Способ повышения износостойкости изделий из твердых сплавов

Изобретение относится к технологиям, обеспечивающим повышение износостойкости режущего, штампового инструмента, а также конструкционных изделий из твердого сплава, за счет изменения состава и структуры их поверхностных слоев, и может быть использовано для увеличения стойкости изделий к механическому и коррозионно-механическому износам. Способ диффузионного титанирования изделий из твердых сплавов, содержащих кобальт в количестве более 5%, включает проведение предварительной цементации упомянутых изделий при температуре 1000°С и последующее диффузионное насыщение их поверхности в легкоплавком свинцово-висмутовом расплаве, содержащем в растворенном состоянии титан, при температуре 1150°С в течение 20 минут. После диффузионного насыщения изделия охлаждают в диапазоне температур от 1000°С до 700°С со скоростью 100-200°С в минуту. Обеспечивается повышение износостойкости и эксплуатационного ресурса изделий из твердых сплавов, содержащих кобальт в количестве более 5%, и производительности технологического процесса. 1 табл., 3 пр.

Реферат

Изобретение относится к технологиям, обеспечивающим повышение износостойкости режущего, штампового инструмента, а также конструкционных изделий из твердого сплава, за счет изменения состава и структуры их поверхностных слоев, и может быть использовано для увеличения стойкости изделий к механическому и коррозионно-механическому износам, что обеспечивает рост их эксплуатационного ресурса, а при использовании изделий из твердых сплавов в качестве инструмента - производительности и качества обработки давлением и резанием.

Известны способы повышения работоспособности инструмента за счет изменения состава и структуры его поверхностных слоев, осуществляемые путем диффузионного насыщения поверхности инструмента в процессе химико-термической обработки элементами внедрения (азотирования, нитроцементации и др.), наплавкой, напылением сплавами заданного состава: плазменно-дуговая наплавка, плазменное напыление, финишное плазменное напыление, а также физические и химические способы осаждения элементов из газовых, паровых, жидких и твердых фаз [Инструментальные материалы. Учебн. пособие / Г.А. Воробьева, Е.Е. Складнова, А.Ф. Леонов, В.К. Ерофеев. - СПб.: Политехника, 2005, 268 с.].

Недостатком технологий химико-термической обработки является то, что они в большинстве случаев повышают хрупкость инструмента. Наплавка и напыление не обеспечивают прочной связи покрытия с основой, а также характеризуются безвозвратными потерями наносимого на поверхность инструмента материала. Общими недостатками физических и химических способов осаждения являются сложность технологического процесса, высокая стоимость технологического оборудования и технологические сложности формирования равномерных покрытий на всех поверхностях изделия.

Известен также способ получения диффузионного покрытия [а.с. №1145051, опубл. 15.03.1985, бюл. №10], включающий титанирование при 1000-1030°С в порошкообразной засыпке при пониженном давлении в течение 0,5-1 ч с последующим карбонитрированием, при этом карбонитрирование проводят в среде четыреххлористого углерода при давлении 270-300 Па и осуществляют в атмосфере азота с добавлением четыреххлористого углерода в количестве 1-2 г на 1 м2 обрабатываемой поверхности.

Недостатками данной технологии является то, что одновременная адсорбция из насыщающей среды титана и углерода приводит к образованию на поверхности изделия слоя карбида титана, диффузионно не связанного с основным материалом покрываемого изделия, что снижает прочность сцепления покрытия с основой. При этом само покрытие обладает очень высокой твердостью и хрупкостью. Кроме этого, использование четыреххлористого углерода в настоящее время запрещено вследствие его негативного влияния на озоновый слой Земли и высокой канцерогенности.

Известен также способ диффузионного насыщения титаном из среды легкоплавких растворов (Артемьев В.П., Чаевский М.И. Диффузионное титанирование в среде жидкометаллических расплавов. - В сб.: Адгезия расплавов и пайка материалов. - К.: Наукова думка, 1986. - С. 3-4). Нанесение покрытий данным способом осуществляется путем выдержки стального изделия в легкоплавком свинцовом или свинцово-висмутовом расплаве, содержащем в растворенном состоянии титан. В результате выдержки стального изделия в расплаве происходит адсорбция титана на его поверхности, диффузия титана вглубь изделия. При этом, так как титан является сильным карбидообразующим элементом, он забирает углерод из цементита стали и образует собственные карбиды, которые выделяются на поверхности изделия. Карбиды титана обладают очень высокой твердостью, что обеспечивает изделию высокую износостойкость.

Недостатком данного способа является то, что при образовании карбидов титана происходит отток углерода из стали, приводящий к образованию под поверхностным, износостойким слоем обезуглероженного слоя, обладающего низкой твердостью и прочностью. В результате этого при наличии механического воздействия на поверхности происходит продавливание карбидного слоя, его деформация, растрескивание и выкрашивание. При этом твердые частицы после выкрашивания из покрытия могут приводить к еще более интенсивному износу трущихся поверхностей.

Наиболее близким к заявляемому изобретению является способ повышения износостойкости твердосплавного инструмента [Соколов А.Г., Бобылев Э.Э. «Оценка влияния процесса диффузионного титанирования твердых сплавов из среды легкоплавких жидкометаллических растворов на работоспособность режущего инструмента» // Технологии упрочнения, нанесения покрытий и ремонта: теория и практика 17 Международная научно-практическая конференция 14-17 апреля 2015 г. - СПБ: Часть 2. - С. 446-451], включающий выдержку инструмента в легкоплавком свинцовом или свинцово-висмутовом расплаве, содержащем в растворенном состоянии титан. При этом, для исключения образования под покрытием обезуглероженного слоя, перед нанесением покрытий изделие подвергают кратковременной цементации длительностью 20-120 минут при температуре 1000-1150°С.

Недостатком данного способа является то, что при титанировании изделий из твердых сплавов типа ВК, ТК, ТТК, содержащих кобальт в количестве более 5%, титановое покрытие, формирующееся на базе карбида титана, имеет пониженную твердость, что снижает эффективность повышения износостойкости титанированного инструмента.

Задачей заявляемого изобретения является исключение снижения твердости титановых покрытий, формирующихся на базе карбида титана, на твердых сплавах, содержащих кобальт в количестве более 5%.

Технический результат - повышение износостойкости и эксплуатационного ресурса изделий из твердых сплавов ВК, ТК, ТТК, содержащих кобальт в количестве более 5%, а также производительности технологического процесса.

Технический результат достигается тем, что способ диффузионного титанирования изделий из твердых сплавов, содержащих кобальт в количестве более 5%, включает проведение предварительной цементации упомянутых изделий при температуре 1000°С и последующее диффузионное насыщение их поверхности в легкоплавком свинцово-висмутовом расплаве, содержащем в растворенном состоянии титан, при температуре 1150°С в течение 20 минут, при этом после диффузионного насыщения изделия охлаждают в диапазоне температур от 1000°С до 700°С со скоростью 100-200°С в минуту.

Благодаря введению в технологический процесс повышения износостойкости изделий из твердых сплавов ВК, ТК, ТТК, содержащих кобальт в количестве более 5%, после диффузионного насыщения стадии интенсивного охлаждения, обеспечивается исключение явления снижения твердости титанового покрытия, формирующегося на базе карбида. Явление снижение твердости титанового покрытия связано с образованием в покрытии карбидов, имеющих пониженную концентрацию углерода и, как следствие, пониженную твердость. В твердых сплавах, содержащих кобальт в количестве более 5%, вследствие повышенного содержания кобальта в сплаве после предварительной цементации и последующего диффузионного насыщения в приповерхностных слоях сплава содержится избыточное количество углерода, растворенного в кобальте. При этом, чем больше концентрация кобальта в твердом сплаве, тем больше концентрация избыточного углерода в нем. При медленном охлаждении изделия после диффузионного насыщения при температурах ниже 1000°С избыточный углерод вследствие пониженной диффузионной подвижности будет образовывать с титаном карбиды с пониженным содержанием углерода - нестехиометрический карбид титана, который имеет пониженную твердость. Например, карбид TiC0,62 имеет микротвердость Н50=19300 МПа, а карбид TiC, на базе которого формируется покрытие, имеет микротвердость Н50=32000 МПа. Таким образом, наличие нестехиометрических карбидов титана в покрытии приводит к снижению его твердости. Исключить образование нестехиометрических карбидов титана в покрытии позволяет введение в технологический процесс стадии интенсивного охлаждения покрытых изделий в диапазоне температур от 1000°С до 700°С со скоростью 100-200°С в минуту, обеспечивающей блокирование диффузионной подвижности углерода.

Пластины обрабатывались по двум технологическим вариантам:

1-й вариант - пластины из сплавов ВК8 и Т5К10 подвергались диффузионному насыщению после цементации, выполненной по режимам прототипа, в легкоплавком расплаве (Pb+Bi+Ti);

2-й вариант - пластины из сплавов ВК8 и Т5К10 подвергались диффузионному насыщению в легкоплавком свинцово-висмутовом расплаве по технологии заявляемого способа. При этом выбирались предельные значения диапазона скорости охлаждения сплавов после диффузионного насыщения.

Прототип. Проводилось диффузионное насыщение изделия по технологии прототипа: после цементации при температуре 1000°С в легкоплавком расплаве, содержащем 43% свинца, 52,5% висмута, 3% титана, производилось нанесение титановых покрытий, формирующихся на базе карбида титана, на твердосплавные пятигранные пластины PNUM-110408 марок ВК8 и Т5К10 при температуре 1150°С длительностью 20 минут.

Пример 1. Проводилось диффузионное насыщение изделия по технологии заявляемого способа: после цементации при температуре 1000°С в легкоплавком расплаве, содержащем 43% свинца, 52,5% висмута, 3% титана, производилось нанесение титановых покрытий, формирующихся на базе карбида титана, на твердосплавные пятигранные пластины PNUM-110408 марок ВК8 и Т5К10 при температуре 1150°С длительностью 20 минут, с последующим их охлаждением со скоростью 100°С в минуту в диапазоне температур от 1000°С до 700°С.

Пример 2. Проводилось диффузионное насыщение изделия по технологии заявляемого способа: после цементации при температуре 1000°С в легкоплавком расплаве, содержащем 43% свинца, 52,5% висмута, 3% титана, производилось нанесение титановых покрытий, формирующихся на базе карбида титана, на твердосплавные пятигранные пластины PNUM-110408 марок ВК8 и Т5К10 при температуре 1150°С длительностью 20 минут, с последующим их охлаждением со скоростью 150°С в минуту в диапазоне температур от 1000°С до 700°С.

Пример 3. Проводилось диффузионное насыщение изделия по технологии заявляемого способа: после цементации при температуре 1000°С в легкоплавком расплаве, содержащем 43% свинца, 52,5% висмута, 3% титана, производилось нанесение титановых покрытий, формирующихся на базе карбида титана, на твердосплавные пятигранные пластины PNUM-110408 марок ВК8 и Т5К10 при температуре 1150°С длительностью 20 минут, с последующим их охлаждением со скоростью 200°С в минуту в диапазоне температур от 1000°С до 700°С.

Сравнительная оценка эффективности заявляемого способа повышения износостойкости изделий из твердых сплавов проводилась на основании анализа изменения твердости пластин по Роквеллу HRA и микротвердости их поверхности Н50, а также периода стойкости. Период стойкости определялся путем точения прутков из стали Х12МФ твердостью 40-42 HRC3, при скорости резания 100 м/мин, глубине резания 2,5 мм, подаче 0,2 мм/об. Результаты испытаний приведены в таблице 1.

Как следует из результатов исследований, представленных в таблице 1, введение в технологический процесс стадии интенсивного охлаждения изделий, изготовленных из твердых сплавов, содержащих в своем составе более 5% кобальта, после диффузионного титанирования обеспечивает значительное повышение их твердости и, как следствие, их износостойкости. Так, период стойкости пластин, изготовленных из сплава ВК8, подвергнутого титанированию по технологии заявляемого способа, увеличился в 1,8 раза, а пластин, изготовленных из сплава Т5К10, - в 1,7 раза.

Таким образом, предложенный способ, включающий проведение после предварительной высокотемпературной цементации и диффузионного титанирования изделий из твердых сплавов ВК, ТК, ТТК, содержащих кобальт в количестве более 5%, в легкоплавком расплаве стадии интенсивного охлаждения в диапазоне температур от 1000°С до 700°С со скоростью 100-200°С в минуту, позволяет значительно повысить износостойкость этих изделий, в частности инструмента, за счет увеличения твердости покрытий, а также повысить производительность технологического процесса.

Способ диффузионного титанирования изделий из твердых сплавов, содержащих кобальт в количестве более 5%, включающий проведение предварительной цементации упомянутых изделий при температуре 1000°С и последующее диффузионное насыщение их поверхности в легкоплавком свинцово-висмутовом расплаве, содержащем в растворенном состоянии титан, при температуре 1150°С в течение 20 минут, отличающийся тем, что после диффузионного насыщения изделия охлаждают в диапазоне температур от 1000°С до 700°С со скоростью 100-200°С в минуту.