщины, улучшить ударную прочность и устойчивость к расслоению многослойной композитной структуры. 9 н. и 28 з.п. ф-лы, 6 ил., 7 табл., 6 пр.

Реферат

ОБЛАСТЬ ТЕХНИКИ

В аэрокосмической промышленности применение композитов становится все более важным, поскольку большое количество первичных и вторичных структур в конструкциях летательных аппаратов изготавливают из композитных материалов. Преимущества композитов в конструкциях летательных аппаратов включают высокое соотношение прочности к весу, превосходную усталостную прочность, стойкость к коррозии и гибкость, что позволяет значительно сократить количество комплектующих деталей и необходимость в крепежных деталях и стыках. Однако применение этих материалов для первичных и вторичных структур современных летательных аппаратов ставит особые задачи из-за диэлектрической природы смолистой матрицы. Несмотря на то, что применение углеродных волокон в качестве армирующих волокон в композитных материалах может давать некоторую степень электрической проводимости в продольном направлении за счет графитной природы, диэлектрические свойства смолистых матриц в композитных материалах снижает общую электрическую проводимость композитных материалов и структур. Композиты с повышенной электрической проводимостью необходимы для первичных структур летательных аппаратов для удовлетворения жестких требований в отношении защиты от удара молнии, разряда напряжения, электрического заземления и защиты от электромагнитного излучения.

Электрическая проводимость смол и композитов может быть улучшена за счет внедрения различных проводящих частиц или полимеров в смолистую матрицу или в межслойные области композитных структур. Такие решения в области современных материалов могут быть использованы для улучшения проводимости в z-направлении композита, но не его механических характеристик. "z-направление" относится к направлению, перпендикулярному плоскостям, в которых расположены волокна в композитной структуре, или оси сквозь толщу композитной структуры.

КРАТКОЕ ОПИСАНИЕ

Настоящее описание относится к армированным волокнами композитным материалам, которые могут обеспечивать высокую проводимость в направлении толщины, а также улучшенные свойства расслоения и ударной прочности. В соответствии с одним вариантом настоящего описания, армированный волокнами композитный материал содержит:

i) по меньшей мере один структурный слой армирующих волокон, пропитанных отверждаемой смолистой матрицей; и

ii) по меньшей мере одну электропроводную композитную частицу, расположенную рядом или вблизи с армирующими волокнами.

Электропроводная композитная частица представляет собой микроразмерную частицу, состоящую по меньшей мере из одного электропроводного материала, диспергированного в полимерном материале. Таким образом, каждая проводящая композитная частица имеет проводящий компонент и полимерный компонент. Полимерный компонент электропроводных композитных частиц первоначально находится в твердой фазе и по существу не растворим в отверждаемой смолистой матрице до отверждения указанной смолистой матрицы, но он способен подвергаться по меньшей мере частичному фазовому переходу в жидкую фазу во время цикла отверждения смолистой матрицы. Отверждаемая смолистая матрица структурного слоя может быть отверждающейся композицией, в которой полимерный компонент проводящей композитной частицы по меньшей мере частично растворим во время цикла отверждения смолистой матрицы.

Описан также способ изготовления многослойной композитной структуры, имеющей проводящие композитные частицы в межслойных областях.

Другой аспект настоящего описания относится к проводящим полимерным волокнам и нетканым структурам со свойствами, аналогичными проводящим композитным частицам.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

ФИГ. 1 схематически иллюстрирует электропроводную композитную частицу в соответствии с одним вариантом реализации настоящего описания.

ФИГ. 2 демонстрирует иллюстративный способ производства электропроводных композитных частиц.

ФИГ. 3А схематически иллюстрирует композитную структуру, содержащую электропроводные частицы в межслойных областях перед отверждением.

ФИГ. 3В схематически иллюстрирует композитную структуру, изображенную на ФИГ. 3А, после отверждения.

ФИГ. 4 представляет собой изображение сканирующего электронного микроскопа (СЭМ), показывающее микроразмерные проводящие композитные частицы, полученные в соответствии с одним примером настоящего описаниям.

ФИГ. 5А и 5В представляют собой две микрофотографии, изображающие виды в поперечном разрезе отвержденной композитной структуры на основе внедрения медь/полиамидных композитных частиц в межслойную область.

ФИГ. 6 представляет собой микрофотографию, изображающую вид в поперечном разрезе отвержденной композитной структуры на основе внедрения проводящих медь/ПЭС частиц в межслойную область.

ПОДРОБНОЕ ОПИСАНИЕ

Недавно было разработано "третье поколение ударопрочных композитных материалов" для первичных структур в аэрокосмических применениях. Ударная прочность таких материалов улучшена за счет изменения полимерной прокладки между армированными волокнами слоями. Наличие межслойных полимерных частиц, волокон или пленок может существенно снижать электрическую проводимость в "z-направлении" армированного волокнами композитного материала из-за диэлектрической природы этих материалов. Поэтому необходимо улучшить электрическую проводимость в z-направлении композита в "материалах третьего поколения" для обеспечения приемлемых уровней разряда напряжения и электрического заземления для предотвращения возможных катастрофических отказов композитных деталей или аварий, связанных с воспламенением паров топлива, с последующим взрывом топливного бака после удара молнии.

Электрическая проводимость смолистых композитов может быть улучшена за счет внедрения различных проводящих частиц или полимеров в смолистую матрицу или в межслойные области многослойных композитных материалов и структур. Могут быть использованы металлические волокна с высокими степенями наполнения (как правило, более 50% по весу) для снижения удельного сопротивления смолы, но этот подход обычно приводит к значительному увеличению веса и к существенному снижению механических свойств. Сопряженные проводящие полимеры могут улучшать проводимость смолистой системы при относительно низких степенях наполнения, но они ставят под угрозу термомеханические характеристики конструкционных смолистых систем и препрегов для аэрокосмических применений. Добавки на основе углерода, такие как техуглерод, углеродные нанотрубки, углеродные нановолокна, также могут быть использованы для модификации состава смолистых систем, но они затрудняют перерабатываемость и диспергирование, что ограничивает их применение в современных композитных структурах.

Недавно была предложена серия межслойных частиц, имеющих проводящее покрытие, в качестве решения для создания электрического мостика между двумя соседними слоями. Однако такие проводящие частицы, как правило, могут обеспечивать лишь высокую электропроводность или влиять на свойства сопротивления, но не на оба этих свойства.

В настоящем описании представлено многофункциональное решение, которые включает композитный материал, имеющий один или более структурных слоев армированных волокон, пропитанных отверждаемой смолистой матрицей, и электропроводные композитные частицы со способностью повышения ударной прочности. Кроме того, при использовании таких проводящих композитных частиц в межслойных областях многослойных композитных структур, они могут создавать электрические мостики между структурными волокнистыми слоями в многослойных композитных структурах. Решение настоящего описания обеспечивает не только улучшение проводимости композитных структур в z-направлении, но и улучшение механических свойств, таких как межслойное сопротивление на излом и ударная прочность. Термин "проводящая композитная частица" используется здесь и далее для обозначения "электропроводящих композитных частиц". Проводящие композитные частицы представляют собой микроразмерные частицы, состоящие по меньшей мере из одного электропроводного материала, диспергированного по меньшей мере в одном полимерном материале. Таким образом, каждая электропроводящая композитная частица имеет электропроводящий компонент и полимерный компонент.

При укладке множества композитных материалов в многослойной конфигурации (то есть друг на друга) и отверждении полимерный компонент проводящих композитных частиц растворяется в смолистой матрице структурных слоев, высвобождая посредством этого проводящий компонент, который в свою очередь создает контролируемую межслойную область с проводящим мостиком между волокнистыми слоями. Такое материальное решение может одновременно улучшать ударную прочность и устойчивость к расслоению многослойной композитной структуры, при этом распространяя или рассеивая электрические токи, такие как токи, образующиеся при ударе молнии, по большой площади композитной структуры, что снижает вероятность катастрофических повреждений локализованных участков. Кроме того, проводящие композитные частицы могут быть потенциально эффективным решением для ослабления или исключения прямого действия удара молнии и, в частности, явления свечения краев в третьем поколении композитных структур. Наконец, электропроводные композитные частицы могут обеспечивать дополнительные преимущества в отношении электромагнитных характеристик композита. Композитные частицы на основе высокопроводящих и/или магнитных наполнителей могут быть использованы в качестве гибкого инструмента для адаптации эффективности экранирования электромагнитных помех (ЭМП), свойств диэлектрической проницаемости и магнитной проницаемости композитных структур.

Проводящие композитные частицы

ФИГ. 1 схематически иллюстрирует проводящую композитную частицу в соответствии с одним вариантом реализации настоящего описания. Хотя на ФИГ. 1 изображена сферическая частица, следует понимать, что электропроводные композитные частицы настоящего описания представляют собой дискретные трехмерные структуры, которые могут быть любой подходящей формы, включая, но не ограничиваясь этим, сферическую, шарообразную, эллипсоидную, кубическую, полиэдрическую, цилиндрическую, дискообразную и тому подобные. Кроме того, частицы могут иметь четко выраженную геометрию или могут быть неодинаковыми по форме.

Средний размер частиц (d50) проводящих композитных частиц составляет менее 150 мкм, предпочтительно в диапазоне 10-90 мкм, более предпочтительно в диапазоне 10-60 мкм. d50 представляет собой среднее значение распределения частиц по размеру или, альтернативно, представляет собой такое значение распределения, при котором 50% частиц имеют размер частиц указанного значения или менее.

Проводящий компонент проводящей композитной частицы может включать металлические материалы, неметаллические проводящие материалы и их комбинации, обладающие электрической проводимостью более 1×103 См/м. Подходящие металлические материалы включают любые известные металлы, включая, но не ограничиваясь этим, серебро, золото, платину, палладий, никель, медь, свинец, олово, алюминий, титан, их сплавы и смеси. Предпочтительно, металлические материалы имеют электрическую проводимость более 1×107 См/м, более предпочтительно - более 3×107 См/м. Подходящие неметаллические проводящие материалы включают, но не ограничиваясь этим, углерод или материалы на основе графита.

Если проводящий материал является металлическим, то проводящий компонент содержится в диапазоне от 1% до 90% по весу от общего веса проводящей композитной частицы, предпочтительно в диапазоне от 30% до 85% по весу, и более предпочтительно в диапазоне 50%-80%. Если проводящий материал представляет собой неметаллический или углеродный материал, то проводящий компонент содержится в диапазоне от 1% до 75% по весу от общего веса проводящей композитной частицы, предпочтительно в диапазоне от 1% до 25% по весу.

Полимерный компонент проводящих композитных частиц может включать один или более полимеров, которые первоначально находятся в твердой фазе и по существу не растворимы в отверждаемой смолистой матрице (то есть в смолистой матрице-носителе) при комнатной температуре (то есть, 20°С - 25°С) или при условиях, не достаточных для полного отверждения смолистой матрицы, но способны подергаться по меньшей мере частичному фазовому переходу в жидкую фазу во время цикла отверждения смолистой матрицы-носителя. Во время цикла отверждения полимерный компонент растворяется в смолистой матрице при контакте с указанной смолистой матрицей. Другими словами, полимерный компонент представляет собой материал, который не обладает растворимостью (или обладает незначительной растворимостью) в отверждаемой смолистой матрице при комнатной температуре или при условиях, не достаточных для полного отверждения смолистой матрица (например, во время производства препрега), при этом его растворимость является существенной (то есть растворяется более 50%) или полной (то есть полностью растворяется) во время цикла отверждения смолистой матрицы.

Используемый в настоящем документе термин "отверждать" или "отверждение" относится к затвердеванию смолистой матрицы за счет поперечного сшивания полимерных цепей, обусловленного химическими добавками, ультрафиолетовым излучением, микроволновым излучением, электронным пучком, гамма-излучением или другим подходящим термическим или не термическим излучением.

Свойства растворимости полимеров для полимерных компонентов в отверждаемой смолистой матрице-носителе, при рассмотрении в данном контексте, могут быть определены несколькими известными приемами, включая оптическую микроскопию, спектроскопию и тому подобные.

Для того, чтобы один материал был растворим в другом материале, разница их параметров растворимости (Δδ) должна быть минимальной. Параметр растворимости для полимера может быть определен расчетом на основе способа вкладов отдельных групп, описанного ученым Van Krevelen (см. D.W. Van Krevelen, Properties of Polymers, 3е пересмотренное издание, Elsevier Scientific Publishing, Амстердам, 1990, глава 7, cc. 189-224).

Параметр растворимости полимера может быть определен также с помощью параметра растворимости Хансена (HSP) как способа предсказания растворения одного материала в другом с образованием раствора. Параметры Хансена основаны на идее, что "подобное растворяется в подобном", при этом одна молекула определяется как "подобная" другой, если она связывается сама с собой подобным образом.

Подходящие полимеры для полимерного компонента проводящей композитной частицы могут быть выбраны из гомополимеров или сополимеров функционализированных или не функционализированных термопластичных смол, отдельно или в комбинации с термореактивными смолами. Подходящие термопластичные материалы могут включать, например, любые из следующих, отдельно или в комбинации: полиуретаны, поликетоны, полиамиды, полифталамиды, полистиролы, полибутадиены, полиакрилаты, полиакриловые материалы, полиметакрилаты, полисульфоны, включающие полиэфирсульфоны (ПЭС), полиэфир-эфирсульфоны (ПЭЭС), полифенилсульфоны сложные полиэфиры, жидкие кристаллические полимеры, полиимиды, полиэфиримиды (ПЭИ), полиэфиркетон-кетоны (ПЭКК), полиэфир-эфиркетоны (ПЭЭК), полиарилэфиры, полиарилсульфиды, полифенилены, полифениленоксид (ПФО), полиэтиленоксид (ПЭО), полипропиленоксид. Подходящие полимеры также могут включать эластомеры (в том числе сегментированные эластомеры) или комбинацию термопластичного полимера и эластомерного полимера.

Предпочтительно, полимерный компонент выбран из функционализированных термопластичных полимеров, которые могут быть смешаны с подходящими термореактивными матрицами, обладают высоким модулем и температурой стеклования (Тст), и являются жесткими. Как правило, применимы термопластичные полимеры, имеющие Тст по меньшей мере 150°С, предпочтительно более 200°С.

Среднечисловой молекулярный вес термопластичных полимеров может находиться в диапазоне от 2000 до 60000. Предпочтительно он составляет более 9000, например, от 11000 до 25000. Наличие этих термопластичных полимеров в термопластичной смоле-носителе повышает жесткость отвержденной термореактивной смолы за счет обеспечения зон жесткого термопласта между поперечно сшитыми зонами термореактопласта. Функционализированный термопластичный полимер предпочтительно содержит подвешенные или концевые функциональные группы, которые химически взаимодействуют с функциональными группами в термореактивной смолистой композиции с образованием ковалентных, ионных или водородных связей. Такие функциональные группы могут быть получены взаимодействием мономеров или последующим превращением полимерного продукта до или после его выделения. Предпочтительно, функциональные группы термопластичного полимера имеют формулу:

-A-Y

Где А представляет собой двухвалентную углеводородную группу, предпочтительно ароматическую, а Y представляют собой группы, дающие активный водород, особенно ОН, NH2, NHR' или SH, где R' представляет собой углеводородную группу, содержащую до 8 углеродных атомов, или дающие другую поперечную реакционную способность, особенно эпокси, (мет)акрилат, цианат, изоцианат, ацетилен, этиленвинил, аллил, бензоксазин, ангидрид, оксазолин, малеимид и мономеры, содержащие насыщение.

Полимерный компонент проводящей композитной частицы имеет возможность подвергаться полному или частичному фазовому переходу, например, может полностью растворяться или может частично растворяться. "Частично растворяется" означает, что часть полимерного компонента растворена в матрице, тогда как другая часть осталась в своей элементарной или исходной форме. Частичное растворение может быть достигнуто либо за счет обеспечения времени и температуры предварительного отверждения, не достаточных для полного растворения, либо за счет предоставления полимерного компонента в виде смеси или сополимера с одним или более нерастворимыми полимерами, например, в форме статистического или блок-сополимера, или в виде производного или смеси с производным органических или неорганических соединений.

В другом варианте реализации полимерный компонент может содержать смесь термопластичной и одной или более термореактивных смол, и необязательно одного или более отверждающих агентов и/или катализаторов для термореактивных смол. Подходящие термореактивные материалы могут включать, но не ограничиваясь этим, эпоксидные смолы, аддитивно-полимеризационные смолы, особенно бис-малеимидные смолы, акриловые материалы, ненасыщенные сложные полиэфиры, винил-эфирные смолы, цианат-эфирные смолы, модифицированные изоцианатом эпоксидные смолы, фенольные смолы, бензоксазиновые смолы, формальдегидные конденсационные смолы (такие как смолы с мочевиной, меламином или фенолом), сложные полиэфиры, акриловые материалы, их продукты реакции и комбинации..

Способы получения проводящих композитных частиц

Проводящие композитные частицы настоящего описания могут быть получены по одностадийному или многостадийному способу. В одном варианте реализации частицы получают двухстадийным способом, которые включает первоначальную стадию компаундирования с большими сдвиговыми усилиями для диспергирования проводящего компонента в полимерном материале, с последующей стадией уменьшения размера частиц. Иллюстративный способ получения проводящих композитных частиц показан на ФИГ. 2. Проводящий материал 31 и полимерный материал 32 смешивают в экструдере 33 с образованием гранул. Следует понимать, что "проводящий материал" может содержать один или более проводящих материалов, и что "полимерный материал" может содержать один или более полимеров. В таком варианте реализации полимерный материал и проводящий материал могут подаваться в экструдер либо одновременно, либо последовательно, с образованием предпочтительно однородной физической смеси проводящего материала и полимера. Исходный полимерный материал 32, поступающий в экструдер, может быть в аморфной фазе или в форме расплава.

Исходный проводящий материал для получения частиц может быть выбран из известных металлов, включая, но не ограничиваясь этим, серебро, золото, платину, палладий, никель, медь, свинец, олово, алюминий, титан, их сплавы и смеси. Кроме того, исходный проводящий материал может быть любой подходящей формы и морфологии, такой как чешуйки, порошок, волокна, сферы, дендриты, диски, или любой другой трехмерной формы с микрометровым или нанометровым размером, отдельно или в комбинации. Предпочтительно, исходный проводящий материал обладает высокой удельной площадью поверхности и низкой кажущейся плотностью. Проводящий компонент предпочтительно имеет кажущуюся плотность (КП) менее 2,0 кг/см3, а удельную площадь поверхности (УПП) предпочтительно составляет более 0,1 м2/г. Примеры подходящих металлических материалов представляют собой чешуйки никеля 525 низкой плотности (КП=0,65 г/см3, имеющиеся в продаже у компании Novamet Specialty Products Corp. США), порошок серебра САР 9 (УПП=3,0 м2/г, имеющийся в продаже у компании Johnson Matthey, Великобритания), чешуйки серебра FS34 (УПП=1,2 м2/г, имеющиеся в продаже у компании, Великобритания) и гранулы меди CH-L7 (КП=0,6-0,7 г/см3, УПП=0,23 м2/г, имеющиеся в продаже у компании GGP Metalpowder AG, Германия).

Исходный проводящий материал для получения указанных частиц также может быть выбран из углерода или графитных материалов, таких как рубленые, короткие углеродные волокна, графитовые чешуйки, графитовые нанопластинки, техуглерод, одностенные углеродные нанотрубки (ОСУНТ), двухстенные углеродные нанотрубки (ДСУНТ), многостенные углеродные нанотрубки (МСУНТ), углеродные нановолокна, углеродные наносферы, углеродные наностержни, фуллерены, углеродные наножгутов, углеродные наноленты, углеродные наноиглы, углеродные нанолисты, графены, углеродные наноконусы, углеродные наносвитки (форма, подобная свитку), а также их соответствующие бор-нитридные продукты, с проводящим покрытием или без него. Эти "нано-" структуры относятся к структурам, имеющим диаметры или наименьшие размеры менее 1 микрон.

Исходный проводящий материал также может быть выбран из продуктов с покрытиями. Продукты с покрытиями включают структуры ядра и оболочки, имеющие органическое или неорганическое ядро, которое может быть проводящим или нет, и одну или более проводящих оболочек. Подходящие продукты с металлическим покрытием включают, но не ограничиваясь этим, покрытые металлом графитовые чешуйки, покрытые металлом полимеры, покрытые металлом волокна, покрытые металлом керамические материалы, покрытое металлом стекло, покрытые металлом полые стеклянные сферы, покрытое углеродом стекло, покрытые углеродом полимеры, покрытые углеродом волокна, покрытые углеродом керамические материалы.

Примеры неметаллических проводящих материалов представляют собой многостенные углеродные нанотрубки NC7000 (имеющиеся в продаже у компании Nanocyl, Бельгия), микрометровые чешуйки из графита 3775 (УПП=23,7 м2/г, имеющиеся в продаже у компании Asbury Graphite Mills, Inc., США), микрометровые чешуйки из синтетического графита 4012 (УПП=1,5 м2/г, имеющиеся в продаже у компании Asbury Graphite Mills, Inc., США). Примеры продуктов с покрытием представляют собой покрытые никелем графитовые чешуйки производства Novamet Specialty Products Corp., США (КП=1,7 г/см3 - 1,9 г/см3).

Температура в экструдере должна контролироваться для оптимальной реологии композиции в экструдере, в соответствии с типом и количеством добавляемого проводящего материала. В предпочтительном варианте реализации температурный профиль варьируется от около 90°С до около 350°С. Вдоль длины экструдера может быть использован переменный температурный профиль. Необязательно в полимерную/проводящую смесь могут быть добавлены добавки, разбавители, диспергирующие агенты, пигменты или стабилизаторы для улучшения стабильности, перерабатываемости и диспергирования проводящего материала в полимерном материале.

Экструдер может быть оснащен шнеками, имеющими стандартные низкие или высокие профили сдвига/смешивания или их комбинацию, в зависимости от типа и содержания наполнителя, а также от реологического поведения полимера. В одном варианте реализации может быть использован ряд секций стандартного смесительного шнека с низким сдвигом для достижения удовлетворительных степеней диспергирования. В предпочтительном варианте реализации экструдер оснащен шнеком с высоким сдвиговым профилем, имеющим стандартные смесительные сегменты, взаимодействующие с деталями хаотического смешивания для создания оптимального баланса между сдвигом и силой давления в цилиндре для оптимизации степени диспергирования, и такие условия переработки могут быть достигнуты за счет использования экструдера Prism TS24HC, оснащенного системой из двух 24 мм шнеков, вращающихся в одном направлении, с соотношением длины к диаметру от 40 до 1. Могут быть использованы две различные системы подачи с различными питающими шнеками для соответствия различным материалам (проводящему материалу или полимерным гранулам). Может быть использована скорость шнека около 200-300 об./мин. и специальный температурный профиль в нескольких нагревательных зонах для достижения максимального крутящего момента данной смеси 60%-95%. Следует понимать, что могут быть использованы другие способы для диспергирования проводящего материала в полимерном материале с использованием стандартных приемов, известных специалистам в данной области, таких как механическое смешивание, обработка ультразвуком, смешивание с высоким сдвиговым усилием, роторно-статорное смешивание и приемы золь-гель.

Способ получения композитных частиц также может включать стадию уменьшения размера частиц/микронизации. Микронизация может быть выполнена в соответствии со стандартными приемами, известными в данной области техники, например, ротационное ударное измельчение, измельчение на Rotoplex (то есть дробление на дробилке Rotoplex производства Hosokawa Micron Co., Ltd.), измельчение на ротационном классификаторе, шаровой размол, ультратонкое измельчение в стержневой мельнице противоположного вращения (например, Alpine Contraplex, имеющейся в продаже у компании Hosokawa Micron Ltd), размол на струйной мельнице против псевдоожиженного слоя, криогенное измельчение. В предпочтительном варианте реализации гранулы из экструдера 33 (ФИГ. 2) затем подвергают измельчению на криогенной мелющей системе Alpine 34, оснащенной различными вращающимися размольными средами, для получения порошка микроразмерных частиц, имеющих (d50) средний размер частиц менее 150 мкм или в некоторых вариантах реализации менее 60 мкм.

Криогенное измельчение представляет собой процесс уменьшения размера, в котором полимер делают хрупким, а затем измельчают в криогенной жидкости (как правило, в жидком азоте или в жидком аргоне) или при криогенной температуре. Способ криогенного измельчения представляет собой признанный экономичный и энергоэффективный способ получения порошков с тонкодисперсным и контролируемым распределением частиц по размеру, который в то же время снижает риск термического повреждения, обусловленного парообразованием или перегревом компонентов. Для получения микронизированных частиц, демонстрирующих заданное среднее распределение частиц по размеру (d50), обычно разрабатывают определенную последовательность стадий с использованием стержня, молотка, колебательного молотка и плоских молотковых дисков.

Композитные материалы и структуры

Проводящие композитные частицы настоящего описания могут быть использованы в качестве межслойных частиц между полимерными слоями, армированными волокном, например, слоями препрега. Поэтому смолистая система-носитель в этом контексте представляет собой смолистую матрицу армированных волокном полимерных слоев или слоев препрега.

Смолистая матрица-носитель может быть отверждающейся/термореактивной композицией, в которой полимерный компонент проводящей композитной частицы по меньшей мере частично растворим во время цикла отверждения, при этом фазовый переход в жидкую фазу происходит за счет растворения полимерного компонента в смолистой матрице. Первоначально, когда проводящие композитные частицы контактируют со смолистой матрицей носителя или диспергируются в ней во время смешивания или во время процесса производства препрега, композитные частицы находятся в твердой фазе и не растворимы в смолистой матрице-носителе. Во время цикла отверждения композитного материала/смолистой матрицы, полимерный компонент каждой композитной частицы по существу или полностью растворяется в смолистой матрице-носителе, высвобождая посредством этого проводящий компонент в виде отдельных, свободнотекучих структур в межслойную область композита. Следует понимать, что в некоторых случаях полимерный компонент после отверждения может растворяться не полностью (но по большей части растворяться) и, следовательно, проводящий компонент может быть присоединен к небольшому количеству оставшегося не растворенного полимерного материала. В некоторых вариантах реализации фазовое разделение между полимерным компонентом и смолистой матрицей-носителем происходит во время цикла отверждения смолистой матрицы-носителя.

Смолистая матрица-носитель (или смолистая система), в которой полимерный компонент композитных частиц растворим во время отверждения, может содержать одну или более не отвержденных термореактивных смол, которые включают, но не ограничиваясь этим, эпоксидные смолы, бис-малеимид, винил-эфирные смолы, цианат-эфирные смолы, модифицированные изоцианатом эпоксидные смолы, фенольные смолы, бензоксазин, формальдегидные конденсационные смолы (такие как смолы с мочевиной, меламином или фенолом), сложные полиэфиры, акриловые материалы и их комбинации. В одном варианте реализации смолистая матрица-носитель представляет собой термореактивную композицию, в которой по меньшей мере 50% полимерного компонента проводящей композитной частицы растворяется во время отверждения смолистой матрицы.

Подходящие эпоксидные смолы включают полиглицидиловые производные ароматических диамино, ароматических первичных моно-аминов, аминофенолов, многоатомных фенолов, многоатомных спиртов, поликарбоновых кислот. Примеры подходящих эпоксидных смол включают полиглицидиловые эфиры бисфенолов, таких как бисфенол А, бисфенол F, бисфенол S и бисфенол K; и полиглицидиловые эфиры крезольных и фенольных новолаков.

Конкретные примеры представляют собой тетраглицидиловые производные 4,4ʹ-диаминодифенилметана (TGDDM), диглицидиловый эфир резорцина, триглицидил-п-аминофенол, триглицидил-м-аминофенол, диглицидиловый эфир бромбисфенола F, тетраглицидиловые производные диаминодифенилметана, триглицидиловый эфир тригидроксифенилметана, полиглицидиловый эфир фенолоформальдегидного новолака, полиглицидиловый эфир о-крезольного новолака или тетраглицидиловый эфир тетрафенилэтана.

Имеющиеся в продаже эпоксидные сполы, пригодные для применения в смолистой матрице-носителе включают N,N,Nʹ,Nʹ-тетраглицидилдиаминодифенилметан (например, MY 9663, MY 720 и MY 721 производства Huntsman); N,N,Nʹ,Nʹ-тетраглицидил-бис(4-аминофенил)-1,4-диизопропилбензол (например, EPON 1071 производства Momentive); N,N,Nʹ,Nʹ-тетраглицидил-бис(4-амино-3,5-диметилфенил)-1,4-диизопропилбензол, (например, EPON 1072 производства Momentive); триглицидиловые эфиры п-аминофенола (например, MY 0510 производства Hunstman); триглицидиловые эфиры м-аминофенола (например, MY 0610 производства Hunstman); материалы на основе диглицидиловых эфиров бисфенола А, такие как 2,2-бис(4,4ʹ-дигидроксифенил)пропан (например, DER 661 производства Dow или EPON 828 производства Momentive, и новолачные смолы, предпочтительно с вязкостью 8-20 Па⋅с при 25°С; глицидиловые эфиры фенольных новолачных смол (например, DEN 431 или DEN 438 производства Dow); фенольные новолаки на основе ди-циклопентадиена (например, Tactix 556 производства Huntsman); диглицидил-1,2-фталат (например, GLY CEL А-100); диглицидиловые производные дигидрокси-дифенилметана (бисфенола F) (например, PY 306 производства Huntsman). Другие эпоксидные смолы включают циклоалифатические смолы, такие как 3ʹ,4ʹ-эпоксициклогексил-3,4-эпоксициклогексан-карбоксилат (например, CY 179 производства Huntsman).

Как правило, смолистая матрица-носитель содержит одну или более термореактивных смол в комбинации с другими добавками, такими как отверждающие агенты, катализаторы отверждения, сомономеры, агенты для контролирования реологии, агенты, придающие липкость, неорганические или органические наполнители, эластомерные агенты для повышения ударной прочности, частицы из ядра и оболочки для повышения ударной прочности, стабилизаторы, ингибиторы, пигменты, красители, огнезащитные добавки, химически активные разбавители, растворимые или дисперсные термопласты и другие добавки, известные специалистам в данной области техники для модификации свойств смолистой матрицы до или после отверждения.

Добавление отверждающего агента(-ов) и/или катализатора(-ов) в смолистую матрицу-носитель является необязательным, но их применение, при необходимости, может увеличивать скорость отверждения и/или снижать температуру отверждения. Отверждающий агент обычно выбран из известных отверждающих агентов, например, ароматических или алифатических аминов, или производных гуанидина. Ароматический аминный отверждающий агент является предпочтительным, предпочтительно ароматический амин, имеющий по меньшей мере две аминогруппы на молекулу, и особенно предпочтительны диаминодифенилсульфоны, например, в которых аминогруппы находятся в мета- или в пара-положениях по отношению к сульфоновой группе. Конкретные примеры представляют собой 3,3ʹ- и 4-,4ʹ-диаминодифенилсульфон (DDS); метилендианилин; бис(4-амино-3,5-диметилфенил)-1,4-диизопропилбензол; бис(4-аминофенил)-1,4-диизопропилбензол; 4,4ʹ-метиленбис-(2,6-диэтил)-анилин (MDEA производства Lonza); 4,4ʹ-метиленбис-(3-хлор, 2,6-диэтил)-анилин (MCDEA производства Lonza); 4,4ʹ-метиленбис-(2,6-диизопропил)-анилин (M-DIPA производства Lonza); 3,5-диэтилтолуол-2,4/2,6-диамин (D-ETDA 80 производства Lonza); 4,4ʹ-метиленбис-(2-изопропил-6-метил)-анилин (M-MIPA производства Lonza); 4-хлорфенил-N,N-диметилмочевина (например, Monuron); 3,4-дихлорфенил-N,N-диметилмочевина (например, DiuronTM) и дицианодиамид (например, Amicure ТМ CG 1200 производства Pacific Anchor Chemical).

Бисфенольные удлинители цепи, такие как бисфенол-S или тиодифенол, также пригодны в качестве отверждающих агентов для эпоксидных смол. Примеры представляют собой 3,3ʹ- и 4-,4ʹ-DDS.

Подходящие отверждающие агенты включают также ангидриды, в частности, ангидриды поликарбоновых кислот, такие как надикангидрид, метилнадикангидрид, фталевый ангидрид, тетрагидрофталевый ангидрид, гексагидрофталевый ангидрид, метилтетрагидрофталевый ангидрид, эндометилентетрагидрофталевый ангидрид и тримеллитовый ангидрид.

ФИГ. 3А и 3В иллюстрируют вариант реализации, в котором проводящие композитные частицы внедрены в структуру композита. Ссылаясь на ФИГ. 3А, множество проводящих композитных частиц 20 диспергированы в межслойных областях 21, 22, образованных между отверждаемыми композитными слоями 23, 24, 25. Каждая из композитных частиц 20 содержит смесь металлического материала и полимерного материала. Каждый из композитных слоев 23, 24, 25 состоит из армирующих волокон, пропитанных отверждаемой смолистой матрицей (то есть не отвержденной или не до конца отвержденной). Полученный слоистый материал затем подвергают отверждению. При отверждении пакета композитных слоев полимерный компонент проводящих композитных частиц 20 подвергается частичному или полному фазовому переходу в жидкую фазу и полностью растворяется или по существу растворяется в смолистой матрице композитных слоев 23, 24, 25, высвобождая за счет этого металлический материал в межслойную область, как показано на ФИГ. 3В. Если композитные слои 23, 24, 25 содержат проводящие армирующие волокна, такие как углеродные волокна, то высвобождаемый металлический материал образует электропроводные мостики между слоями армирующих волокон в z-направлении.

"Межсло