Огнестойкие полиамиды со светлой окраской

Иллюстрации

Показать все

Изобретение относится к термопластичным формовочным массам, к применению их для изготовления волокон, пленок, формованных изделий, таких как волокна, пленки, формованные изделия, а также к применениям соли или оксида меди (I) или серебра (I) или их смесей для изготовления формовочных масс или указанных формованных изделий, придающие им определенные свойства, например повышенную стойкость к ультрафиолетовому свету, пониженное образованием фосфина, обладающие менее интенсивным красноватым цветовым тоном и т.д. Термопластичные формовочные массы содержат А) от 10 до 99,8 мас.% термопластичного полиамида, В) от 0,1 до 60 мас.% красного фосфора, С) от 0,01 до 4 мас.% соли, оксида или комплекса меди (I) или серебра (I) или смесей этих веществ, D) от 0 до 40 мас.% модификатора ударной вязкости, Е) от 0 до 60 мас.% других добавок, причем сумма массовых процентов компонентов А)-Е) составляет 100%. Изобретение позволяет получить формовочные массы на основе термопластичного полиамида с красным фосфором в качестве огнезащитного средства, которые характеризуются незначительной красноватой собственной окраской, улучшенной окрашиваемостью в светлые и серые тона, повышенной стойкостью к ультрафиолетовому свету и низкой склонностью к образованию фосфина. 9 н. и 6 з.п. ф-лы, 3 табл.

Реферат

Изобретение относится к термопластичным формовочным массам, содержащим:

A) от 10 до 99,8% масс. термопластичного полиамида,

B) от 0,1 до 60% масс. красного фосфора,

C) от 0,01 до 4% масс. соли, оксида или комплекса меди(I) или серебра(I) или смесей этих веществ,

D) от 0 до 40% масс. модификатора ударной вязкости,

E) от 0 до 60% масс. других добавок,

причем сумма массовых процентов компонентов А)-Е) составляет 100%.

Изобретение относится также к применению соединений меди(I) и/или серебра(I) для изготовления полиамидных формовочных масс с определенными показателями цвета, повышенной стойкостью к ультрафиолетовому свету и пониженной эмиссией фосфина.

Кроме того, изобретение относится к применению указанных формовочных масс для изготовления волокон, пленок и формованных изделий, а также к изготавливаемым формованным изделиям, волокнам и пленкам любого типа.

Известно, что добавление красного фосфора к термопластичным полимерам, прежде всего к усиленным или наполненным полиамидам, способствует эффективному повышению их пожаробезопасности (смотри немецкую заявку на патент DE-A-1931387). Однако в неблагоприятных условиях, например, при высокой температуре, повышенной влажности, в присутствии щелочей или кислорода, красный фосфор склонен к образованию продуктов разложения, например, фосфина и кислот фосфора с валентностью в интервале от одной до пяти единиц. Введенный в термопластичные полимеры, например, в полиамиды, красный фосфор вследствие капсулирования полимером в значительной степени защищен от термоокисления, однако образование продуктов разложения в долгосрочной перспективе может происходить и в этом случае. Образование фосфина при ненадлежащей переработке гранулятов литьем под давлением может обусловливать неприятный запах; к тому же фосфин является токсичным веществом. Образующиеся при этом кислоты фосфора могут осаждаться на поверхности формованных изделий, что прежде всего обусловливает снижение сопротивления последних поверхностной утечке тока. В связи с этим не прекращаются попытки повышения стабильности красного фосфора, используемого в полимерах в качестве огнезащитного средства.

Эффект стабилизации полиамида может быть обеспечен благодаря добавлению оксидов или гидроксидов цинка, магния или меди, как показано, например, в международной заявке WO 2000/22035 (стойкость соединений и комплексов меди в полиамидах к термическому старению), европейском патенте ЕР 1211220 (снабжение красного фосфора покрытием из металлического серебра), европейской заявке на патент EP-A-283759 (флегматизация фосфора посредством гидратированного оксида олова и меламино-формальдегидных смол) и немецкой заявке на патент DE-A-10332852 (снабжение красного фосфора покрытием из белых пигментов на основе диоксида титана и меламино-формальдегидных смол).

Однако известные из уровня техники формовочные массы обладают нежелательной красноватой собственной окраской, что обусловливает их неудовлетворительную окрашиваемость в тех сферах применения, в которых должны быть получены светлые и серые тона. Наряду с этим известные из уровня техники формовочные массы нуждаются в повышении стойкости к ультрафиолетовому свету.

Вместе с тем полиамидные компаунды с используемым в качестве огнезащитного средства красным фосфором высвобождают небольшие количества фосфина, что в особенности относится к процессам переработки указанных компаундов. С одной стороны, фосфин является токсичным веществом, а, с другой стороны, он вызывает образование контактных отложений на металлических проводниках. Для стабилизации фосфора к полиамидному компаунду добавляют акцептор кислот, что предотвращает катализируемое кислотами диспропорционирование фосфора с образованием фосфина. Однако при этом не удается надежно предотвратить образование, соответственно комплексирование фосфина.

С учетом вышеизложенного в основу настоящего изобретения была положена задача предложить полиамиды с красным фосфором в качестве огнезащитного средства, которые характеризуются незначительной красноватой собственной окраской, улучшенной окрашиваемостью в светлые и серые тона, повышенной стойкостью к ультрафиолетовому свету и низкой склонностью к образованию фосфина.

Указанная задача решается благодаря формовочным массам указанного в начале описания типа. Предпочтительные варианты осуществления изобретения указаны в зависимых пунктах формулы.

Обнаружено, что добавление незначительных количеств соединений меди(I) и/или серебра(I) к полиамидным компаундам, содержащим в качестве огнезащитного средства красный фосфор, обусловливает изменение окраски компаунда от красной к серой. Результирующая окраска неожиданно отличается стабильностью при облучении (ультрафиолетовым) светом, а, следовательно, позволяет создавать светлые тона. Кроме того, обнаружено, что добавление предлагаемых в изобретении соединений к огнезащищенным полиамидным компаундам сопровождается значительным сокращением количества высвобождаемого ими фосфина.

В качестве компонента А) предлагаемые в изобретении формовочные массы содержат от 10 до 98% масс., предпочтительно от 20 до 98% масс., в частности, от 30 до 90% масс. по меньшей мере одного полиамида.

Полиамиды, используемые в предлагаемых в изобретении формовочных массах, обладают характеристической вязкостью, в общем случае составляющей от 90 до 350 мл/г, предпочтительно от 110 до 240 мл/г (речь при этом идет о вязкости раствора полиамида концентрацией 0,5% масс. в серной кислоте концентрацией 96% масс., определяемой при 25°C согласно стандарту ISO 307).

Предпочтительными являются полукристаллические или аморфные полиамидные смолы со среднемассовой молекулярной массой по меньшей мере 5000, описанные, например, в патентах США US 2071250, US 2071251, US 2130523, US 2130948, US 2241322, US 2312966, US 2512606 и US 3393210.

Примерами подобных смол являются полиамиды на основе лактамов с 7-13 кольцевыми членами, такие как поликапролактам, поликаприллактам и полилауринлактам, а также полиамиды, получаемые путем превращения дикарбоновых кислот с диаминами.

В качестве дикарбоновых кислот можно использовать алкандикарбоновые кислоты с 6-12 атомами углерода, в частности, с 6-10 атомами углерода, и ароматические дикарбоновые кислоты. Примерами пригодных кислот являются адипиновая кислота, азелаиновая кислота, себациновая кислота, декан-дикарбоновая кислота, терефталевая кислота и/или изофталевая кислота.

Особенно пригодными диаминами являются алкандиамины с 6-12 атомами углерода, в частности, с 6-8 атомами углерода, а также м-ксилилендиамин (например, Ultramid® Х17 фирмы BASF SE с молярным отношением м-ксилилендиамина к адипиновой кислоте 1:1), ди(4-аминофенил)метан, ди(4-аминоциклогексил)метан, 2,2-ди(4-аминофенил)пропан, 2,2-ди(4-амино-циклогексил)пропан или 1,5-диамино-2-метилпентан.

К предпочтительным полиамидам относятся амид полигексаметиленадипиновой кислоты, амид полигексаметиленсебациновой кислоты и поликапролактам, а также сополиамиды 6/66, в частности, содержащие от 5 до 95% масс. мономерных звеньев капролактама (например, Ultramid® С31 фирмы BASF SE).

Кроме того, пригодные полиамиды (РА) могут быть получены из ω-аминоалкилнитрилов, например, аминокапронитрила (РА 6) и адиподинитрила с гексаметилендиамином (РА 66), путем так называемой прямой полимеризации в присутствии воды, например, описанные в немецкой заявке на патент DE-A 10313681, европейской заявке на патент EP-A 1198491 и европейском патенте ЕР 922065.

Наряду с этим следует упомянуть полиамиды, которые могут быть получены, например, путем поликонденсации 1,4-диаминобутана с адипиновой кислотой при повышенной температуре (полиамид 4,6). Технология синтеза полиамидов данной структуры описана, например, в европейских заявках на патент EP-A 38094, EP-A 38582 и EP-A 39524.

Кроме того, пригодными являются полиамиды, которые могут быть получены путем сополимеризации двух или более указанных выше мономеров, или смеси нескольких полиамидов с любым соотношением компонентов подобной смеси. Особенно предпочтительными являются смеси полиамида 66 с другими полиамидами, в частности, сополиамиды 6/66.

Особенно предпочтительными являются также частично ароматические со-полиамиды, в частности, PA 6/6Т и PA 66/6Т, с содержанием триамина менее 0,5% масс., предпочтительно менее 0,3% масс. (смотри европейскую заявку на патент EP-A 299444). Другие стойкие к высоким температурам полиамиды известны из европейской заявки на патент EP-A 1994075 (PA 6T/6I/MXD6).

Синтез предпочтительных частично ароматических сополиамидов с низким содержанием триамина можно осуществлять описанным в европейской заявке на патент EP-A 129195 и 129196 способом.

Ниже приведен перечень указанных выше и других используемых согласно изобретению полиамидов А), а также соответствующих мономеров, причем этот перечень не ограничивается указанными в нем представителями.

АВ-полимеры:
PA 4 пирролидон
PA 6 ε-капролактам
PA 7 этанолактам
PA 8 каприллактам
PA 9 9-аминопеларгоновая кислота
РА 11 11-аминоундекановая кислота
РА 12 лауринлактам
АА/ВВ-полимеры:
РА 46 тетраметилендиамин, адипиновая кислота
РА 66 гексаметилендиамин, адипиновая кислота
РА 69 гексаметилендиамин, азелаиновая кислота
РА 610 гексаметилендиамин, себациновая кислота
РА 612 гексаметилендиамин, декандикарбоновая кислота
РА 613 ексаметилендиамин, ундекандикарбоновая кислота
РА 1212 1,12-додекандиамин, декандикарбоновая кислота
РА 1313 1,13-диаминотридекан, ундекандикарбоновая кислота
PA 6Т гексаметилендиамин, терефталевая кислота
PA 9Т 1,9-нонанедиамин, терефталевая кислота
PA MXD6 м-ксилилендиамин, адипиновая кислота
PA 61 гексаметилендиамин, изофталевая кислота
РА 6-3-Т триметилгексаметилендиамин, терефталевая кислота
PA 6/6Т (смотри РА 6 и PA 6Т)

PA 6/66 (смотри PA 6 и PA 66)
PA 6/12 (смотри PA 6 и PA 12)
PA 66/6/610 (смотри PA 66, PA 6 и PA 610)
PA 6I/6T (смотри PA 61 и PA 6T)
PA PACM 12 диаминодициклогексилметан, лауринлактам
PA 6I/6T/PACM аналогично PA 6I/6T + диаминодициклогексилметан лауринлактам, диметилдиаминодициклогексилметан, изофталевая кислота
PA 12/MACMI
РА 12/МАСМТ лауринлактам, диметилдиаминодициклогексилметан, терефталевая кислота
PA PDA-T фенилендиамин, терефталевая кислота

Предпочтительным огнезащитным средством В), в частности, в комбинации с армированными стекловолокнами формовочными массами, является элементарный красный фосфор, который можно использовать в необработанном состоянии.

Однако особенно пригодными являются составы фосфора, в которых поверхность фосфора покрыта низкомолекулярными жидкими веществами, например, силиконовым маслом, парафиновым маслом или сложными эфирами фталевой кислоты (в частности, диоктилфталатом, смотри европейский патент ЕР 176836), адипиновой кислотой или полимерными или олигомерными соединениями, например, фенольными смолами или аминопластами, а также полиуретанами (смотри европейскую заявку на патент EP-A 384232 и немецкую заявку на патент DE-A 19648503). Содержание подобных так называемых флегматизаторов как правило составляет от 0,05 до 5% масс. в пересчете на 100% масс. огнезащитного средства В).

Кроме того, в качестве огнезащитного средства пригодны концентраты красного фосфора, например, в полиамиде или эластомерах. Пригодными полимерами подобного концентрата, в частности, являются гомополимеры и сополимеры олефинов. Однако в случае, если полиамид в виде термопласта в подобном концентрате не используют, доля указанных полимеров должна составлять не более 35% масс. в пересчете на массу компонентов А) и В) в предлагаемых в изобретении формовочных массах.

Указанные концентраты предпочтительно обладают следующим составом:

В1) от 30 до 90% масс., предпочтительно от 45 до 70% масс. полиамида или эластомера,

В2) от 10 до 70% масс., предпочтительно от 30 до 55% масс. красного фосфора.

Используемый для приготовления концентрата полиамид может отличаться от компонента А) или он предпочтительно аналогичен компоненту А), что позволяет исключить негативное влияние на формовочную массу несовместимости или отличий температур плавления.

Другой метод введения предлагаемых в изобретении добавок С) в термопластичные формовочные массы предусматривает суспендирование красного фосфора в водном растворе или суспензии соответствующей добавки. Полученный подобным образом фосфор со смоченной соответствующей добавкой С) поверхностью фильтруют, промывают водой и сушат в атмосфере защитного газа. Затем модифицированный фосфор посредством пригодных устройств для переработки можно вводить в термопластичные формовочные массы.

Средний размер распределенных в формовочных массах частиц фосфора (d50) предпочтительно находится в диапазоне от 0,0001 до 0,5 мм, в частности, от 0,001 до 0,2 мм.

Содержание компонента В) в предлагаемых в изобретении формовочных массах составляет от 0,1 до 60% масс., предпочтительно от 0,5 до 40% масс., в частности, от 1 до 15% масс., соответственно в пересчете на сумму компонентов А)-Е).

В качестве компонента С) предлагаемые в изобретении формовочные массы содержат от 0,01 до 4% масс., предпочтительно от 0,1 до 3% масс. в частности, от 0,1 до 2% масс., еще более предпочтительно от 0,1 до 1,5% масс. соли, оксида или комплекса меди(I) или серебра(I) или смесей этих веществ.

Пригодные комплексы меди(I) или серебра(I) в качестве лигандов содержат трифенилфосфины, меркаптобензимидазолы, этилендиаминтетрауксусную кислоту, ацетилацетонаты, глицин, этилендиамины, оксалаты, диэтилентриамины, триэтилентетраамины, пиридины, дифосфоны или дипиридилы.

Указанные лиганды можно использовать для комплексообразования по отдельности или в комбинации. Методы синтеза комплексов известны специалистам или описаны в соответствующей специальной литературе. Подобные комплексы помимо указанных выше лигандов обычно могут дополнительно содержать типичные неорганические лиганды, например, воду, хлорид, цианолиганды и так далее.

Предпочтительными являются комплексы меди с трифенилфосфинами, меркаптобензимидазолами, ацетилацетонатами и глицином в качестве комплексных лигандов. Особенно предпочтительными лигандами являются трифенилфосфины и меркаптобензимидазолы.

Предпочтительно используемые согласно изобретению комплексы меди обычно образуются в результате реакции ионов меди(I) с фосфиновыми соединениями, соответственно с соединениями меркаптобензимидазола. Подобные комплексы могут быть получены, например, путем взаимодействия три-фенилфосфина с суспендированным в хлороформе галогенидом меди(I) (G. Kosta, Е. Reisenhofer, L. Stafani, J. Inorg. Nukl. Chem. 27 (1965) 2581). Возможным является также восстановление соединений меди(II) трифенилфосфином, которое сопровождается образованием аддуктов меди(I) (F.U. Jardine, L. Rule, A.G. Vohrei, J. Chem. Soc. (A) 238-241, 1970). Специалистам известны также другие методы получения комплексов меди.

Пригодными в принципе являются любые алкилфосфины или арилфосфины. Примерами используемых согласно изобретению фосфинов являются трифенилфосфин, замещенные трифенилфосфины, триалкилфосфины и ди-арилфосфины. Примером пригодного триалкилфосфина является трис(н-бутил)фосфин. В связи с коммерческой доступностью и экономичностью предпочтительным прежде всего является трифенилфосфин. Однако трифенилфосфиновые комплексы в общем случае обладают более высокой стабильностью по сравнению с триалкилфосфиновыми комплексами.

Пригодные комплексы могут обладать, например, формулами [Cu(PPh3)3X], [Cu2X2(PPh3)3], [Cu(PPh3)X]4 или [Cu(PPh3)2X], в которых Ph означает фенил и X означает хлор, бром, йод, CN, SCN или 2-меркаптобензимидазол, причем особенно предпочтительными являются Cu(I)-(PPh3)2I.

Используемые согласно изобретению комплексы дополнительно могут содержать также другие комплексные лиганды. Примерами соответствующих комплексов являются бипиридил (например, CuX (PPh3) (bipy), причем X означает хлор, бром или йод), бихинолин (например, CuX (PPh3) (biquin), причем X означает хлор, бром или йод), а также 1,10-фенантролин, о-фенилен-бис(диментиларсин), 1,2-бис(дифенилфосфино)этан и терпиридил.

Другими предпочтительными соединениями меди и серебра со степенью окисления I являются оксиды (Cu2O, Ag2O), тиоцианаты (CuSCN, AgSCN) и галогениды (CuCl, AgCl, CuBr, AgBr), причем предпочтительными соединениями являются Cul, Agl, CuSCN и/или CuCl.

Пригодными солями одновалентной меди или серебра с карбоновыми кислотами, в частности, содержащими 1-6 атомов углерода, предпочтительно являются ацетаты, оксалаты, стеараты, пропионаты, бутираты и бензоаты, причем предпочтительными являются ацетаты и/или оксалаты.

Компонент С) особенно предпочтительно находится в смеси с галогенидом щелочного металла, предпочтительно с йодидом калия (KI), причем соотношение компонентов подобной смеси составляет от 1:10 до 1:1.

Помимо оксидов меди еще более предпочтительным соединением меди С) является йодид меди (CuI), в частности, в смеси с йодидом калия в соотношении 1:4, а также бистрифенилфосфин-йодид меди, в частности, в смеси с йодидом калия в соотношении 1:2.

Еще более предпочтительными соединениями серебра С) являются оксид серебра (Ag2O) и/или хлорид серебра (AgCl).

В качестве компонента D) формовочные массы содержат от 0 до 40% масс., предпочтительно от 1 до 30% масс., в частности, от 2 до 20% масс. полимеров, обладающих каучукоподобной эластичностью (часто называемых также модификаторами ударной вязкости, эластомерами или каучуками).

При этом в общем случае речь идет о сополимерах предпочтительно по меньшей мере двух следующих мономеров: этилена, пропилена, бутадиена, изобутилена, изопрена, хлоропрена, винилацетата, стирола, акрилонитрила и сложных эфиров акриловой или метакриловой кислоты с 1-18 атомами углерода в спиртовом компоненте.

Подобные полимеры описаны, например, в справочнике Houben-Weyl, Metho-den der organischen Chemie, том 14/1 (издательство Georg-Thieme, Штутгарт, 1961, cc. 392-406), а также в монографии С.В. Bucknall, "Toughened Plastics" (издательство Applied Science Publishers, Лондон, 1977).

Ниже приведены некоторые предпочтительные типы подобных эластомеров.

К предпочтительным типам подобных эластомеров относятся так называемые этиленпропиленовые (СКЭП), соответственно этиленпропилендиеновые (СКЭПТ) каучуки.

Этиленпропиленовые каучуки в общем случае практически не содержат двойных связей, в то время как этиленпропилендиеновые каучуки могут содержать от 1 до 20 двойных связей на 100 атомов углерода.

Диеновыми мономерами, используемыми для получения этиленпропилендиеновых каучуков, являются, например сопряженные диены, в частности, изопрен и бутадиен, несопряженные диены с 5-25 атомами углерода, в частности, пента-1,4-диен, гекса-1,4-диен, гекса-1,5-диен, 2,5-диметилгекса-1,5-диен и окта-1,4-диен, циклические диены, в частности, циклопентади-ен, циклогексадиены, циклооктадиены и дициклопентадиен, а также алкенилнорборнены, в частности, 5-этилиден-2-норборнен, 5-бутилиден-2-норборнен, 2-металлил-5-норборнен, 2-изопропинил-5-норборнен и трициклодиены, например, 3-метил-трицикло(5.2.1.0,2.6)-3,8-декадиен, или смеси указанных диенов. Предпочтительными диеновыми мономерами являются гекса-1,5-диен, 5-этилиденнорборнен и дициклопентадиен. Содержание звеньев диеновых мономеров в этиленпропилендиеновых каучуках предпочтительно составляет от 0,5 до 50% масс., в частности, от 1 до 8% масс. в пересчете на общую массу каучука.

К этиленпропиленовым, соответственно этиленпропилендиеновым каучукам предпочтительно могут быть привиты также реакционноспособные карбоновые кислоты или их производные. Соответствующими примерами являются акриловая кислота, метакриловая кислота и их производные, например, глицидил(мет)акрилат, а также малеиновый ангидрид.

К другой группе предпочтительных каучуков относятся сополимеры этилена с акриловой кислотой, метакриловой кислотой и/или сложными эфирами этих кислот. Подобные каучуки дополнительно могут содержать также мономерные звенья дикарбоновых кислот, в частности, малеиновой кислоты и фумаровой кислоты, мономерные звенья производных этих кислот, например, сложных эфиров и ангидридов, и/или мономерные звенья с эпоксигруппами. Подобные мономерные звенья производных дикарбоновых кислот, соответственно мономерные звенья с эпоксигруппами вводят в каучук предпочтительно путем добавления к смеси мономеров содержащих группы дикарбоновых кислот, соответственно эпоксигруппы мономеров общих формул I, II, III или IV:

в которых остатки R1-R9 соответственно означают водород или алкильную группу с 1-6 атомами углерода, m означает целое число от 0 до 20, g означает целое число от 0 до 10 и p означает целое число от 0 до 5.

Остатки R1-R9 предпочтительно означают водород, причем m означает 0 или 1 и g означает 1. Соответствующими соединениями являются малеиновая кислота, фумаровая кислота, малеиновый ангидрид, аллилглицидиловый эфир и винилглицидиловый эфир.

Предпочтительными соединениями формул I, II и IV являются малеиновая кислота, малеиновый ангидрид, а также содержащие эпоксигруппы сложные эфиры акриловой и/или метакриловой кислоты, например, глицидилакрилат или глицидилметакрилат, и сложные эфиры с третичными спиртами, например, трет-бутилакрилат. Указанные сложные эфиры не содержат свободных карбоксильных групп, однако ведут себя подобно свободным кислотами, в связи с чем их называют мономерами с латентными карбоксильными группами.

Сополимеры предпочтительно содержат от 50 до 98% масс. этиленовых звеньев и от 0,1 до 20% масс. звеньев мономеров с эпоксигруппами и/или мономеров с группами метакриловой кислоты и/или кислотных ангидридов, причем остаток до 100% приходится на сложные эфиры (мет)акриловой кислоты.

Особенно предпочтительными являются сополимеры на основе следующих мономеров:

от 50 до 98% масс., в частности, от 55 до 95% масс. этилена,

0,1 до 40% масс., в частности, от 0,3 до 20% масс. глицидилакрилата и/или глицидилметакрилата, (мет)акриловой кислота и/или малеинового ангидрида, и

от 1 до 45% масс., в частности, от 5 до 40% масс. н-бутилакрилата и/или 2-этилгексилакрилата.

Другими предпочтительными сложными эфирами акриловой и/или метакриловой кислоты являются соответствующие метиловые, этиловые, пропиловые, изобутиловые и трет-бутиловые эфиры.

Кроме того, в качестве сомономеров можно использовать сложные или простые виниловые эфиры.

Указанные выше сополимеры этилена можно получать известными методами, предпочтительно путем статистической сополимеризации при высоком давлении и повышенной температуре. Речь при этом идет об общеизвестных методах синтеза.

К предпочтительным эластомерам относятся также продукты эмульсионной полимеризации, синтез которых описан, например, в монографии Блеклея "Emulsion Polymerization". Используемые при этом эмульгаторы и катализаторы являются известными веществами.

В принципе можно использовать эластомеры, которые обладают однородной или оболочечной структурой. Оболочечная структура определяется последовательностью подачи отдельных мономеров, от которой зависит также морфология получаемых полимеров.

Типичными представителями мономеров, используемых для синтеза каучуковой составляющей эластомеров, являются акрилаты, например, н-бутил-акрилат и 2-этилгексилакрилат, соответствующие метакрилаты, бутадиен, изопрен, а также их смеси. Указанные мономеры можно сополимеризовать с другими мономерами, например, стиролом, акрилонитрилом, простыми виниловыми эфирами и другими акрилатами или метакрилатами, такими как метилметакрилат, метилакрилат, этилакрилат и пропилакрилат.

Мягкая или каучуковая фаза эластомеров, температура стеклования которой ниже 0°C, может представлять собой сердцевину, наружную оболочку или средний слой (в случае эластомеров, обладающих более чем двухоболочечной структурой), причем в случае многооболочечных эластомеров из каучуковой фазы могут состоять также несколько оболочек.

В случае если помимо каучуковой фазы структура эластомера дополнительно включает один или несколько жестких компонентов (с температурой стеклования выше 20°C), последние в общем случае получают путем полимеризации стирола, акрилонитрила, метакрилонитрила, α-метилстирола, п-метил-стирола, сложных эфиров акриловой кислоты и сложных эфиров метакриловой кислоты, таких как метилакрилат, этилакрилат и метилметакрилат, в качестве основных мономеров. Кроме того, в подобном случае можно использовать незначительные количества других сомономеров.

В некоторых случаях может быть предпочтительным использование эмульсионных полимеров, снабженных поверхностными реакционноспособными группами. Подобными группами являются, например, эпоксидные, карбоксильные, латентные карбоксильные группы, аминогруппы или амидные группы, а также функциональные группы, которые можно вводить посредством совместного использования мономеров общей формулы:

со следующими заместителями:

R10 означает водород или алкильную группу с 1-4 атомами углерода,

R11 означает водород, алкильную группу с 1-8 атомами углерода или арильную группу, в частности, фенил,

R12 означает водород, алкильную группу с 1-10 атомами углерода, арильную группу с 6-12 атомами углерода или группу -OR13,

R13 означает алкильную группу с 1-8 атомами углерода или арильную группу с 6-12 атомами углерода, которые при необходимости могут быть замещены группой, содержащей кислород или азот,

X означает химическую связь, алкиленовую группу с 1-10 атомами углерода, ариленовую группу с 6-12 атомами углерода или группу

Y означает О-Z или NH-Z и

Z означает алкиленовую группу с 1-10 атомами углерода или ариленовую группу с 6-12 атомами углерода.

Для введения поверхностных реакционноспособных групп можно использовать также прививаемые мономеры, описанные в европейской заявке на патент EP-A 208187.

Другими примерами подобных мономеров являются акриламид, метакриламид и замещенные сложные эфиры акриловой или метакриловой кислоты, в частности, (N-трет-бутиламино)этилметакрилат, (N,N-диметиламино)этил-акрилат, (N,N-диметиламино)метилакрилат и (N,N-диэтиламино)этилакрилат.

Кроме того, частицы каучуковой фаза могут быть сшитыми. Мономерами, обладающими действием сшивающих агентов, являются, например, бута-1,3-диен, дивинилбензол, диаллилфталат и дигидродициклопентадиени-лакрилат, а также соединения, описанные в европейской заявке на патент EP-A 50265.

Наряду с этим можно использовать также прививаемые сшивающие мономеры, содержащие две или более способные к полимеризации двойные связи, которые при полимеризации реагируют с разными скоростями. Предпочтительному использованию подлежат такие соединения, в которых по меньшей мере одна реакционноспособная группа полимеризуется почти с такой же скоростью, как и остальные мономеры, в то время как другая реакционноспособная группа (или другие реакционноспособные группы) полимеризуется (полимеризуются), например, гораздо медленнее. Вследствие разных скоростей полимеризации в каучук внедряется определенное количество ненасыщенных двойных связей. В случае последующей прививки к подобному каучуку другой фазы по меньшей мере часть присутствующих в каучуке двойных связей реагирует с прививаемыми мономерами с образованием химических связей, то есть по меньшей мере часть прививаемой фазы оказывается соединенной с основой для прививки посредством химических связей.

Примерами подобных прививаемых сшивающих мономеров являются содержащие аллильные группы мономеры, в частности, сложные аллиловые эфиры этиленненасыщенных карбоновых кислот, например, аллилакрилат, аллилметакрилат, диаллилмалеат, диаллилфумарат, диаллилитаконат или соответствующие моноаллильные соединения указанных дикарбоновых кислот. Помимо этого существует множество других пригодных прививаемых сшивающих мономеров (соответствующая более детальная информация приводится, например, в патенте США US-PS 4148846).

В общем случае содержание звеньев подобных сшивающих мономеров в модифицирующем ударную вязкость полимере ограничено 5% масс. и предпочтительно не превышает 3% масс. соответственно в пересчете на модифицирующий ударную вязкость полимер.

Ниже приведены некоторые предпочтительные эмульсионные полимеры. При этом прежде всего следует упомянуть привитые сополимеры с сердцевиной и по меньшей мере одной внешней оболочкой, которые обладают следующей структурой:

Вместо привитых сополимеров с многооболочечной структурой можно использовать также однородные, то есть однооболочечные эластомеры из бута-1,3-диена, изопрена и н-бутилакрилата или их сополимеры. Подобные продукты также можно получать посредством совместного использования сшивающих мономеров или мономеров с реакционноспособными группами.

Примерами предпочтительных эмульсионных полимеров являются сополимеры н-бутилакрилата с (мет)акриловой кислотой, сополимеры н-бутилакрилата с глицидилакрилатом, сополимеры н-бутилакрилата с глицидилметакрилатом, привитые сополимеры с сердцевиной из н-бутилакрилата или на бутадиеновой основе и наружной оболочкой из указанных выше сополимеров, а также сополимеры этилена с сомономерами, предоставляющими реакционноспособные группы.

Описанные выше эластомеры могут быть получены также другими обычными методами, например, суспензионной полимеризацией.

Предпочтительными являются также силиконовые каучуки, описанные в немецкой заявке на патент DE-A 3725576, европейской заявке на патент EP-A 235690, немецкой заявке на патент DE-A 3800603 и европейской заявке на патент EP-A 319290,

Особенно предпочтительными каучуками D) являются указанные выше сополимеры этилена, которые содержат звенья мономеров с функциональными группами, выбранными из группы, включающей группы карбоновых кислот, группы ангидридов карбоновых кислот, группы сложных эфиров карбоновых кислот, группы амидов карбоновых кислот, группы имидов карбоновых кислот, аминогруппы, гидроксильные группы, эпоксидные группы, уретановые группы, оксазолиновые группы и соответствующие смешанные группы.

Количество функциональных групп составляет от 0,1 до 20% масс., предпочтительно от 0,2 до 10% масс., в частности, от 0,3 до 7% масс. соответственно в пересчете на 100% масс компонента D).

Особенно предпочтительные мономеры синтезированы из этиленненасыщенной монокарбоновой кислоты, дикарбоновой кислоты или функциональной производной подобной кислоты.

В принципе пригодны любые первичные, вторичные и третичные сложные алкиловые эфиры акриловой или метакриловой кислоты с 1-18 атомами углерода в алкиле, однако предпочтительными являются сложные эфиры с 1-12 атомами углерода, в частности, с 2-10 атомами углерода.

Их примерами являются метилакрилаты, этилакрилаты, пропилакрилаты, н-бутил акрилаты, изобутилакрилаты, трет-бутилакрилаты, 2-этилгексилакри-латы, октилакрилаты, децилакрилаты и соответствующие сложные эфиры метакриловой кислоты. При этом особенно предпочтительными являются н-бутилакрилат и 2-этилгексилакрилат.

Вместо или помимо мономерных звеньев сложных эфиров в олефиновых полимерах могут присутствовать также мономерные звенья этиленненасыщенных монокарбоновых или дикарбоновых кислот с кислотными и/или латентными кислотными функциональными группами или звенья мономеров, содержащих эпоксидные группы.

Другими примерами мономеров являются акриловая кислота, метакриловая кислота, третичные сложные алкиловые эфиры этих кислот, в частности, трет-бутилакрилат, и дикарбоновые кислоты, в частности, малеиновая кислота, фумаровая кислота или производные этих кислот, а также их сложные моноэфиры.

Под мономерами с латентными кислотными функциональными группами подразумевают соединения, которые в условиях полимеризации, соответственно при введении олефиновых полимеров в формовочные массы образуют свободные кислотные группы. Соответствующими примерами являются ангидриды дикарбоновых кислот с числом атомов углерода до 20, в частности, малеиновый ангидрид, и сложные алкиловые эфиры указанных выше кислот с 1-12 атомами углерода в третичном алкиле, прежде всего трет-бутилакрилат и трет-бутилметакрилат.

Мономеры с кислотными функциональными группами, соответственно латентными кислотными функциональными группами, и мономеры с эпоксигруппами внедряют в олефиновые полимеры предпочтительно путем добавления соединений общих формул I-IV к смеси мономеров.

Индекс текучести расплава сополимеров этилена, измеряемый при 190°C и нагрузке 2,16 кг, в общем случае составляет от 1 до 80 г/10 мин.

Среднечисловая молекулярная масса Mn подобных сополимеров этилена с α-олефином, которую определяют методом гель-проникащей хроматографии в 1,2,4-трихлорбензоле с калибровкой по полистиролу, находится в диапазоне от 10000 до 500000 г/моль, предпочтительно от 15000 до 400000 г/моль.

В особом варианте осуществления изобретения используют сополимеры этилена с α-олефином, получаемые с использованием так называемых катализаторов с единым центром полимеризации на металле. Другие подробности приведены в патенте США US 5,272,236. В этом случае сополимеры этилена с α-олефином обладают узким для полиолефинов молекулярно-массовым распределением, составляющим менее 4, предпочтительно менее 3,5.

Предпочтительно используемыми торговыми продуктами B являются Exxe-lor® VA 1801 или 1803, Kraton® G 1901 FX, Fusabond® N NM493 D или Fusa-bond® A560 фирм Exxon, Kraton и DuPont, а также Tafmer® MH 7010 фирмы Mitsui.

Очевидно можно использовать также смеси каучуков указанных выше типов.

В качестве компонента Е) предлагаемые в изобретении формовочные массы могут содержать до 60% масс., предпочтительно до 50% масс. других добавок.

К наполнителям Е) в виде волокон или частиц относятся углеродные волокна, стеклянные волокна, стеклянные шарики, аморфная кремниевая кислота, силикат кальция, метасиликат кальция, карбонат магния, каолин, мел, измельченный в порошок кварц, слюда, сульфат бария и полевой шпат, которые используют в количествах от 1 до 50% масс., в частности, от 5 до 40, предпочтительно от 10 до 40% масс.

К предпочтительным волокнистым наполнителям относятся углеродные волокна, арамидные волокна и волокна из титаната калия, причем особенно предп