Полимеры, полимерные мембраны и способы их получения

Иллюстрации

Показать все

Изобретение относится к полимеру, к способу его получения, к мембране для разделения газов, а также к способу разделения компонентов жидкости. Полимер содержит повторяющиеся звенья следующих формул I-III:

;

; и

где формула I может быть связана с формулой II или III, но не может быть связана сама с собой; формула II может быть связана с формулой I или III, но не может быть связана сама с собой; и формула III может быть связана с формулой I или II, или сама с собой, в которых Ar1 представляет собой

;

Ar2 представляет собой

;

Ar1' представляет собой двухвалентную группу, полученную из Ar1; Ar1'' представляет собой трехвалентную группу, полученную из Ar1; X и Y выбирают из О, S и N-фенила. Способ получения вышеуказанного полимера заключается в том, что проводят термическую обработку ароматического полиимидного предшественника, содержащего повторяющееся звено формулы IV :

,

в которой Ar1 и Ar2 имеют вышеуказанные значения; o-FG выбирают из группы, включающей -ОН и -NH-фенил. Термическую обработку проводят путем необратимой и внуктримолекулярной перегруппировки при температуре от 350°С до 500°С. Из вышеуказанного полимера получают мембрану для разделения газов. Способ разделения компонентов жидкости заключается в том, что вначале обеспечивают разделительное устройство, включающее вышеуказанную разделительную мембрану. В разделительное устройство подают питающую жидкость, которая содержит смесь первой жидкости и, по меньшей мере, второй жидкости. Затем из разделительного устройства отбирают продукт, в котором первая жидкость имеет большую чистоту, чем в питающей жидкости. Изобретение позволяет получить полимер с улучшенными механическими свойствами, который имееет увеличенный свободный объем и более узкое распределение по размерам структуры свободного объема, а также получить мембрану с высокой газопроницаемостью. 4 н. и 5 з.п. ф-лы, 5 ил., 2 табл., 5 пр.

Реферат

УРОВЕНЬ ТЕХНИКИ

Настоящее изобретение относится к полимерным материалам, способу получения полимерных материалов и к разделению смесей при помощи полимерных мембран, полученных из данных полимерных материалов.

Полимерные мембраны применяли для различных разделений, включая разделение газов, а также разделение жидкостей. Мембранное разделение газов стало важной альтернативой традиционным способам разделения, таким как криогенное разделение и абсорбционные способы. Мембранное разделение газов представляет собой процесс разделения под давлением, для которого не требуется высокоэнергозатратное фазовое превращение исходной газовой смеси, как в других методах разделения. Кроме того, механическая простота и компактность установок для мембранного разделения газов предоставляют большое удобство при установке и эксплуатации.

Такие преимущества привели к широкому ряду применений мембранного разделения газов. Данные разделения включают в себя газовые пары (то есть предназначенные для разделения смеси, по меньшей мере, двух газов): O2/N2, H2/N2, H2/CH4, CO2/CH4, H2O/воздух, He/воздух, He/N2, He/CH4, He/H2, He/CO2, H2/CO2, H2S/природный газ и H2O/природный газ. Учитывая рост цен на электроэнергию и экологические факторы, мембранное разделение газов является весьма многообещающим в настоящих и новых областях промышленности. Одно из новых применений, связанных с окружающей средой, могло бы включать в себя мембранное разделение CO2/N2 в выхлопных газах для отбора и секвестрации CO2.

Выбор материала мембраны для применения для разделения газов основан на определенных физических и химических свойствах, поскольку эти материалы должны разрабатываться самым современным способом для разделения конкретных газовых смесей. В промышленных модулях разделения газов в качестве асимметрических непористых мембран обычно используют органические полимеры. Полимерные мембранные материалы обычно используют в тех способах, в которых питающая газовая смесь контактирует с внешней стороной мембраны, приводя к получению с обратной стороны мембраны пермеатной смеси с большей молярной долей одного из компонентов по сравнению с составом первоначальной питающей газовой смеси. Между внешней и обратной сторонами поддерживается градиент давления, обеспечивающий движущую силу для проникновения. С обратной стороны можно поддерживать вакуум или любое давление, меньшее давления с внешней стороны.

Производительность мембраны характеризуется проницаемостью и селективностью. Проницаемость (Р) представляет собой скорость, с которой какой-либо газообразный компонент проникает через данную мембрану. Разделение газовой смеси достигается за счет мембранного материала, допускающего большую скорость проникновения одного компонента (например, большую проницаемость) по сравнению со скоростью проникновения другого компонента. Эффективность мембраны при обогащении одним компонентом по сравнению с другим компонентом в потоке пермеата можно выразить в виде количества, называемого селективностью. Селективность (S) можно определить как соотношение проницаемостей газовых компонентов через мембрану. Селективность представляет собой ключевой параметр для достижения высокой чистоты продукта при высокой степени выделения. Проницаемость и селективность мембраны являются свойствами вещества самого мембранного материала, и, таким образом, эти свойства в идеальном случае постоянны при давлении подачи, скорости потока и других условиях процесса. Однако, и проницаемость, и селективность зависят от температуры. Желательно разработать мембранные материалы с высокой селективностью (эффективностью) в отношении желательного компонента при сохранении, в то же время, высокой проницаемости (производительности) в отношении желательного компонента.

Обычно полимерные мембраны демонстрируют относительно высокую селективность и низкую проницаемость (пропускную способность) по сравнению с пористыми материалами вследствие их малого свободного объема. Свободный объем полимера, процент объема, не занятого электронными облаками полимера, играет важную роль в подвижности низкомолекулярных веществ и газов.

Практически во всех промышленных способах мембранного разделения газов используют стеклообразные полимеры вследствие их сравнительно высокой газоселективности и хороших механических свойств. В стеклообразных полимерах более проницаемыми веществами являются вещества с малым диаметром молекул, а селективность возникает благодаря разнице в размерах молекул. Для получения мембран используют стеклообразные полимеры со свободным объемом от среднего до высокого (например, полиимиды, полифениленоксиды, поли(триметилсилилпропин) и так далее), поскольку больший свободный объем способствует переносу газа или жидкости через данное вещество.

Помимо общего количества свободного объема на свойства полимерной мембраны влияет также распределение по размерам и форма структуры свободного объема, представленного микрополостями, порами и каналами. В аморфном полимере распределение по размерам и форма структур свободного объема неравномерны. Широкий интервал распределения по размерам и форме исключает возможность достижения одновременно высокой селективности и высокой проницаемости. Таким образом, обычные полимерные мембраны, как правило, подчиняются компромиссному ограничению между проницаемостью и селективностью: по мере повышения селективности снижается проницаемость, и наоборот. Робесоном показано в нескольких ссылках (L.M. Robeson. J. Mem. Sci. 62, 195 (1991); B.D. Freeman, Macromolecules 32, 375 (1999); L.M. Robeson. J. Mem. Sci. 320, 375 (2008)), что для малых молекул газов (например, O2, N2, CO2 и СН4) на диаграмме селективность/проницаемость существует верхний предел или «верхняя граница». Для достижения комбинаций с более высокой селективностью/проницаемостью необходимы материалы, не подчиняющиеся данным простым правилам.

В недавней публикации отмечается, что верхнюю границу можно преодолеть в случае полимерной системы, подвергнутой термической перегруппировке с образованием гетероциклических структур, которые отсутствуют в исходном полимере (Park et al., Science 318, 254 (2007)). Отмечается, что распределение пор по размерам в термически перегруппированном полимере намного более узкое, чем в исходном полимере, что приводит к получению свойств проницаемости/селективности, как у молекулярного сита. По предположению Парка и др. причиной более узкого распределения пор по размерам по сравнению с исходной мембраной является процесс термической перегруппировки, а не удаление летучего газообразного СО2. Увеличение свободного объема приводит к повышению проницаемости, а уменьшение распределения пор по размерам в полимерах приводит к повышению селективности. Однако высокая степень термической перегруппировки приводит к высокой степени сшивания и уплотнению полимера, что, в свою очередь, ухудшает механические свойства полимера, такие как прочность при растяжении и удлинение при растяжении на разрыв. Крайне необходимы способы достижения одновременно высокой проницаемости и селективности при сохранении механической прочности.

Несмотря на предшествующие достижения, в области мембранного разделения все еще есть место для дальнейшего прогресса.

Таким образом, в области разработки полимерных мембран для разделения газов требуется увеличить свободный объем, обеспечив поры и полости с более узким распределением по размерам, чем то, которое обычно достигается в случае отливки полимеров из раствора или формования из расплава.

Поэтому желательно предоставить полимер с увеличенным свободным объемом и более узким распределением по размерам структуры свободного объема, и улучшенными механическими свойствами.

Кроме того, желательно предоставить способ получения полимера с увеличенным свободным объемом и более узким распределением по размерам структуры свободного объема, и улучшенными механическими свойствами.

Кроме того, также желательно предоставить мембрану для разделения газов, полученную из полимера с увеличенным свободным объемом и более узким распределением по размерам структуры свободного объема, и улучшенными механическими свойствами.

Кроме того, также желательно предоставить способ получения мембраны для разделения газов, полученной из полимера с увеличенным свободным объемом и более узким распределением по размерам структуры свободного объема, и улучшенными механическими свойствами.

Все цитированные в настоящем описании ссылки включены в него во всей их полноте.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Соответственно, первый аспект настоящего изобретения включает в себя полимерный материал, содержащий повторяющиеся звенья следующих формул I-III:

в которых

формула I может быть связана с формулой II или III, но не может быть связана сама с собой,

формула II может быть связана с формулой I или III, но не может быть связана сама с собой, и

формула III может быть связана с формулой I или II, или сама с собой,

в которых:

Ar1 представляет собой

а) четырехвалентную ариленовую группу, содержащую от 6 до 24 атомов углерода, замещенную или незамещенную, по меньшей мере, одним заместителем, выбранным из группы, включающей С110 алкил, С110 галогеналкил, С110 алкокси и С110 галогеналкокси,

b) четырехвалентный С424 гетероарилен, незамещенный или замещенный, по меньшей мере, одним заместителем, выбранным из группы, включающей в себя С110 алкил, С110 галогеналкил, С110 алкокси и С110 галогеналкокси, или

с) два или более Ar1 конденсированы друг с другом с образованием конденсированного цикла или ковалентно связаны друг с другом через функциональную группу, выбранную из группы, включающей O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)m, (CF2)n, C(CF3)2 и C(=O)NH, где m представляет собой целое число от 1 до 10, и n представляет собой целое число от 1 до 10;

Ar2 представляет собой:

а) С624 трехвалентную ариленовую группу,

b) С424 трехвалентный гетероарилен, незамещенный или замещенный, по меньшей мере, одним заместителем, выбранным из группы, включающей С110 алкил, С110 галогеналкил, С110 алкокси и С110 галогеналкокси, или

с) два или более Ar2 связаны друг с другом с образованием конденсированного цикла или ковалентно связаны друг с другом через функциональную группу, выбранную из группы, включающей O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)m, (CF2)n, C(CF3)2 и C(=O)NH, где m представляет собой целое число от 1 до 10, и n представляет собой целое число от 1 до 10;

Ar1 и Ar2 могут представлять собой одинаковые или различные ариленовые или гетероариленовые циклические структуры друг относительно друга,

Ar1’ представляет собой двухвалентную группу, полученную из Ar1;

Ar1’’ представляет собой трехвалентную группу, полученную из Ar1; а

Х и Y одинаковы или отличаются друг от друга и выбраны из O, S, NH и NR, где R представляет собой замещенный или незамещенный С110 алкил или С110 алкокси, или замещенную или незамещенную С620 арильную группу, или замещенную или незамещенную С420 гетероарильную группу.

Использованный в настоящем описании термин «полученный из» в отношении Ar1’ и Ar1’’ означает, что Ar1’ и Ar1’’ получены путем дальнейшей конденсации, по меньшей мере, с одной функциональной группой в Ar2.

Второй аспект настоящего изобретения включает в себя способ получения полимерного материала, содержащего повторяющиеся звенья формул I-III, путем термической обработки ароматических полиимидных предшественников, содержащих орто-расположенные функциональные группы, выбранные из OH, SH, NH и NR.

Третий аспект настоящего изобретения включает в себя полимерный материал, полученный способом изобретения, в котором данный полимерный материал приспособлен для применения в качестве мембраны для разделения газов.

Четвертый аспект настоящего изобретения включает в себя мембрану для разделения газов, содержащую полимерный материал данного изобретения.

Пятый аспект настоящего изобретения включает в себя способ разделения компонентов жидкости, при этом данный способ включает в себя:

обеспечение разделительного устройства, включающего в себя полимерный материал данного изобретения в качестве разделительной мембраны,

подачу питающей жидкости в разделительное устройство, где питающая жидкость включает в себя смесь первой жидкости и, по меньшей мере, одной второй жидкости, и

получение продукта из разделительного устройства, где в данном продукте первая жидкость имеет большую чистоту, чем в питающей жидкости.

КРАТКОЕ ОПИСАНИЕ НЕКОТОРЫХ ИЗОБРАЖЕНИЙ ЧЕРТЕЖЕЙ

На фиг. 1 представлены данные ТГА для сухого твердого вещества Р2. Твердое вещество сушили, повышая температуру от комнатной температуры до 250°С со скоростью 10°С/мин и выдерживая в течение 2 часов.

На фиг. 2 представлен спектр ЯМР 13С твердого вещества Р2, растворенного в ДМСО-D6.

На фиг. 3 представлены данные ТГА для сухой пленки Р5. Пленку сушили, повышая температуру от комнатной температуры до 250°С со скоростью 10°С/мин и выдерживая в течение 2 часов.

На фиг. 4 представлены ИК-спектры пленок Р5.

На фиг. 5 представлены данные рентгеноструктурного анализа пленок Р5.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Настоящее изобретение в большой степени было вызвано открытием того, что полимеры, обладающие одной или более из упомянутых выше желательных характеристик, можно обеспечить при помощи полимерного материала, содержащего повторяющиеся звенья следующих формул I-III:

где

формула I может быть связана с формулой II или III, но не может быть связана сама с собой,

формула II может быть связана с формулой I или III, но не может быть связана сама с собой, и

формула III может быть связана с формулой I или II, или сама с собой,

Ar1 представляет собой

а) четырехвалентную ариленовую группу, содержащую от 6 до 24 атомов углерода, замещенную или незамещенную, по меньшей мере, одним заместителем, выбранным из группы, включающей С110 алкил, С110 галогеналкил, С110 алкокси и С110 галогеналкокси,

b) четырехвалентный С424 гетероарилен, незамещенный или замещенный, по меньшей мере, одним заместителем, выбранным из группы, включающей в себя С110 алкил, С110 галогеналкил, С110 алкокси и С110 галогеналкокси, или

с) два или более Ar1 конденсированы друг с другом с образованием конденсированного цикла или ковалентно связаны друг с другом через функциональную группу, выбранную из группы, включающей O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)m, (CF2)n, C(CF3)2 и C(=O)NH, где m представляет собой целое число от 1 до 10, и n представляет собой целое число от 1 до 10;

Ar2 представляет собой:

а) С624 трехвалентную ариленовую группу,

b) С424 трехвалентный гетероарилен, незамещенный или замещенный, по меньшей мере, одним заместителем, выбранным из группы, включающей С110 алкил, С110 галогеналкил, С110 алкокси и С110 галогеналкокси, или

с) два или более Ar2 связаны друг с другом с образованием конденсированного цикла или ковалентно связаны друг с другом через функциональную группу, выбранную из группы, включающей O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)m, (CF2)n, C(CF3)2 и C(=O)NH, где m представляет собой целое число от 1 до 10, и n представляет собой целое число от 1 до 10;

Ar1 и Ar2 могут представлять собой одинаковые или различные ариленовые или гетероариленовые циклические структуры друг относительно друга,

Ar1’ представляет собой двухвалентную группу, полученную из Ar1;

Ar1’’ представляет собой трехвалентную группу, полученную из Ar1; а

Х и Y одинаковы или отличаются друг от друга и выбраны из O, S, NH и NR, где R представляет собой замещенный или незамещенный С110 алкил или С110 алкокси, или замещенную или незамещенную С620 арильную группу, или замещенную или незамещенную С420 гетероарильную группу.

Предпочтительно, Ar1 в повторяющихся звеньях формул I-III выбирают из следующих структур:

в которых

R представляет собой замещенную или незамещенную С110 алкильную или С110 алкоксигруппу, или замещенную или незамещенную С620 арильную группу, или замещенную или незамещенную С420 гетероарильную группу, а

Z представляет собой O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)m, (CF2)n, C(CH3)2, C(CF3)2 или C(=O)NH, где m представляет собой целое число от 1 до 10, и n представляет собой целое число от 1 до 10;

в которых

Z1 представляет собой O, S, C(=O) или S(=O)2, а Z определен выше,

в которых

Х1 представляет собой N, O или S,

в которых

Х2 представляет собой S, O, NR, Se или SiR2, и

в которых

R1 выбирают из водорода, С110 замещенной или незамещенной алкильной группы, замещенной или незамещенной С110 алкоксигруппы, замещенной или незамещенной С620 арильной группы или замещенной или незамещенной С420 гетероарильной группы.

Более предпочтительно, Ar1 в повторяющихся звеньях формул I-III выбирают из следующих структур:

в которых

Z представляет собой O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, CH2, CF2, C(CH3)2, C(CF3)2 или C(=O)NH,

в которых

Z1 представляет собой O, S, S(=O)2 или C(=O), а Z определен выше,

в которых

Х2 представляет собой S, O, NR, Se или SiR2,

в которых

Х1 представляет собой N, O или S, а Х2 определен выше.

Ar1 в повторяющихся звеньях формул I-III также можно выбрать из следующих структур:

Предпочтительно, Ar2 в повторяющихся звеньях формул I-III выбирают из следующих структур:

в которых

R представляет собой замещенную или незамещенную С110 алкильную группу, С110 алкоксигруппу, замещенную или незамещенную С620 арильную группу или замещенный или незамещенный С420 гетероарил, а

Z представляет собой O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)m, (CF2)n, C(CH3)2, C(CF3)2 или C(=O)NH, где m представляет собой целое число от 1 до 10, и n представляет собой целое число от 1 до 10;

в которых

Z1 представляет собой O, S, C(=O) или S(=O)2, а Z определен выше,

в которых

Х1 представляет собой N, O или S,

в которых

Х2 представляет собой S, O, NR, Se или SiRR, где R определен выше,

в которых

R1 выбирают из водорода, замещенной или незамещенной С110 алкильной группы, замещенной или незамещенной С110 алкоксигруппы, замещенной или незамещенной С620 арильной группы или замещенной или незамещенной С420 гетероарильной группы.

Более предпочтительно, Ar2 в повторяющихся звеньях формул I-III выбирают из следующих структур:

в которых

Z представляет собой O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, CH2, CF2, C(CH3)2, C(CF3)2 или C(=O)NH,

в которых

Z1 представляет собой O, S, S(=O)2 или C(=O), а Z определен выше,

в которых

Х2 представляет собой S, O, NR, Se или SiR2,

в которых

Х1 представляет собой N, O или S, а Х2 определен выше,

Предпочтительно, X и Y в повторяющихся звеньях формул I-III выбирают из O, S, NH и N-арила. Более предпочтительно, X и Y выбирают из O, S, NH и N-фенила.

Предпочтительный вариант включает в себя полимерный материал, содержащий повторяющиеся звенья формул I-III, в которых:

Ar1 выбирают из следующих структур:

в которых

Z представляет собой O, S, C(=O), S(=O)2, CH2, CF2, C(CH3)2 или C(CF3)2,

Z1 представляет собой O, S, S(=O)2 или C(=O), а

Х2 представляет собой S, O или N-фенил,

Ar2 предпочтительно выбирают из следующих структур:

в которых:

Z представляет собой O, S, C(=O), СН(ОН), S(=O)2, CH2, CF2, C(CH3)2 или C(CF3)2,

в которых:

Z1 представляет собой O, S, S(=O)2 или C(=O), а Z определен выше,

в которых:

Х2 представляет собой S, O, или N-фенил,

в которых:

Х1 представляет собой N, O или S, а Х2 определен выше,

и X и Y в повторяющихся звеньях формул I-III выбирают из O, S и N-фенила.

Следующий предпочтительный вариант осуществления представляет собой полимерный материал, включающий в себя повторяющиеся звенья формул I-III, в которых:

Ar1 выбирают из следующих структур:

в которых

Z представляет собой O, C(=O), S(=O)2, CH2, CF2, C(CH3)2 или C(CF3)2, или

в которых:

Z1 представляет собой O, S, S(=O)2 или C(=O), а Z определен выше,

Ar2 предпочтительно выбирают из следующих структур:

в которых:

Z представляет собой O, S, C(=O), СН(ОН), S(=O)2, CH2, CF2, C(CH3)2 или C(CF3)2,

в которых:

Z1 представляет собой O, S, S(=O)2 или C(=O), а Z определен выше,

а X и Y выбирают из O, S и N-фенила.

Следующий предпочтительный вариант осуществления представляет собой полимерный материал, включающий в себя повторяющиеся звенья формул I-III, в которых:

Ar1 выбирают из следующих структур:

Ar2 выбирают из следующих структур:

а X и Y выбирают из O, S и N-фенила.

Следующий предпочтительный вариант осуществления представляет собой полимерный материал, включающий в себя повторяющиеся звенья формул I-III, в которых:

Ar1 выбирают из следующих структур:

Ar2 выбирают из следующих структур:

а X и Y выбирают из O, S и N-фенила.

Следующий предпочтительный вариант осуществления представляет собой полимерный материал, включающий повторяющиеся звенья формул I-III, в которых:

Ar1 выбирают из следующих структур:

Ar2 выбирают из следующих структур:

а X и Y выбирают из O и N-фенила.

Следующий аспект настоящего изобретения представляет собой способ получения полимерного материала, содержащего повторяющиеся звенья формул I-III. Данный способ включает стадию термической обработки ароматического полиамидного предшественника, содержащего повторяющиеся звенья формулы IV, включающие в себя орто-расположенные функциональные группы -ОН, -SH, -NH2, -NHR, путем необратимой межмолекулярной и внутримолекулярной перегруппировки при температуре примерно от 350°С до 500°С:

в которой:

Ar1 представляет собой четырехвалентную С624 ариленовую группу, или четырехвалентный С424 гетероарилен, незамещенный или замещенный, по меньшей мере, одним заместителем, выбранным из группы, включающей С110 алкил или С110 галогеналкил, С110 алкокси или С110 галогеналкокси, или два или более Ar1 связаны друг с другом с образованием конденсированного цикла или ковалентно связаны друг с другом через функциональную группу, выбранную из группы, включающей O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)m, (CF2)n, C(CF3)2 и C(=O)NH, где m представляет собой целое число от 1 до 10, и n представляет собой целое число от 1 до 10,

Ar2 представляет собой трехвалентную С624 ариленовую группу или трехвалентный С424 гетероарилен, незамещенный или замещенный, по меньшей мере, одним заместителем, выбранным из группы, включающей С110 алкил или С110 галогеналкил, С110 алкокси или С110 галогеналкокси, или два или более Ar2 связаны друг с другом с образованием конденсированного цикла или ковалентно связаны друг с другом через функциональную группу, выбранную из группы, включающей O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)m, (CF2)n, C(CF3)2 и C(=O)NH, где m представляет собой целое число от 1 до 10, и n представляет собой целое число от 1 до 10,

Ar1 и Ar2 представляют собой одинаковые или различные ариленовые или гетероариленовые циклические структуры друг относительно друга, а

о-FG представляет собой орто-расположенную функциональную группу (орто относительно атома азота имидного цикла), выбранную из -OH, -SH, -NH2 и -NHR, где R выбирают из замещенной или незамещенной С110 алкильной или С110 алкоксигруппы, или замещенной или незамещенной С620 арильной группы, или замещенной или незамещенной С420 гетероарильной группы.

Данный полимер можно описать как пример сополимера типа АВ-СС, где АВ (или ВА) представляет собой асимметрический диаминовый мономер с двумя различными аминогруппами. Сторона А содержит функциональную группу (FG), такую как тио, гидроксильная, или аминогруппу в орто-положении к аминогруппе, тогда как группа В не содержит. СС представляет собой исходный диангидридный мономер. АВ и СС не могут взаимодействовать между собой. Это приводит к получению псевдоатактического полимера, отличающегося только в направлении внедрения группы АВ, и приводит к случайному, но равномерному распределению функциональной группы в полимере. После высокотемпературной термической обработки функциональная группа взаимодействует с имидом с образованием бензоксазола, бензтиозола или бензимида. Это приводит к случайному, но равномерному распределению бензоксазольных, бензтиозольных или бензимидных и имидных групп по полимерной цепи.

Сегмент полимера можно представить, например, следующим образом:

-АВ-СС-ВА-СС-ВА-СС-АВ-СС-АВ-СС-АВ-СС-ВА-СС-ВА-СС-АВ-СС-,

в которых (В-СС-В) эквивалентно формуле I,

(А-СС-А) эквивалентно формуле II,

(А-СС-В) или (В-СС-А) эквивалентно формуле III,

(В-СС-В) может быть связано только с (А-СС-А) или (А-СС-В) и не может быть связано само с собой,

(А-СС-А) может быть связано только с (В-СС-В) или (В-СС-А) и не может быть связано само с собой,

(А-СС-В) может быть связано с (А-СС-А) или (А-СС-В), и

(В-СС-А) может быть связано с (В-СС-В) или (В-СС-А).

Следовательно,

формула I может быть связана с формулой II или III, но не может быть связана сама с собой,

формула II может быть связана с формулой I или III, но не может быть связана сама с собой,

формула III может быть связана с формулой I или II, или сама с собой.

Предпочтительно, Ar1 в повторяющихся звеньях формулы IV выбирают из следующих структур:

в которых:

R представляет собой замещенную или незамещенную С110 алкильную или С110 алкоксигруппу, или замещенную или незамещенную С620 арильную группу, или замещенную или незамещенную С420 гетероарильную группу, а

Z представляет собой O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)m, (CF2)n, C(CH3)2, C(CF3)2 или C(=O)NH, где m представляет собой целое число от 1 до 10, и n представляет собой целое число от 1 до 10,

в которых:

Z1 представляет собой O, S, C(=O) или S(=O)2,

в которых:

Х1 представляет собой N, O или S,

в которых:

Х2 представляет собой S, O, NR, Se или SiR2,

в которых:

R1 представляет собой замещенную или незамещенную С110 алкильную или С110 алкоксигруппу, или замещенную или незамещенную С620 арильную группу, или замещенную или незамещенную С420 гетероарильную группу,

Ar2 повторяющегося звена формулы IV выбирают из следующих структур:

в которых:

R представляет собой замещенную или незамещенную С110 алкильную или С110 алкоксигруппу, или замещенную или незамещенную С620 арильную группу, или замещенную или незамещенную С420 гетероарильную группу, а

Z представляет собой O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, (CH2)m, (CF2)n, C(CH3)2, C(CF3)2 или C(=O)NH, где m представляет собой целое число от 1 до 10, и n представляет собой целое число от 1 до 10,

в которых:

Z1 представляет собой O, S, C(=O) или S(=O)2,

в которых:

Х1 представляет собой N, O или S,

в которых:

Х2 представляет собой S, O, NR, Se или SiR2,

в которых:

R1 представляет собой водород, замещенную или незамещенную С110 алкильную или С110 алкоксигруппу, или замещенную или незамещенную С620 арильную группу, или замещенную или незамещенную С420 гетероарильную группу, а

о-FG представляет собой орто-расположенную функциональную группу (орто относительно атома азота имидного цикла), выбранную из -OH, -SH, -NH2 и -NHR, где R выбирают из замещенной или незамещенной С620 арильной группы или замещенной или незамещенной С420 гетероарильной группы.

Более предпочтительно, Ar1 повторяющегося звена формулы IV выбирают из следующих структур:

в которых Z представляет собой O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, CH2, CF2, C(CH3)2, C(CF3)2 или C(=O)NH,

в которых:

Z1 представляет собой O, S, S(=O)2 или C(=O), а Z определен выше,

в которых:

Х2 представляет собой S, O, NR, Se или SiR2,

в которых:

Х1 представляет собой N, O или S, а Х2 определен выше,

Ar2 повторяющегося звена формулы IV выбирают из следующих структур:

в которых Z представляет собой O, S, C(=O), CH(OH), S(=O)2, Si(CH3)2, CH2, CF2, C(CH3)2, C(CF3)2 или C(=O)NH,

в которых:

Z1 представляет собой O, S, S(=O)2 или C(=O), а Z определен выше,

в которых:

Х2 представляет собой S, O, NR, Se или SiR2,

в которых:

Х1 представляет собой N, O или S, а Х2 определен выше,

а о-FG представляет собой орто-расположенную функциональную группу (орто относительно атома азота имидного цикла), выбранную из -OH, -SH и -NHR, где R выбирают из замещенной или незамещенной С620 арильной группы или замещенной или незамещенной С420 гетероарильной группы.

Предпочтительный вариант осуществления включает в себя тепловую обработку ароматического полиимидного предшественника, содержащего повторяющееся звено формулы IV, за счет необратимой молекулярной перегруппировки, где

Ar1 выбирают из следующих структур: