Способ получения сополимеров сопряженных диенов в присутствии каталитической системы, включающей бисиминовый комплекс кобальта

Иллюстрации

Показать все

Изобретение относится к способу получения полимеров сопряженных диенов. Способ получения полимеров сопряженных диенов включает полимеризацию по меньшей мере одного сопряженного диена в присутствии каталитической системы, включающей по меньшей мере один бис-иминовый комплекс кобальта, имеющий общую формулу (I):

где: n равен 0 или 1, Y представляет собой незамещенную двухвалентную ароматическую группу, R1 и R2 одинаковы или различны и представляют собой атом водорода или метильную группу, R3 и R4 одинаковы или различны и представляют собой атом водорода, или они выбраны из неразветвленных или разветвленных С13 алкильных групп, циклоалкильных групп; необязательно замещенных неразветвленными или разветвленными С14 алкильными группами арильных групп, или R2 и R4 необязательно могут быть соединены друг с другом, образуя вместе с другими атомами, к которым они присоединены, незамещенный пиридиновый цикл, или R1 и R3 необязательно могут быть соединены друг с другом, образуя вместе с другими атомами, к которым они присоединены, незамещенный пиридиновый цикл, Х1 и Х2 представляют собой атом галогена, такого как хлор, бром, йод. Технический результат - способ обеспечивает получение полидиенов с высоким содержанием 1,4-цис-звеньев – не менее 98%. 15 з.п. ф-лы, 1 табл., 12 ил.

Реферат

Настоящее изобретение относится к способу получения сополимеров сопряженных диенов.

В частности, настоящее изобретение относится к способу получения сополимеров сопряженных диенов, который включает полимеризацию по меньшей мере одного сопряженного диена в присутствии каталитической системы, включающей бис-иминовый комплекс кобальта.

Известно, что стереоспецифичная сополимеризация сопряженных диенов представляет собой чрезвычайно важный способ, применяемый в химической промышленности для получения продуктов, являющихся одними из наиболее широко используемых каучуков.

Также известно, что среди различных полимеров, которые могут быть получены стереоспецифичной полимеризацией 1,3-бутадиена (т.е. 1,4-цис-, 1,4-транс-, 1,2-синдиотактического, 1,2-изотактического, 1,2-атактического, смешанной 1,4-цис/1,2-структуры, имеющей различное содержание 1,2-звеньев), лишь 1,4-цис-полибутадиен и 1,2-синдиотактический полибутадиен производят в промышленных масштабах, и они коммерчески доступны. Дополнительные данные об этих полимерах имеются, например, в следующих публикациях: Takeuchi Y. с соавт., "New Industrial Polymers", "American Chemical Society Symposium Series" (1974), т. 4, стр. 15-25; Halasa A.F. с соавт., "Kirk-Othmer Encyclopedia of Chemical Technology" (1989), 4-ое изд., Kroschwitz J.I. под ред., John Wiley and Sons, New York, т. 8, стр. 1031-1045; Tate D. с соавт., "Encyclopedia of Polymer Science and Engineering (1989), 2-ое изд., Mark H.F. под ред., John Wiley and Sons, New York, т. 2, стр. 537-590; Kerns M. с соавт., "Butadiene Polymers" в "Encyclopedia of Polymer Science and Technology" (2003), Mark H.F. под ред., Wiley, т. 5, стр. 317-356.

1,4-цис-Полибутадиен представляет собой синтетический эластомер, обычно содержащий 96% - 97% 1,4-цис-звеньев, температура плавления (Tm) которого составляет приблизительно -2°С, температура кристаллизации (Tc) составляет приблизительно -25°С и температура стеклования (Tg) составляет менее -100°С; его свойства очень похожи на свойства натурального каучука, и в основном он используется в производстве шин обычных автомобилей и/или грузовых автомобилей. В частности, для изготовления шин используют полибутадиен с высоким содержанием 1,4-цис-звеньев.

1,4-цис-Полибутадиен обычно получают способами полимеризации, которые включают применение различных каталитических систем, включающих катализаторы на основе титана (Ti), кобальта (Со), никеля (Ni) и неодима (Nd). Каталитические системы, включающие катализаторы на основе кобальта, имеют высокую каталитическую активность и стереоспецифичность и могут считаться наиболее универсальными среди перечисленных выше катализаторов, поскольку при соответствующем изменении их состава они могут обеспечивать образование всех возможных перечисленных выше стереоизомеров полибутадиена, что рассмотрено, например, в следующих публикациях: Porri L. с соавт., "Comprehensive Polymer Science" (1989), Eastmond G.C. с соавт, под ред., Pergamon Press, Oxford, UK, т. 4, часть II, стр. 53-108; Thiele S.K.H. с соавт., "Macromolecular Science. Part С: Polymer Reviews" (2003), C43, стр. 581-628; Osakada, K. с соавт., "Advanced Polymer Science" (2004), т. 171, стр. 137-194; Ricci G. с соавт., "Advances in Organometallic Chemistry Research" (2007), Yamamoto K. под ред., Nova Science Publisher, Inc., USA, стр. 1-36; Ricci G. с соавт., "Coordination Chemistry Reviews" (2010), т. 254, стр. 661-676; Ricci G. с соавт., "Cobalt: Characteristics, Compounds, and Applications" (2011), Lucas J. Vidmar Ed., Nova Science Publisher, Inc., USA, стр. 39-81.

Например, с помощью каталитической системы бис-ацетилацетонат кобальта / хлорид диэтилалюминия /вода [Co(acac)2/AlEt2Cl/H2O] может быть получен полибутадиен, имеющий содержание 1,4-цис-звеньев, приблизительно равное 97%, и ее обычно применяют в промышленном получении этого полимера, как описано, например, в публикации Racanelli Р. с соавт., "European Polymer Journal" (1970), т. 6, стр. 751-761. С помощью каталитической системы трис-ацетилацетонат кобальта /метилалюмоксан [Со(асас)3/МАО] также может быть получен полибутадиен, имеющий содержание 1,4-цис-звеньев, приблизительно равное 97%, как указанно, например, в публикации: Ricci G. с соавт., "Polymer Communication" (1991), т. 32, стр. 514-517.

С другой стороны, применение каталитической системы трис-ацетилацетонат кобальта / триэтилалюминий / вода [Co(acac)3/AlEt3/H2O] обеспечивает получение полибутадиена, имеющего смешанную 1,4-цис/1,2 эквибинарную структуру, рассмотренную, например, в публикации: Furukawa J. с соавт., "Polymer Journal" (1971), т. 2, стр. 371-378. С другой стороны, эту каталитическую систему применяют в присутствии дисульфида углерода (GS2) в способах промышленного получения 1,2-синдиотактического полибутадиена с высокой степенью кристалличности; более подробно эти способы рассмотрены, например, в публикациях: Ashitaka Н. с соавт., "Journal of Polymer Science: Polymer Chemistry Edition" (1983), т. 21, стр. 1853-1860; Ashitaka H. с соавт., "Journal of Polymer Science: Polymer Chemistry Edition" (1983), т. 21, стр. 1951-1972; Ashitaka H. с соавт., "Journal of Polymer Science: Polymer Chemistry Edition" (1983), т. 21, стр. 1973-1988; Ashitaka H. с соавт., "Journal of Polymer Science: Polymer Chemistry Edition" (1983), т. 21, стр. 1989-1995.

Чрезвычайно активная и стереоспецифичная каталитическая система для получения 1,2-синдиотактического полибутадиена может быть получена комбинированием аллильного комплекса кобальта (η4-C4H6)(η5-C8H13)Co, рассмотренного, например, Natta G. с соавт., "Chemical Communications" (1967), вып. 24, стр. 1263-1265, с дисульфидом углерода (CS2), рассмотренным, например, в публикации: Ricci G. с соавт., "Polymer Communication" (1988), т. 29, стр. 305-307. Под действием этой каталитической системы может быть при комнатной температуре проведена димеризация 1,3-бутадиена, рассмотренная, например, в американском патенте US 5879805; но при низких температурах (-30°С) в этой реакции получается лишь 1,2-синдиотактические полимеры, как указано, например, в публикации: Ricci G. с соавт., "Polymer Communication" (1988), т. 29, стр. 305-307.

1,2-Синдиотактические полибутадиены также могут быть получены с помощью каталитических систем, получаемых комбинированием дихлорида кобальта (CoCl2) или дибромида кобальта (CoBr2) с органическими соединениями алюминия (например, алкильными соединениями алюминия), водой и фосфинами (например, трифенилфосфином), как указано, например, в следующих американских патентах: US 5879805, US 4324939, US 3966697, US 4285833, US 3498963, US 3522332, US 4182813, US 5548045 и US 7009013. Региорегулярность и кристалличность полибутадиенов, получаемых с использованием таких каталитических систем, гораздо ниже (например, от 80% до 90% 1,2-звенев, температура плавления (Tm) составляет от 75°С до 90°С) по сравнению с полибутадиенами, получаемыми с использованием каталитических систем, рассмотренных в публикации Ricci G. с соавт., "Polymer Communication" (1988), т. 29, стр. 305-307, упомянутой выше.

Дополнительные данные, относящиеся к полимеризации 1,3-бутадиена в присутствии каталитических систем, включающих комплексы кобальта с различными фосфинами, приведены, например, в следующих публикациях: Ricci G. с соавт., "Macromolecules" (2005), т. 38, стр. 1064-1070; Ricci G. с соавт., "Journal of Organometallic Chemistry" (2005), т. 690, стр. 1845-1854; Takeuchi М. с соавт., "Polymer International" (1992), т. 29, стр. 209-212; Takeuchi М. с соавт., "Polymer International" (1995), т. 36, стр. 41-45; Takeuchi М. с соавт., "Macromolecular Chemistry and Physics" (1996), т. 197, стр. 729-743; или в итальянских патентах IT 1349141, IT 1349142 и IT 1349143. Применение различных фосфинов основано на том хорошо известном факте, что стерические и электронные свойства фосфинов сильно зависят от типа заместителей у атома фосфора, как указано, например, в публикации: Dierkes Р. с соавт., "Journal of Chemical Society, Dalton Transactions" (1999), стр. 1519-1530; van Leeuwen P. с соавт., "Chemical Reviews" (2000), т. 100, стр. 2741-2769; Freixa Z. с соавт., "Dalton Transactions" (2003), стр. 1890-1901; Tolman C., "Chemical Reviews" (1977), т. 77, стр. 313-348.

Документы, относящиеся к рассмотренному выше применению фосфинов, указывают на то, что применение фосфиновых комплексов кобальта в комбинации с метилалюмоксаном (англ. methyaluminoxane, сокращенно МАО) позволяет регулировать микроструктуру полибутадиена, что позволяет получать полибутадиены с различными структурами в зависимости от типа фосфина, скоординированного с атомом кобальта.

Полимеризация 1,3-бутадиена в присутствии каталитических систем, включающих комплексы кобальта со стерически затрудненными алифатическими фосфинами (например, PtBu3, PiPr3, РtBu2Me, PCy3, РСyр3, где Р = фосфор, tBu = трет-бутил, iPr = изопропил, Cy = циклогексил и Cyp = циклопентил), приводит к получению полибутадиенов с преобладанием в структуре 1,4-цис-звеньев, в то время как полибутадиены, имеющие смешанную 1,4-цис/1,2-структуру были получены при использовании каталитических систем, включающих комплексы кобальта с фосфинами, имеющими меньшие стерические затруднения (например, PCy2H; PtBu2H; PEt3; PnPr3, где Р = фосфор, Cy = циклогексил, tBu = трет-бутил, Et = этил и nPr = н-пропил), как указано, например, в публикациях: Ricci G. с соавт., "Advances in Organometallic Chemistry Research" (2007), Yamamoto K. Ed., Nova Science Publisher, Inc., USA, стр. 1-36; Ricci G. с соавт., "Coordination Chemistry Reviews" (2010), т. 254, стр. 661-676; Ricci G. с соавт., "Journal of Molecular Catalysis A: Chemical" (2005), т. 226, стр. 235-241; и в итальянской патентной заявке IT 1349141.

Например, в публикациях: Ricci G. с соавт., "Advances in Organometallic Chemistry Researchʺ (2007), Yamamoto K. под ред., Nova Science Publisher, Inc., USA, стр. 1-36; Ricci G. с соавт., "Coordination Chemistry Reviews" (2010), т. 254, стр. 661-676; и в итальянской патентной заявке IT 1349141 рассмотрены полибутадиены с высоким содержанием 1,4-цис-звеньев (приблизительно 95%), которые были получены с использованием каталитических систем, включающих комплексы кобальта с бидентатными фосфинами [например, CoCl2[R2P(CH2)nPR2]/MAO, где Со = кобальт, Cl = хлор, R = метил, этил, фенил, n = 1 или 2, Р = фосфор и МАО = метилалюмоксан), независимо от типа бидентатного фосфина, координированного с атомом кобальта.

С другой стороны, было показано, что каталитические системы, включающие комплексы кобальта с лигандами, выбранными из ароматических фосфинов [например, CoCl2(PRPh2)2/MAO (где Со = кобальт, Cl = хлор, Р = фосфор, R = метил, н-пропил, этил, изопропил, циклогексил, Ph = фенил, МАО = метилалюмоксан] чрезвычайно активны в 1,2-полимеризации 1,3-бутадиена, что рассмотрено, например, в публикациях: Ricci G. с соавт., "Advances in Organometallic Chemistry Research" (2007), Yamamoto K. под ред., Nova Science Publisher, Inc., USA, стр. 1-36; Ricci G. с соавт., "Coordination Chemistry Reviews" (2010), т. 254, стр. 661-676; Ricci G. с соавт., "Macromolecules" (2005), т. 38, стр. 1064-1070; Ricci G. с соавт., "Journal of Organometallic Chemistry" (2005), т. 690, стр. 1845-1854; или в итальянской патентной заявке IT 1349143. Действительно, применение таких каталитических систем позволило поучить полибутадиены, имеющие по существу 1,2-структуру (в диапазоне от 70% до 88%), имеющие различное содержание 1,2-звеньев в зависимости от типа комплекса и условий полимеризации. Также было отмечено, что регулярность молекулярной структуры (тактичность) получаемых полибутадиенов сильно зависит от типа комплекса, т.е. типа фосфина, связанного с атомом кобальта, и что показатель синдиотактичности (выраженный в виде процентной доли синдиотактических триад "rr"), определяемый из ЯМР 13С спектров, повышается с увеличением стерических требований алкильной группы, связанной с атомом фосфора.

Было показано, что 1,2-полибутадиены, получаемые в присутствии кобальтовых систем с менее стерически затрудненными фосфиновыми лигандами (например, PMePh2; PEtPh2; PnPrPh2, где P = фосфор, Me = метил, Ph = фенил, nPr = н-пропил), аморфны, в то время как полибутадиены, получаемые в присутствии каталитических систем, содержащих фосфиновые лиганды с более сильными стерическими затруднениями (например, PiPrPh2, PCyPh2, где Р = фосфор, iPr = изопропил, Ph = фенил, Cy = циклогексил), являются кристаллическими, и их температура плавления (Tm) составляет от 110°С до 120°С в зависимости от условий полимеризации.

Полимеризация 1,3-бутадиена с использованием каталитических систем, включающих комплексы кобальта с ароматическими фосфинами, имеющими формулу CoCl2(PR2Ph)2/MAO (где Со = кобальт, Cl = хлор, R = метил, этил, циклогексил, Ph = фенил, МАО = метилалюмоксан), также была изучена, и результаты опубликованы, например, в работах: Ricci G. с соавт., "Advances in Organometallic Chemistry Research" (2007), Yamamoto K. под ред., Nova Science Publisher, Inc., USA, стр. 1-36; Ricci G. с соавт., "Coordination Chemistry Reviews" (2010), т. 254, стр. 661-676; Ricci G. с соавт., "Journal of Organometallic Chemistry" (2005), т. 690, стр. 1845-1854; или в итальянской патентной заявке IT 1349143. С помощью таких каталитических систем в основном были получены 1,2-полибутадиены, но, как оказалось, показатель синдиотактичности таких полимеров в тех же условиях полимеризации обычно несколько ниже показателя 1,2-полибутадиенов, получаемых с использованием каталитических систем, включающих комплексы кобальта с ароматическими фосфинами, имеющими формулу CoCl2(PRPh)2/MAO, рассмотренную выше.

В последнее время после успеха, достигнутого при применении рассмотренных выше каталитических систем, включающих фосфиновые комплексы кобальта, также были изучены различные каталитические системы, включающие комплексы кобальта с лигандами, содержащими в качестве донорного атома атом азота или кислорода.

Например, Kim J.S. с соавт. в публикации "e-Polymer" (European Polymer Federation) (2006), No. 27 рассмотрена полимеризация 1,3-бутадиена под действием каталитической системы, включающей комплексы кобальта с такими лигандами, как бис(имин)пиридин и сесквихлорид этилалюминия [Al2Et3Cl3 (англ. ethylaluminiumsesquichloride, сокращенно EASC)]. Было показано, что эти каталитические системы особенно активны и обеспечивают получение высокомолекулярных полибутадиенов, в которых содержание 1,4-цис-звеньев составляет 96,4%.

Каталитические системы, включающие комплексы кобальта, имеющие формулу (Salen)Co(II) (где Salen = бис(салицилальдегид)этилендииминат, Со = кобальт), и метилалюмоксан (МАО), характеризующиеся высокой активностью и 1,4-цис селективностью, рассмотрены, например, Endo K. с соавт. в публикации "Journal of Polymer Science: Part A: Polymer Chemistry" (2006), т. 44, стр. 4088-4094.

Cariou R. с соавт. в публикации "Dalton Transactions" (2010), т. 39, стр. 9039-9045 рассмотрен синтез и характеристика серии комплексов кобальта (II) [Со(II)] с бис(бензимидазолом), которые в комбинации с метилалюмоксаном (МАО) обеспечивали высокую селективность 1,4-цис-полимеризации 1,3-бутадиена.

Синтез и характеристика серии комплексов кобальта (II) [Co(II)] с дибензимидазольными лигандами и их применение в комбинации с сесквихлоридом этилалюминия (EASC) в полимеризации 1,3-бутадиена рассмотрены Appukuttan с соавт. в публикации "Polymer" (2009), т. 50, стр. 1150-1158; полученные каталитические системы характеризуются высокой каталитической активностью, а также высокой 1,4-цис-селективностью (до 97%).

Комплексы кобальта с 2,6-бис[1-(иминофенил)этил]пиридиновыми лигандами были синтезированы и охарактеризованы Gong D. с соавт. в публикации "Polymer" (2009), т. 50, стр. 6259-6264. Эти комплексы в комбинации с метилалюмоксаном (МАО) испытывали в полимеризации 1,3-бутадиена, и было показано, что из них могут быть получены каталитические системы, обеспечивающие образование 1,4-цис- или 1,4-транс-полибутадиена в зависимости от отношения МАО/Со. Действительно, при использовании молярного отношения МАО/Со, равного 50, получался в основном 1,4-транс-полибутадиен (приблизительно 94,4%), в то время как, при использовании молярного отношения МАО/Со, равного 100, в основном был получен 1,4-цис-полибутадиен (приблизительно 79%).

В публикации "Journal of Molecular Catalysis A: Chemical (2010), т. 325, стр. 84-90, Appukuttan V. с соавт. рассмотрена серия комплексов, имеющих общую формулу [Py(Bm-R)2]CoCl2 (где Py = пиридил, Bm = бензимидазолил, R = водород, метил, бензимидазол, Со = кобальт, Cl = хлор), которые в комбинации с метилалюмоксаном (МАО) способствуют получению высокомолекулярного 1,4-цис-полибутадиена.

В публикации "Journal of Organometallic Chemistry" (2011), т. 696, стр. 1584-1590, Gong D. с соавт. рассмотрена серия 2,6-бис(имин)пиридиновых комплексов кобальта (II) [Со(II)], которые в комбинации с метилалюмоксаном (МАО), действующим как сокатализатор, показывают относительно высокую активность в полимеризации 1,3-бутадиена, позволяя получать полибутадиен, содержащий от 77,5% до 97% 1,4-цис-микроструктуры, а также позволяя регулировать как молекулярную массу, так и ее распределение.

Наконец, Jie S. с соавт. в публикации "Dalton Transactions" (2011), т. 40, стр. 10975-10982, и Ai Р. с соавт. в "Journal of Organometallic Chemistry" (2012), т. 705, стр. 51-58, недавно была рассмотрена возможность получения полибутадиена с высоким содержанием 1,4-цис-звеньев (>96%) с помощью каталитических систем, включающих катализаторы на основе комплексов кобальта с лигандами типа 3-арилиминометил-2-гидроксибензальдегида или с лигандами типа NNO (имино- или амино-пиридиловыми спиртами), соответственно.

Как уже было указано выше, поскольку сополимеры сопряженных диенов, в частности, полибутадиена, с высоким содержанием 1,4-цис-звеньев, представляют собой полимеры, наиболее широко применяемые в промышленном масштабе, в частности, для изготовления шин, поиск новых способов, обеспечивающих получение этих сополимеров, имеет огромную важность.

Авторы настоящего изобретения рассмотрели задачу создания нового способа получения сополимеров сопряженных диенов, таких как, например, полибутадиен, полиизопрен, в частности, неразветвленного (линейного) или разветвленного полибутадиена с высоким содержанием 1,4-цис-звеньев, т.е. с содержанием 1,4-цис-звеньев ≥98%.

Авторами было обнаружено, что получение сополимеров сопряженных диенов, таких как, например, полибутадиен, полиизопрен, в частности, неразветвленного (линейного) или разветвленного полибутадиена с высоким содержанием 1,4-цис-звеньев, т.е. содержанием 1,4-цис-звеньев ≥98%, может быть осуществлено в присутствии каталитической системы, включающей по меньшей мере один бис-иминовый комплекс кобальта, имеющий общую формулу (I), приведенную ниже.

Таким образом, задача настоящего изобретения относится к способу получения сополимеров сопряженных диенов, который включает полимеризацию по меньшей мере одного сопряженного диена в присутствии каталитической системы, включающей по меньшей мере один бис-иминовый комплекс кобальта, имеющий общую формулу (I):

где:

- n равен 0 или 1;

- Y представляет собой группу -CR'Rʺ, в которой R' и Rʺ одинаковы или различны и представляют собой атом водорода или неразветвленную или разветвленную С120, предпочтительно C1-C15, алкильную группу или необязательно замещенную двухвалентную ароматическую группу;

- R1 и R2 одинаковы или различны и представляют собой атом водорода, или они выбраны из неразветвленной или разветвленной C120, предпочтительно C115, необязательно галогенированной алкильной группы, необязательно замещенных циклоалкильных групп; или R1 и R2 необязательно могут быть соединены друг с другом, образуя вместе с другими атомами, к которым они присоединены, насыщенный, ненасыщенный или ароматический цикл, содержащий от 4 до 6 атомов углерода, необязательно замещенный неразветвленными или разветвленными С120, предпочтительно C1-C15, алкильными группами; при этом цикл необязательно содержит такие гетероатомы, как, например, кислород, сера, азот, кремний, фосфор, селен;

- R3 и R4 одинаковы или различны и представляют собой атом водорода, или они выбраны из неразветвленной или разветвленной С120, предпочтительно С115, необязательно галогенированной алкильной группы, необязательно замещенных циклоалкильных групп, необязательно замещенных арильных групп;

- или R2 и R4 необязательно могут быть соединены друг с другом, образуя вместе с другими атомами, к которым они присоединены, насыщенный, ненасыщенный или ароматический цикл, содержащий от 3 до 6 атомов углерода, необязательно замещенный неразветвленными или разветвленными С120, предпочтительно С115, алкильными группами; при этом цикл необязательно содержит другие гетероатомы, такие как, например, кислород, сера, азот, кремний, фосфор, селен;

- или и R3 необязательно могут быть соединены друг с другом, образуя вместе с другими атомами, к которым они присоединены, насыщенный, ненасыщенный или ароматический цикл, содержащий от 3 до 6 атомов углерода, необязательно замещенный неразветвленными или разветвленными C1-C20, предпочтительно C1-C15, алкильными группами; при этом цикл необязательно содержит другие гетероатомы, такие как кислород, сера, азот, кремний, фосфор, селен;

- X1 и Х2 одинаковы или различны и представляют собой атом галогена, такого как, например, хлор, бром, йод; или они выбраны из неразветвленных или разветвленных С120, предпочтительно С115, алкильных групп, групп -OCOR5 или групп -OR5, где R5 выбран из неразветвленных или разветвленных С120, предпочтительно С115, алкильных групп.

Если не указано иное, в настоящем описании и прилагаемой формуле изобретения определения числовых интервалов обязательно включают крайние точки.

В настоящем описании и прилагаемой формуле изобретения термин "включающий" также охватывает термины "по существу состоящий из" или "состоящий из".

Согласно одному из предпочтительных примеров осуществления настоящего изобретения, каталитическая система может включать по меньшей мере один сокатализатор (b), выбранный из органических соединений элемента М' не являющегося углеродом, при этом элемент М' выбран из элементов групп 2, 12, 13 или 14 Периодической системы элементов, предпочтительно из: бора, алюминия, цинка, магния, галлия, олова, и более предпочтительно из алюминия и бора.

Получение каталитической системы, включающей бис-иминовый комплекс кобальта, имеющий общую формулу (I), и сокатализатор (b), обычно и предпочтительно выполняют в инертной жидкостной среде, более предпочтительно в углеводородном растворителе. Выбор бис-иминового комплекса кобальта, имеющего общую формулу (I), и сокатализатора (b), а также конкретного применяемого способа может быть различным в зависимости от молекулярных структур и требуемого результата, и может быть произведен на основании аналогичных данных, рассмотренных в доступной для специалистов в данной области техники специальной литературе на примере других комплексов переходных металлов и иминных лигандов, например, L.K. Johnson с соавт. в "Journal of the American Chemical Society" (1995), т. 117, стр. 6414-6415, и G. van Koten с соавт. в "Advances in Organometallic Chemistry" (1982), т. 21, стр. 151-239.

Согласно другому предпочтительному примеру осуществления настоящего изобретения, сокатализатор (b) может быть выбран из (b1) производных алкилалюминия, имеющих общую формулу (II):

в которой X' означает атом галогена, такого как, например, хлор, бром, йод, фтор; R6 выбран из неразветвленных или разветвленных C1-C20 алкильных групп, циклоалкильных групп, арильных групп, и эти группы необязательно замещены одним или более атомами кремния или германия; и n представляет собой целое число, составляющее от 0 до 2.

Согласно другому предпочтительному примеру осуществления настоящего изобретения, сокатализатор (b) может быть выбран из (b2) органических кислородсодержащих соединений элемента М', не являющегося углеродом, который относится к группам 13 или 14 Периодической системы элементов, предпочтительно из органических кислородсодержащих соединений алюминия, галлия, олова. Органические кислородсодержащие соединения (b2) могут быть определены как органические соединения элемента М', в которых последний связан с по меньшей мере одним атомом кислорода и по меньшей мере одной органической группой, состоящей из алкильной группы, содержащей от 1 до 6 атомов углерода, предпочтительно метильной группы.

Согласно другому предпочтительному примеру осуществления настоящего изобретения, сокатализатор (b) может быть выбран из (b3) металлорганических соединений или смесей металлорганических соединений элемента М', не являющегося углеродом, которые могут реагировать с бис-иминовым комплексом кобальта, имеющим общую формулу (I), удаляя из него заместитель X1 или Х2, который формирует σ-связь, с образованием, с одной стороны, по меньшей мере одного нейтрального соединения и, с другой стороны, ионного соединения, состоящего из катиона, содержащего металл (Со), образующий координационные связи с лигандом, и не образующий координационных связей органический анион, содержащий металл М', в котором отрицательный заряд делокализован по многоцентровой структуре.

Следует отметить, что в настоящем описании и прилагаемой формуле изобретения термин "Периодическая таблица элементов" относится к той версии "Периодической таблицы элементов", которая утверждена IUPAC (Международный союз теоретической и прикладной химии, англ. International Union of Pure and Applied Chemistry) 22 июня 2007 г. и находится на следующем интернет-сайте:

www.iupac.org/fileadmin/user_upload/news/IUPAC_Periodic_Table-1Jun12.pdf.

Термин "двухвалентная ароматическая группа" относится к ароматической карбоциклической группе, содержащей один или более ароматических циклов. Двухвалентная ароматическая группа необязательно может быть замещена одной или более одинаковыми или различными группами, выбранными из: атомов галогенов, например, фтора, хлора, брома; гидроксильными группами; С112 алкильными группами; C1-C12 алкоксильными группами; цианогруппами; аминогруппами; нитрогруппами. Конкретные примеры двухвалентных ароматических групп включают: орто-фенилен, мета-фенилен метилфенилен, триметилфенилен, метоксифенилен, гидроксифенилен, фенилоксифенилен, фторфенилен, хлорфенилен, бромфенилен, нитрофенилен, диметиламинофенилен, нафтилен, фенилнафтилен, фенантренилен, антраценилен.

Термин "С120 алкильные группы" относится к неразветвленным или разветвленным алкильным группам, содержащим от 1 до 20 атомов углерода. Конкретные примеры С1-C20 алкильных групп включают: метил, этил, н-пропил, изопропил, н-бутил, втор-бутил, изобутил, трет-бутил, пентил, гексил, гептил, октил, н-нонил, н-децил, 2-бутилоктил, 5-метилгексил, 4-этилгексил, 2-этилгептил, 2-этилгексил.

Термин "необязательно галогенированные C1-C20 алкильные группы" относится к неразветвленным или разветвленным алкильным группам, содержащим от 1 до 20 атомов углерода, насыщенным или ненасыщенным, в которых по меньшей мере один из атомов водорода замещен атомом галогена, например, фтора, хлора, брома, предпочтительно фтора, хлора. Конкретные примеры необязательно галогенированных С120 алкильных групп включают: фторметил, дифторметил, трифторметил, трихлорметил, 2,2,2-трифторэтил, 2,2,2-трихлорэтил, 2,2,3,3-тетрафторпропил, 2,2,3,3,3-пентафторпропил, перфторпентил, перфтороктил, перфтордецил.

Термин "циклоалкильные группы" относится к циклоалкильным группам, содержащим от 3 до 30 атомов углерода. Циклоалкильные группы необязательно могут быть замещены одной или более одинаковыми или различными группами, выбранными из: атомов галогенов; гидроксильных групп; С112 алкильных групп; С112 алкоксильных групп; цианогрупп; аминогрупп; нитрогрупп. Конкретные примеры циклоалкильных групп включают: циклопропил, 2,2-дифторциклопропил, циклобутил, циклопентил, циклогексил, гексаметил циклогексил, пентаметил-циклопентил, 2-циклооктилэтил, метилциклогексил, метоксициклогексил, фторциклогексил, фенилциклогексил.

Термин "арильные группы" относится к ароматическим карбоциклическим группам. Ароматические карбоциклические группы необязательно могут быть замещены одной или более группами, одинаковыми или различными, выбранными из: атомов галогенов, например, фтора, хлора, брома; гидроксилых групп; C1-C12 алкильных групп; С1-C12 алкоксильных групп; цианогрупп; аминогрупп; нитрогрупп. Конкретные примеры арильных групп включают: фенил, метилфенил, триметилфенил, метоксифенил, гидроксифенил, фенилоксифенил, фторфенил, хлорфенил, бромфенил, нитрофенил, диметиламинофенил, нафтил, фенилнафтил, фенантрен, антрацен.

Термин "цикло" относится к системе, включающей цикл, содержащий от 3 до 6 атомов углерода или от 4 до 6 атомов углерода, необязательно содержащий кроме атома азота другие гетероатомы, выбранные из азота, кислорода, серы, кремния, селена, фосфора. Конкретные примеры таких циклов включают: пиридин, тиадиазол.

Согласно другому предпочтительному примеру осуществления настоящего изобретения, сопряженный диен может быть выбран, например, из: 1,3-бутадиена, 2-метил-1,3-бутадиена (изопрена), 2,3-диметил-1,3-бутадиена, 1,3-пентадиена, 1,3-гексадиена, цикло-1,3-гексадиена или смесей перечисленных соединений. Предпочтительными являются 1,3-бутадиен и изопрен.

Согласно одному из предпочтительных примеров осуществления настоящего изобретения, в бис-иминовом комплексе кобальта, имеющем общую формулу (I):

- n равен 0;

- R1 и R2 одинаковы или различны и представляют собой атом водорода, или они выбраны из неразветвленных или разветвленных C1-C20 алкильных групп и предпочтительно представляют собой метильные группы;

- R3 и R4 одинаковы или различны и выбраны из фенильных групп, необязательно замещенных неразветвленными или разветвленными C1-C20 алкильными группами, предпочтительно замещенных одной или более метильными, этильными, изо-пропильными, трет-бутильными группами;

- X1 и Х2 представляют собой одинаковые группы, выбранные из атомов галогена, например, хлора, брома, йода, предпочтительно хлора.

Согласно другому предпочтительному примеру осуществления настоящего изобретения, в бис-иминовом комплексе кобальта, имеющем общую формулу (I):

- n равен 1;

- Y представляет собой группу CR'Rʺ, в которой R' и Rʺ одинаковы или различны и представляют собой атом водорода, или они выбраны из неразветвленных или разветвленных С120 алкильных групп и предпочтительно представляют собой пропильные группы;

- R1 и R2 одинаковы или различны и представляют собой атом водорода, или они выбраны из неразветвленных или разветвленных C120 алкильных групп и предпочтительно представляют собой метильные группы;

- R3 и R4 одинаковы или различны и выбраны из фенильных групп, необязательно замещенных неразветвленными или разветвленными С120 алкильными группами, предпочтительно замещенных одной или более метильными, этильными, изопропильными, трет-бутильными группами;

- X1 и Х2 представляют собой одинаковые группы, выбранные из атомов галогена, например, хлора, брома, йода, предпочтительно хлора.

Согласно другому предпочтительному примеру осуществления настоящего изобретения, в бис-иминовом комплексе кобальта, имеющем общую формулу (I):

- n равен 0;

- R1 и R3 соединены друг с другом и вместе с другими атомами, к которым они присоединены, образуют пиридиновый цикл;

- R2 представляет собой атом водорода или выбран из неразветвленных или разветвленных С120 алкильных групп и предпочтительно представляет собой метильную группу;

- R4 выбран из фенильных групп, необязательно замещенных неразветвленными или разветвленными C1-C20 алкильными группами и предпочтительно представляет собой фенильную группу, замещенную одной или более метильными, этильными, изопропильными, трет-бутильными группами;

- X1 и Х2 представляют собой одинаковые группы, выбранные из атомов галогена, например, хлора, брома, йода, предпочтительно хлора.

Согласно другому предпочтительному примеру осуществления настоящего изобретения, в бис-иминовом комплексе кобальта, имеющем формулу (I):

- n равен 1;

- Y представляет собой двухвалентную ароматическую группу, необязательно замещенную, предпочтительно мета-фениленовую группу;

- R1 и R2 одинаковы или различны и представляют собой атомы водорода, или они выбраны из неразветвленных или разветвленных С1С20 алкильных групп и предпочтительно представляют собой метильные группы;

- R3 и R4 одинаковы или различны и выбраны из фенильных групп, необязательно замещенных неразветвленными или разветвленными C1-C20 алкильными группами, и предпочтительно представляют собой фенильные группы, замещенные метильной группой;

- X1 и Х2, представляют собой одинаковые группы, выбранные из атомов галогена, например, хлора, брома, йода, предпочтительно хлора.

Настоящее изобретение относится к бис-иминовому комплексу кобальта, имеющему общую формулу (I), который может находиться в любой физической форме, например, в виде выделенного и очищенного твердого вещества, в виде раствора в подходящем растворителе или в виде, нанесенном на подходящие органические или неорганические твердые вещества, предпочтительно имеющие гранулированную или порошкообразную физическую форму.

Бис-иминовый комплекс кобальта, имеющий общую формулу (I), получают, используя в качестве исходных веществ лиганды, известные в данной области техники.

Конкретные примеры лигандов, которые могут быть применены для осуществления настоящего изобретения, представляют собой лиганды, имеющие следующие формулы (L1)-(L22):

Лиганды, имеющие формулы (L1)-(L22), могут быть получены способами, известными в данной области техники. Лиганды, имеющие формулы (L1)-(L22), могут быть получены, например, следующими способами:

- в результате реакций конденсации между первичными аминами и α,β-дикетонами, которые рассмотрены, например: van der Poel Н. с соавт. в "Synthetic Communication" (1978), т. 8, стр. 305; Svoboda М. с соавт. в "Zeitschrift fuer Naturfoschung" (1981), Часть В, стр. 814-822; Dieck Н. с соавт. в "Zeitschrift fuer Naturfoschung" (1981), Часть В, стр. 823-832; Dieck Н. с соавт. в "Zeitschrift fuer Naturfoschung" (1975), Часть В, стр. 922-925;

- в результате реакций конденсации между первичными аминами и глиоксалями, которые рассмотрены, например: Kliegman J.М. с соавт. в "Tempahedron" (1970), т. 26, стр. 2555-2560; Kliegman J.М. с соавт. в "The Journal of Organic Chemistry" (1970), т. 35 (9), стр. 3140-3143; Barney V.С. с соавт. в "Journal of Chemical Society (1953), стр. 3610-3612; Horner L. с соавт. в "Chemische Berichte" (1957), т. 90, стр. 2184-2189; Carson J.F. с соавт. в "Journal of the American Chemical Society" (1953), т. 75, стр. 4337-4338;

- в результате реакций конденсации между первичными аминами и α-кетоальдегидами, которые рассмотрены, например: van der Poel Н. с соавт. в "Synthetic Communication" (1978), т. 8, стр. 305; Svoboda М. с соавт. в "Zeitschrift fuer Naturfoschung" (1981), Часть В, стр. 814-822; Dieck Н. с соавт. в "Zeitschrift fuer Naturfoschung" (1981), Часть В, стр. 823-832;

- в результате реакций конденсации между первичными аминами и β-дикетонами или β-диальдегидами, которые рассмотрены, например: Dove А.Р. с соавт. в "Dalton Transactions" (2004), вып. 4, стр. 570-578; Bourget-Merle L. с соавт. в "Chemical Reviews" (2002), т. 102, стр. 3031-3065; Budzelaar Р.Н. с соавт. в "European Journal of Inorganic Chemistry" (2000), вып. 4, стр. 753-769.

Бис-иминовый комплекс кобальта, имеющий общую формулу (I), может быть получен способами, известными в данной области техники. Бис-иминовый комплекс кобальта может быть получен, например, по реакции соединений кобальта, имеющих общую формулу Со(Х)2, где X - атом галогена, такого как, например, хлор, бром, йод, предпочтительно хлор, где названные соединения кобальта используют как таковые или в виде комплекса с простыми эфирами (например, простым диэтиловым эфиром, тетрагидрофураном (ТГФ), диметоксиэтаном), с лигандами, имеющими представленные выше формулы (L1)-(L22), при молярном отношении лиганд (L)/кобальт (Со), составляющем от 1 до 1,5, причем реакцию проводят при комнатной или более высокой температуре предпочтительно в присутствии по меньшей мере одного растворителя, который может быть выбран, например, из: хлорированных растворителей (например, метиленхлорида), растворителей из простых эфиров (например, тетрагидрофурана (ТГФ)), спиртовых растворителей (например, бутанола), углеводородных растворителей (например, толуола) или смесей перечисленных растворителей. Полученный таким образом бис-иминовый комплекс кобальта затем может быть извлечен способами, известными в данной области техники, например, осаждением нерастворителем (например, пентаном), с последующим отделением фильтрованием или декантацией и необязательным последующим растворением в подходящем растворителе и кристаллизацией при пониженной температуре.

В настоящем описании и прилагаемой формуле изобретения определение "комнатная температура" относится к температуре, составляющей от 20°С до 25°С.

Конкретные примеры производных алкилалюминия, имеющих общую формулу (II), особенно подходящих для осуществления настоящего изобретения, включают: триметилалюминий, три-(2,3,3-триметилбутил)алюминий, три-(2,3-диметилгексил)алюминий, три-(2,3-диметилбутил)алюминий, три-(2,3-диметилпентил)алюминий, три-(2,3-диметилгептил)алюминий, три-(2-метил-3-этилпентил)алюминий, три-(2-метил-3-этилгексил)алюминий, три-(2-метил-3-этилгептил)алюминий, три-(2-мети