Кондиционированная среда и композиции на основе внеклеточного матрикса из клеток, культивированных в гипоксических условиях

Иллюстрации

Показать все

Предложенная группа изобретений относится к области медицины. Предложен способ получения композиции эмбриональных белков для стимуляции роста и/или восстановления волос, включающий культивирование фибробластов в гипоксических условиях при примерно 1-5% кислорода с получением мультипотентных стволовых клеток, культивирование мультипотентных стволовых клеток, продуцирующих композицию, содержащую секретируемые белки внеклеточного матрикса (ECM) и биологические компоненты, и сбор композиции после по меньшей мере двух недель. Предложены применение композиции, полученной вышеуказанным способом, для стимуляции роста волос и способ восстановления и/или регенерации клеток. Предложенная группа изобретений обеспечивает композиции ECM с эмбриональными свойствами. 3 н. и 20 з.п. ф-лы, 37 ил., 8 табл., 13 пр.

Реферат

Область техники, к которой относится изобретение

В общем, настоящее изобретение относится к получению и применению композиций внеклеточного матрикса или кондиционированной среды и конкретнее к композициям и/или белкам, полученным культивированием клеток в гипоксических условиях в подходящей культуральной среде.

Уровень техники

Внеклеточный матрикс (ECM) представляет собой сложное структурное образование, окружающее и поддерживающее клетки, которые имеют место в условиях in vivo в тканях млекопитающих. Часто ECM относят к соединительной ткани. В основном ECM состоит из трех основных классов биологических молекул, включающих структурные белки, такие как коллагены и эластины, специализированные белки, такие как фибриллины, фибронектины и ламинины, и протеогликаны.

В данной области описано культивирование композиций ECM в условиях in vitro и их использование в различных терапевтических и медицинских применениях. Одно из подобных терапевтических применений таких композиций ECM включает лечение и восстановление дефектов мягких тканей и кожи, таких как морщины и рубцы.

Доказано, что восстановить или аугментировать дефекты мягких тканей, вызванных такими причинами, как угри, хирургический шов или старение, очень трудно. С различным успехом использовался ряд материалов для коррекции дефектов мягких тканей, однако отсутствует материал, который был бы полностью безопасным и эффективным. Например, силикон вызывает различные физиологические и клинические проблемы, включая продолжительные побочные эффекты, такие как образование узелков, рецидивирующий целлюлит и кожные язвы.

Коллагеновые композиции также применяли в качестве инъекционного материала для аугментации мягких тканей. Коллаген представляет собой основной белок соединительной ткани и является наиболее распространенным белком у млекопитающих, составляя 25% от общего содержания белков. В настоящее время имеется 28 типов коллагена, описанных в литературе (смотри таблицы 1 и 2 ниже, подробный перечень). Однако более 90% коллагена в организме составляют коллагены I, II, III и IV.

Для лечения дефектов мягких тканей использовали различные коллагеновые материалы, такие как восстановленный инъекционный бычий коллаген, поперечно сшитый коллаген или другие ксеногенные коллагены. Однако существует несколько проблем с такими коллагенами. Наиболее распространенной проблемой является сложность и высокая стоимость получения имплантационных материалов для удаления потенциально иммуногенных веществ во избежание проявления аллергических реакций у субъекта. Кроме того, эффект лечения с использованием таких коллагенов был непродолжительным.

Также были описаны другие материалы, которые можно использовать для восстановления или аугментации мягких тканей, такие как биосовместимые керамические частицы в водных гелях (патент США № 5204382), термопластичные и/или термореактивные материалы (патент США № 5278202) и полимерные смеси на основе молочной кислоты (патент США № 4235312). Кроме того, описано применение композиций на основе естественно секретируемого ECM (патент США № 6284284). Однако все такие материалы имеют ограничения.

Следовательно, необходимы новые материалы для восстановления или аугментации мягких тканей, чтобы преодолеть недостатки материалов предшествующего уровня.

Существует потребность в обеспечении безопасного, инъекционного, долговечного, биоабсорбируемого материала для восстановления и аугментации мягких тканей.

Культивируемые в условиях in vitro композиции на основе ECM также можно использовать для лечения поврежденной ткани, такой как поврежденная ткань сердечной мышцы и связанная ткань. Композиции являются пригодными в качестве имплантатов или биологических покрытий на имплантируемых устройствах, таких как стенты; сосудистые протезы для обеспечения васкуляризации в органах, таких как сердце и близкая ткань, и устройства, пригодные для лечения грыжи, восстановления мышц тазового дна, заживления ран и восстановления вращательной манжеты плеча, такие как пластыри и тому подобное.

Коронарная болезнь сердца (CHD), также называемая болезнью коронарных артерий (CAD), ишемической болезнью сердца и атеросклеротической болезнью сердца, характеризуется сужением мелких кровеносных сосудов, которые доставляют кровь и кислород к сердцу. Причиной коронарной болезни сердца обычно является состояние, называемое атеросклерозом, которое имеет место, когда жировое вещество и бляшки откладываются на стенках артерий, вызывая сужение артерий. По мере сужения артерий поток крови к сердцу может замедлиться или вовсе прекратиться, вызвав боль в области грудной клетки (стабильную стенокардию), дыхательную недостаточность, сердечный приступ и другие симптомы.

Коронарная болезнь сердца (CHD) является основной причиной смерти женщин и мужчин в США. По данным Американской Ассоциации Сердца более 15 млн. людей страдают определенной формой заболевания. Несмотря на то, что симптомы и признаки коронарной болезни сердца проявляются на поздней стадии заболевания, у большинства субъектов с коронарной болезнью сердца в течение десятилетий не проявляются признаки заболевания по мере прогрессирования болезни до того, как происходят внезапный сердечный приступ. Болезнь является наиболее частой причиной внезапной смерти и также наиболее частой причиной смерти мужчин и женщин в возрасте старше 20 лет. Согласно имеющимся в настоящее время прогнозам в США у половины здоровых мужчин в возрасте 40 лет в будущем разовьется CHD, а также у одной из трех здоровых 40-летних женщин.

Существующие в настоящее время способы улучшения кровотока в больном или пораженном иначе сердце включают инвазивные хирургические методы, такие как коронарное шунтирование, ангиопластика и эндартерэктомия. Для таких методов естественно характерна большая степень риска во время и после операции, и часто обеспечивается только временное улучшение состояния сердца при ишемии. Следовательно, необходимы новые варианты лечения для повышения эффективности имеющихся в настоящее время способов лечения CHD и близких заболеваний.

Культивируемые в условиях in vitro композиции ECM также можно использовать для восстановления и/или регенерации поврежденных клеток или ткани, таких как хрящевые или остеохондральные клетки. Остеохондральная ткань представляет собой любую ткань, которая относится или содержит кость или хрящ. Композиции по настоящему изобретению подходят для лечения остеохондральных дефектов, таких как дегенеративные заболевания соединительной ткани, такие как ревматоидный артрит и/или остеоартрит, а также дефектов у пациентов с хрящевыми поражениями в результате травмы.

Существующие в настоящее время попытки восстановления остеохондральных дефектов включают имплантацию человеческих хондроцитов в биосовместимых и биодеградируемых гидрогелевых трансплантатах для улучшения возможностей восстановить участки поражения хрящей суставов. Кроме того, описан способ культивирования хондроцитов на альгинатных шариках или матриксе, содержащих полисульфатированный альгинат, для получения гиалиноподобной хрящевидной ткани. Однако попытки восстановления энхондральных участков поражения суставного хряща посредством имплантации человеческих аутологичных хондроцитов имеют ограниченный успех. Следовательно, требуются новые варианты лечения для повышения эффективности существующих в настоящее время способов лечения остеохондральных дефектов.

Культивируемые в условиях in vitro композиции ECM также пригодны в системах тканевых культур для получения ткане-инженерных имплантатов. Область тканевой инженерии включает применение технологии культивирования клеток для получения новых биологических тканей или восстановления поврежденных тканей. Технология тканевой инженерии, начатая в прошлом с революционного применения стволовых клеток, предлагает возможность регенерации и замещения тканей после травмы или при лечении дегенеративных заболеваний. Также ее можно использовать в отношении косметических процедур.

Способы тканевой инженерии можно использовать для получения аутологичной и гетерологичной ткани или клеток с использованием различных типов клеток и методов культивирования. При создании аутологичного имплантата донорную ткань можно отобрать и разделить на отдельные клетки и затем присоединить и культивировать на субстрате, предназначенном для имплантации в требуемую область функционирующей ткани. Многие типы выделенных клеток можно культивировать в условиях in vitro, используя методы культивирования клеток, однако для прикрепления клеток, зависимых от якорной подложки, требуются специфические окружающие условия, часто включающие наличие трехмерной поддерживающей структуры, служащей в качестве матрикса для роста.

Существующая в настоящее время технология тканевой инженерии в основном обеспечивает искусственные имплантаты. Терапия на основе эффективной трансплантации клеток зависит от разработки подходящих субстратов для культивирования тканей в условиях in vitro и in vivo. Таким образом, разработка ECM, который содержит только природные вещества и подходит для имплантации, будет обеспечивать больше характеристик эндогенной ткани. Следовательно, создание материала на основе природного ECM представляет собой актуальную задачу в области тканевой инженерии.

Сущность изобретения

Настоящее изобретение частично основано на основополагающем обнаружении того, что клетки, культивированные (например, в двумерных или трехмерных координатах) в условиях, стимулирующих эмбриональное развитие на ранних стадиях (например, гипоксия и низкие гравитационные силы), обеспечивают композиции ECM с эмбриональными свойствами. Композиции ECM, полученные культивированием клеток в гипоксических условиях, содержащие один или более эмбриональных белков, имеют различные полезные применения.

В одном варианте осуществления настоящее изобретение относится к способу получения композиций ECM, содержащих один или более эмбриональных белков. Способ включает культивирование клеток в гипоксических условиях (например, двумерный или трехмерный рост) в подходящей культуральной среде с получением растворимой и нерастворимой фракции. В различных аспектах композиции включают растворимую и нерастворимую фракцию по отдельности, а также комбинации растворимой и нерастворимой фракций. В различных аспектах полученные композиции включают активацию экспрессии генов и продукции ламининов, коллагенов и факторов Wnt. В еще одних аспектах полученные композиции включают подавление экспрессии генов ламининов, коллагенов и факторов Wnt. В еще одних аспектах композиции являются видоспецифическими и содержат клетки и/или биологическое вещество от одного вида животного. Несмотря на то, что культивированные in vitro композиции ECM пригодны для лечения людей, композиции можно использовать для других видов животных. Следовательно, такие композиции хорошо подходят для ветеринарных применений.

В еще одном варианте осуществления настоящее изобретение относится к способу получения белка Wnt и фактора роста сосудистого эндотелия (VEGF). Способ включает культивирование клеток в гипоксических условиях (например, двумерный или трехмерный рост) в подходящей культуральной среде с получением тем самым белка Wnt и VEGF. В различных аспектах культуральная среда представляет бессывороточную среду, и гипоксические условия включают 1-5% кислорода. В близких аспектах типы Wnt позитивно регулируются по сравнению со средой, полученной в условиях с нормальным содержанием кислорода, составляющим 15-20% кислорода. В приведенном в качестве примера аспекте типы Wnt представляют собой wnt 7a и wnt 11. В других вариантах осуществления кондиционированную среду выделяют в качестве композиции, содержащей различные белки, как описано в данном документе.

В еще одном варианте осуществления настоящее изобретение относится к способу восстановления и/или регенерации клеток контактированием клеток, предназначенных для восстановления или регенерации, с композициями ECM, описанными в данном документе. В одном аспекте клетки представляют остеохондральные клетки. Следовательно, способ предполагает восстановление остеохондральных дефектов.

В еще одном варианте осуществления композиции ECM являются пригодными в качестве имплантатов или биологических покрытий на имплантируемых устройствах. В различных аспектах композиции по настоящему изобретению включаются в имплантаты или применяются в качестве биологических покрытий на имплантируемых устройствах, таких как стенты и сосудистые протезы, для стимуляции васкуляризации в органах, таких как сердце и близкие ткани. В близком аспекте композиции включаются в пластыри или имплантаты для регенерации тканей, пригодные для лечения грыжи, восстановления тазового дна, заживления ран и восстановления вращательной манжетки плеча и тому подобное.

В еще одном варианте осуществления настоящее изобретение относится к способу улучшения поверхности кожи у субъекта, включающему введение субъекту в область морщины композиции ECM или кондиционированной среды, описанных в одном документе. В еще одном варианте осуществления настоящее изобретение включает способ восстановления или аугментации мягких тканей у субъекта, включающий введение субъекту в область морщины композиций ECM, описанных в одном документе.

В еще одном варианте осуществления настоящее изобретение относится к системам тканевых культур. В различных аспектах культуральная система состоит из композиций ECM или культивированной среды, описанных в данном документе, на двумерных или трехмерных подложках. В еще одном аспекте композиции ECM, описанные в данном документе, служат в качестве подложки или двумерной или трехмерной подложки для роста клеток различных типов. Например, культуральную систему можно использовать для поддержания роста стволовых клеток. В одном аспекте стволовые клетки представляют эмбриональные стволовые клетки, мезенхимальные стволовые клетки и нейрональные стволовые клетки.

В еще одном варианте осуществления композиции по настоящему изобретению можно использовать для обеспечения поверхностного покрытия, используемого в ассоциации с имплантацией устройства субъекту, для стимуляции эндотелизации и васкуляризации.

В еще одном варианте осуществления изобретение относится к получению стволовых клеток культивированием клеток (например, фибробластов, в гипоксических условиях), с получением тем самым клеток, экспрессирующих гены, характерные для стволовых клеток на уровне, по меньшей мере, в 3 раза выше по сравнению с культивированием в нормальных кислородных условиях. Такие гены могут включать, например, гены Oct4, Sox2, KLF4, NANOG и cMyc.

Стволовые клетки, полученные способом по изобретению, предпочтительно являются плюрипотентными. Можно использовать любые стромальные или нестволовые клетки в качестве клеток исходного типа.

В еще одном варианте осуществления композиции по настоящему изобретению можно использовать для обеспечения способа лечения поврежденной ткани. Способ включает контактирование поврежденной ткани с композицией, полученной культивированием клеток в гипоксических условиях на двухмерной или трехмерной подложке, содержащей один или более эмбриональных белков, в условиях, которые позволяют лечить поврежденную ткань.

В еще одном варианте осуществления настоящее изобретение относится к биологическому носителю для доставки или поддержания клеток в месте доставки, включающему композиции ECM, описанные в данном документе. Носитель можно использовать в таких применениях, как инъекционное введение клеток, таких как стволовые клетки, в поврежденную сердечную мышцу или для восстановления сухожилия и связки.

В еще одном варианте осуществления настоящее изобретение относится к способу стимуляции или активации роста волос. Способ включает контактирование клетки с композициями ECM или кондиционированной средой, описанными в данном документе. В приведенном в качестве примера аспекте клетка представляет клетку волосяного фолликула. В различных аспектах клетка может контактировать в условиях in vivo или ex vivo.

Краткое описание чертежей

На фигуре 1 показано графическое представление образования FBGC через 2 недели после имплантации полипропиленовой сетки, покрытой hECM. На фигуре 1а показано количество FBGC на волокно через 2 недели после имплантации непокрытых (первая колонка) и покрытых hECM волокон (вторая колонка). На фигуре 1В показано количество FBGC на волокно через 2 недели после имплантации непокрытых (колонки 1-3) и покрытых ECM волокон (колонки 4-6). * указывает р<0,05.

На фигуре 2 показано графическое представление образования FBGC через 5 недель после имплантации полипропиленовой сетки, покрытой hECM. На фигуре 2а показано количество FBGC на волокно через 5 недель после имплантации непокрытых (первая колонка) и покрытых hECM волокон (вторая колонка). На фигуре 2В показано количество FBGC на волокно через 5 недель после имплантации непокрытых (колонки 1 и 3) и покрытых ECM волокон (колонки 2 и 4).

На фигуре 3 показаны клетки волосяных фолликулов человека. На фигуре 3А показаны клетки волосяных фолликулов человека после культивирования клеток в течение четырех недель в присутствии hECM и последующей трансплантации мыши и рост еще в течение 4 недель, в то время как на фигуре 3В показаны клетки контрольных фолликулов.

На фигуре 4 приведено графическое представление метаболического ответа фибробластов на композиции внеклеточного матрикса (мышиного ECM и человеческого ECM) по данным МТТ-теста.

На фигуре 5 приведено графическое представление числа клеток в ответ на воздействие на фибробласты hECM по данным теста Pico Green.

На фигуре 6 приведено графическое представление оценки эритемы у 41 субъекта на 3; 7 и 14 сутки после лазерной обработки кожи. Степень эритемы оценивали по шкале от 0 (отсутствие) до 4 (сильная). Каждая группа из 4 рядов данных (0,1X hECM, 1X hECM, 10X hECM и контроль слева направо) представляет результаты оценки на сутки 3 (слева), 7 (в середине) и 14 (справа).

На фигуре 7 приведено графическое представление оценки отека у 41 субъекта на 3; 7 и 14 сутки после лазерной обработки кожи. Степень эритемы оценивали по шкале от 0 (отсутствие) до 2,5 (сильная). Каждая группа из 4 рядов данных (0,1X hECM, 1X hECM, 10X hECM и контроль слева направо) представляет результаты оценки на сутки 3 (слева), 7 (в середине) и 14 (справа).

На фигуре 8 приведено графическое представление оценки образования корки у 41 субъекта на 3; 7 и 14 сутки после лазерной обработки кожи. Степень эритемы оценивали по шкале от 0 (отсутствие) до 3,5 (сильная). Каждая группа из 4 рядов данных (0,1X hECM, 1X hECM, 10X hECM и контроль слева направо) представляет результаты оценки на сутки 3 (слева), 7 (в середине) и 14 (справа).

На фигуре 9 приведено графическое представление оценки трансэпидермальной потери влаги (TWEL) у 41 субъекта на 3; 7 и 14 сутки после лазерной обработки кожи. Степень TWEL оценивали по шкале от 0 (отсутствие) до 4 (сильная). Каждая группа из 4 рядов данных (0,1X hECM, 1X hECM, 10X hECM и контроль слева направо) представляет результаты оценки на сутки 3 (слева), 7 (в середине) и 14 (справа).

На фигуре 10 приведено графическое изображение трехмерной профилометрии силиконовых отпечатков из периокулярной области. Данные получали от 22 субъектов до лазерной обработки кожи, через 4 недели после обработки и через 10 недель после обработки. Данные серии А представляют значения при введении hECM; данные серии В представляют контроль.

На фигуре 11 приведено графическое представление результатов анализа применения вазелина после лазерной обработки кожи.

На фигуре 12 приведено графическое представление оценки кожной эритемы по данным, полученным на 0; 3; 5; 7; 10 и 14 сутки после лазерной обработки кожи.

На фигуре 13 приведено графическое представление мексаметрического анализа на 0; 3; 5; 7; 10 и 14 сутки после лазерной обработки кожи.

На фигуре 14 показано графическое представление образования FBGC через 2 недели после имплантации полипропиленовой сетки, покрытой hECM. На фигуре 14А показано количество FBGC на волокно через 2 недели после имплантации непокрытых (первая колонка) и покрытых hECM волокон (вторая колонка). На фигуре 14В показано количество FBGC на волокно через 5 недель после имплантации непокрытых и покрытых ECM волокон.

На фигуре 15 показано графическое представление образования FBGC через 5 недель после имплантации полипропиленовой сетки, покрытой hECM. На фигуре 15А показано количество FBGC на волокно через 5 недель после имплантации непокрытых (первая колонка) и покрытых hECM волокон (вторая колонка). На фигуре 15В показано количество FBGC на волокно через 5 недель после имплантации непокрытых и покрытых ECM волокон.

На фигуре 16 показано графическое представление средней толщины фиброзной капсулы через 2 недели после имплантации полипропиленовой сетки, покрытой hECM. На фигуре 16А показана средняя толщина фиброзной капсулы через 2 недели после имплантации непокрытых (первая колонка) и покрытых hECM волокон (вторая колонка). На фигуре 16В показана средняя толщина фиброзной капсулы через 2 недели после имплантации непокрытых и покрытых ECM волокон.

На фигуре 17 показано графическое представление средней толщины фиброзной капсулы через 5 недель после имплантации полипропиленовой сетки, покрытой hECM. На фигуре 17А показана средняя толщина фиброзной капсулы через 5 недель после имплантации непокрытых (первая колонка) и покрытых hECM волокон (вторая колонка). На фигуре 17В показана средняя толщина фиброзной капсулы через 5 недель после имплантации непокрытых и покрытых ECM волокон.

На фигуре 18 приведена гистограмма, показывающая характеристики роста волос после введения hECM, содержащего wnt 7a.

На фигуре 19 приведены таблицы, показывающие характеристики роста волос у двух субъектов, принимающих участие в испытании, через 12 недель после начала исследования по оценке эффективности введения hECM, содержащего wnt 7a.

На фигуре 20 приведены таблицы, показывающие характеристики роста волос у двух субъектов, принимающих участие в испытании, через 22 недели после начала исследования по оценке эффективности введения hECM, содержащего wnt 7a.

На фигуре 21 показано графическое представление результатов по агрегатам у контрольных субъектов по сравнению с субъектами, подвергшимися лечению, не включающему пертурбацию. На фигуре 21А приведены результаты на 3 месяца. На фигуре 21В приведены результаты на 5 месяцев.

На фигуре 22 показано графическое представление результатов по агрегатам у контрольных субъектов по сравнению с субъектами, подвергшимися лечению, не включающему пертурбацию. На фигуре 22А приведены результаты на 3 месяца. На фигуре 22В приведены результаты на 5 месяцев.

На фигуре 23 показано графическое представление распределения ответов у субъектов на лечение hECM по плотности терминальных волос через 3 месяца.

На фигуре 24 показано графическое представление распределения ответов у субъектов на лечение hECM по плотности пушковых волос через 3 месяца.

На фигуре 25 показано графическое представление распределения ответов у субъектов на лечение hECM по плотности толщине волос через 3 месяца.

На фигуре 26 показано графическое представление распределения ответов у субъектов на лечение hECM по средним значениям толщины волос через 3 месяца.

На фигуре 27 показано графическое представление оценки роста волос.

На фигуре 28 показано графическое представление данных инфракрасной спектроскопии с преобразованием Фурье (FTIR).

Подробное описание изобретения

Настоящее изобретение относится к способу получения композиций ECM или кондиционированной среды, содержащих один или более эмбриональных белков. В частности, композиции получают культивированием клеток в гипоксических условиях (например, двумерный или трехмерный рост) в подходящей культуральной среде. С помощью способа культивирования получают растворимую и нерастворимую фракцию, которые можно использовать по отдельности или в комбинации, с получением физиологически приемлемых композиций, имеющих различные применения.

На деление, дифференцировку и функцию стволовых клеток и мультипотентных клеток-предшественников оказывают влияние сложные сигналы в микросреде, включая доступность кислорода. Сильный недостаток кислорода (гипоксия) возникает в опухолях, например, за счет быстрого клеточного деления и аномального образования кровеносных сосудов. Индуцируемые гипоксией факторы (HIF) опосредуют транскрипционные ответы на локализованную гипоксию в нормальных тканях и в злокачественных опухолях, и могут стимулировать прогрессирование опухолей изменением клеточного метаболизма и стимуляцией ангиогенеза. Недавно было показано, что HIF активируют специфические сигнальные пути, такие как Notch, и экспрессию транскрипционных факторов, таких как Oct4, которые контролируют обновление и мультипотентность самих стволовых клеток. Поскольку полагают, что многие злокачественные опухоли развиваются из небольшого числа трансформированных, самообновляющихся и мультипотентных «раковых стволовых клеток», то на основании этих данных можно предположить о новой роли HIF в развитии опухолей. Данные, приведенные в настоящих примерах, указывают, что клетки, культивированные в гипоксических условиях, экспрессируют гены, обычно ассоциированные с плюрипотентными клетками, например, такие как Oct4, NANOG, Sox2, KLF4 и cMyc.

Композиции по настоящему изобретению имеют различные применения, включая, не ограничиваясь этим, стимуляцию восстановления и/или регенерации поврежденных клеток или тканей, применение в пластырях и имплантатах для стимуляции регенерации тканей (например, для лечения грыжи, восстановления тазового дна, восстановления вращательной манжетки плеча и заживления ран), применение в системах тканевых культур для культивирования клеток, таких как стволовые клетки, применение в поверхностных покрытиях, используемых в ассоциации с имплантируемыми устройствами (например, кардиостимуляторами, стентами, стентовыми трансплантатами, сосудистыми протезами, сердечными клапанами, шунтами, портами для доставки лекарственных препаратов или катетерами, пластырями для лечения грыжи и восстановления тазового дна), стимуляцию восстановления, аугментации мягких тканей и/или улучшения поверхности кожи, такой как морщины, применения после травмы кожи (например, после лазерной обработки), рост волос, применение в качестве биологического антиадгезивного средства или в качестве биологического носителя для доставки или поддержания клеток в месте доставки.

Настоящее изобретение частично основано на установлении того факта, что клетки, культивированные на микрошариках (микроносителях) или трехмерных поддерживающих структурах в условиях, стимулирующих эмбриональное развитие на ранних стадиях (например, гипоксия и низкие гравитационные силы), до ангиогенеза обеспечивают композиции ECM с эмбриональными свойствами, включая синтез эмбриональных белков. Рост клеток в гипоксических условиях демонстрирует уникальный ECM и кондиционированную среду с эмбриональными свойствами и экспрессию ростовых факторов. В отличие от культивирования ECM в обычных условиях культивирования более 5000 генов дифференциально экспрессируется в гипоксических условиях. Это дает культивированный ECM, обладающий другими свойствами и другим биологическим составом. Например, ECM, полученный в гипоксических условиях, аналогичен эмбриональной мезенхимальной ткани в том отношении, что он относительно богат коллагенами типа III, IV и V, и гликопротеинами, такими как фибронектин, SPARC, тромбоспондин и гиалуроновая кислота.

Также гипоксия повышает экспрессию факторов, которые регулируют заживление и органогенез ран, таких как VEGF, FGF-7 и TGF-β, а также многочисленные факторы Wnt, включая wnt 2b, 4, 7a, 10a и 11. Культивированный эмбриональный человеческий ECM также стимулирует повышение метаболической активности в человеческих фибробластах in vitro, что определяли по повышенной ферментативной активности. Кроме того, имеется увеличение числа клеток в ответ на воздействие культивированного эмбрионального ECM.

Перед описанием настоящих композиций и способов, следует указать, что очевидно, понятно, что данное изобретение не ограничивается конкретными описанными композициями, способами и условиями, поскольку такие композиции, способы и условия могут варьировать. Также, очевидно, понятно, что терминология используется в данном документе только для целей описания конкретных вариантов осуществления, и не предназначается для ограничения, поскольку объем настоящего изобретения ограничивается только прилагаемой формулой изобретения.

В том смысле, в котором в данной заявке и прилагаемой формуле изобретения используются единичные формы «а», «an» и «the», они включают многочисленные ссылки, если в контексте четко не указывается иначе. Так, например, обращение к «способу» включает один или более способов и/или стадий типа, описанного в данном документе, которые станут очевидными для специалистов в данной области при ознакомлении с данным раскрытием и так далее.

В различных вариантах осуществления настоящее изобретение относится к способам получения композиций ECM, которые содержат один или более эмбриональных белков, и их применениям. В частности, композиции получают культивированием клеток в гипоксических условиях в подходящей культуральной среде. В настоящем изобретении предусматривается рост в виде монослоев или на шариках/микроносителях. Кроме того, композиции можно получить культивированием клеток на трехмерном каркасе с получением многослойной клеточной культуральной системы. Клетки, культивированные на трехмерном каркасе-подложке согласно настоящему изобретению, растут в виде многочисленных слоев, образуя клеточный матрикс. Рост культивированных клеток в гипоксических условиях приводит к дифференциальной экспрессии генов за счет гипоксических культуральных условий по сравнению с обычным культивированием ECM и кондиционированной среды.

ECM представляет композицию белков и биополимеров, которые в основном составляют ткань, полученную культивированием клеток. Стромальные клетки, такие как фибробласты, являются клетками, зависимыми от якорной подложки, для которых требуется рост при прикреплении к материалам и поверхностям, подходящим для культивирования клеток. Вещества ECM, продуцированные культивированными клетками, откладываются в трехмерном порядке, образуя пространства для образования тканеподобных структур.

Материалы для культивирования, обеспечивающие трехмерные структуры, относятся к поддерживающим структурам. Пространства для отложения ECM находятся в виде отверстий внутри, например, переплетенной сетки, или, если желательно, в виде интерстициальных пространств, имеющихся в компактной конфигурации сферических шариков, называемых микроносителями.

В том смысле, в котором в данном документе используется термин «композиция внеклеточного матрикса», он включает растворимую и нерастворимую фракции или любые их части. Нерастворимая фракция включает секретированные белки ECM и биологические компоненты, которые откладываются на подложке или поддерживающей структуре. Растворимая фракция относится к культуральной среде или кондиционированной среде, в которую клетки секретировали активное вещество(а), и она включает белки и биологические компоненты, которые не откладываются на поддерживающей структуре. Можно собрать обе фракции и затем необязательно обработать, и использовать индивидуально или в комбинации в различных применениях, как описано в данном документе.

Трехмерная подложка или поддерживающая структура, используемая для культивирования стромальных клеток, может быть изготовлена из любого материала и/или может иметь любую форму, которые позволяют клеткам прикрепляться к ней (или ее можно модифицировать для того, чтобы клетки прикреплялись к ней); и позволяет клеткам расти в более чем одном слое (т.е. клетки образуют трехмерную ткань, аналогичную росту ткани в условиях in vitro). В еще одних вариантах осуществления можно использовать по существу двухмерный лист или мембрану для культивирования клеток, которые являются достаточно трехмерными по форме.

Биосовместимый материал формуют в трехмерную структуру или поддерживающую структуру, где структура имеет интерстициальные пространства для прикрепления и роста клеток с образованием трехмерной ткани. Отверстия и/или интерстициальные пространства в каркасе в некоторых вариантах осуществления имеют соответствующий размер для того, чтобы клетки могли прорасти через отверстия или пространства. Оказалось, что поддержание активно растущих клеток, растягивающихся по каркасу, повышает продукцию репертуара ростовых факторов, ответственных за активности, описанные в данном документе. Если отверстия являются слишком маленькими, то клетки могут быстро достичь слияния, но не будут способными легко выйти из сетки. Такие захваченные клетки могут проявлять контактное ингибирование и перестать продуцировать соответствующие факторы, необходимые для поддержания пролиферации и поддержания непрерывных культур. В том случае, если отверстия являются слишком крупными, то клетки могут быть не способны прорасти через отверстия, что может привести к снижению продукции в стромальных клетках соответствующих факторов, необходимых для поддержания пролиферации и поддержания непрерывных культур. Как правило, интерстициальные пространства имеют размер, по меньшей мере, примерно 100 мкм, по меньшей мере, примерно 140 мкм, по меньшей мере, примерно 150 мкм, по меньшей мере, примерно 180 мкм, по меньшей мере, примерно 200 мкм или, по меньшей мере, примерно 220 мкм. При использовании сетчатого типа матрикса, приведенного в качестве примера в данном документе, авторы установили, что отверстия размером в пределах примерно от 100 мкм до примерно 220 мкм будут функционировать удовлетворительно. Однако в зависимости от трехмерной структуры и сложности каркаса возможны другие размеры. Любая форма или структура, позволяющая клеткам простираться и продолжать реплицироваться, и расти в течение длительных периодов времени, может функционировать с продукцией клеточных факторов согласно способам, описанным в данном документе.

В некоторых аспектах трехмерный каркас изготовлен из полимеров или нитей, которые сплетены, закручены, связаны или соединены иначе с образованием каркаса, такого как сетка или ткань. Также материалы можно получить формованием материала или изделия в пену, матрикс или губчатую поддерживающую структуру. В других аспектах трехмерный каркас находится в форме спутанных волокон, полученных прессованием полимеров, или других волокон вместе с получением материала с интерстициальными пространствами. Трехмерный каркас может иметь любую форму или геометрию для роста клеток в культуре. Таким образом, другие формы каркаса, дополнительно описанные ниже, могут подходить для получения соответствующей кондиционированной среды.

Для получения поддерживающей структуры или каркаса можно использовать ряд различных материалов. Такие материалы включают неполимерные и полимерные материалы. Полимеры, когда они применяются, могут представлять любой тип полимера, такой как гомополимеры, статистические полимеры, сополимеры, блок-полимеры, соблок-полимеры (например, ди, три и т.д.), линейные или разветвленные полимеры и сшитые или несшитые полимеры. Неограничивающие примеры материалов, которые можно использовать в качестве поддерживающих структур или каркасов, включают среди прочего, не ограничиваясь этим, стекловолокно, полиэтилены, полипропилены, полиамиды (например, найлон), полиэфиры (например, дакрон), полистиролы, полиакрилаты, поливиниловые производные (например, поливинилхлорид; PVC), поликарбонаты, политетрафторэтилены (PTFE; TEFLON), терманокс (TPX), нитроцеллюлозу, полисахариды (например, целлюлозы, хитозан, агарозу), полипептиды (например, шелк, желатин, коллаген), полигликолевую кислоту (PGA) и декстран.

В некоторых аспектах каркас или микроносители/шарики могут быть сделаны из материалов, которые деградирую