Способ управления сборкой усилительного конструктивного элемента для шин, способ и устройство для изготовления шин

Иллюстрации

Показать все

Изобретение относится к способу управления сборкой усилительного конструктивного элемента шин для колес транспортных средств. Техническим результатом является повышение прочности соединения усилительного слоя и слоя спиральной намотки. Технический результат достигается способом управления сборкой усилительного конструктивного элемента шин для колес транспортных средств. Способ включает приложение силы притяжения, действующей в направлении формообразующей опоры, к начальной части армированного непрерывного удлиненного элемента из эластомерного материала. Наложение армированного непрерывного удлиненного элемента из эластомерного материала на формообразующую опору с заданной силой натяжения для образования спиральной намотки. Наложение усилительного слоя в радиальном направлении снаружи относительно спиральной намотки для образования усилительного конструктивного элемента, содержащего спиральную намотку и усилительный слой. При этом между спиральной намоткой и усилительным слоем действует сила взаимной связи. Отделение усилительного конструктивного элемента от формообразующей опоры посредством радиального сужения формообразующей опоры. Причем по меньшей мере одну из силы притяжения и силы натяжения регулируют так, чтобы сумма силы притяжения и силы натяжения была меньше силы связи. 3 н. и 40 з.п. ф-лы, 10 ил.

Реферат

Настоящее изобретение относится к способу управления сборкой усилительного конструктивного элемента шин для колес транспортных средств, в частности, для колес транспортных средств, предназначенных для тяжелых грузов, таких как грузовые автомобили, автомобили с прицепами, автобусы, прицепы.

Изобретение также относится к способу и устройству для изготовления вышеупомянутых шин.

Несмотря на то, что настоящее изобретение описано с конкретной ссылкой на шины для колес транспортных средств, предназначенных для тяжелых грузов, оно также может быть применено для изготовления шин для колес транспортных средств, предназначенных для легких грузов, подобных легковым автомобилям или мотоциклам.

Шина для колес транспортных средств, предназначенных для тяжелых или легких грузов, как правило, содержит каркасный конструктивный элемент, содержащий, по меньшей мере, один слой каркаса, образованный армирующими кордами, заделанными в эластомерную матрицу. Слой каркаса имеет концевые края, соответственно сцепленные с кольцевыми удерживающими конструктивными элементами. Последние расположены в зонах шины, обычно называемых «бортами», и каждый из них обычно образован из по существу окружной кольцевой вставки, на которую в радиальном направлении снаружи наложена, по меньшей мере, одна усилительная вставка. Подобные кольцевые вставки часто называют «бортовыми проволочными кольцами», и их задача состоит в. удерживании шины прочно зафиксированной относительно удерживающей полки, специально выполненной на ободе колеса, в результате чего при эксплуатации предотвращается сход внутреннего в радиальном направлении, концевого края шины с подобной полки.

Особые усилительные конструктивные элементы, имеющие функцию улучшения передачи крутящего момента шине, могут быть предусмотрены в бортах.

Брекерный конструктивный элемент, содержащий один или несколько слоев брекера, присоединен в радиальном направлении снаружи к слою каркаса, при этом указанные слои брекера расположены в радиальном направлении один поверх другого и имеют текстильные или металлические армирующие корды с перекрещивающейся ориентацией и/или по существу параллельные направлению·окружной длины шины.

Слой эластомерного материала, называемый «подбрекерной лентой», может быть предусмотрен между каркасным конструктивным элементом и брекерным конструктивным элементом, при этом функцией указанного слоя является обеспечение как можно более ровной поверхности каркасного конструктивного элемента, наружной в радиальном направлении, для последующего наложения брекерного конструктивного элемента.

Протекторный браслет, также выполненный из эластомерного материала, наложен в радиальном направлении снаружи на брекерный конструктивный элемент.

Так называемый «подслой» может быть предусмотрен между протекторным браслетом и брекерным конструктивным элементом, при этом указанный подслой образован из эластомерного материала, имеющего свойства, подходящие для обеспечения возможности прочного соединения протекторного браслета с брекерным конструктивным элементом.

Соответствующие боковины из эластомерного материала также наложены на боковые поверхности каркасного конструктивного элемента, при этом каждая боковина проходит от одного из боковых краев протекторного браслета до соответствующего кольцевого удерживающего конструктивного элемента в бортах.

Во многих применениях, подобных, например, некоторым типам шин для колес транспортных средств, предназначенных для тяжелых грузов, между слоем брекера, самым близким к центру в радиальном направлении (в дальнейшем также называемым «первым слоем брекера»), и каркасным конструктивным элементом расположен усилительный слой с нулевым углом, то есть слой эластомерного материала, предусмотренный с усилительными элементами, ориентированным по существу в направлении вдоль окружности, то есть по существу с нулевым углом (например, меньшим, чем 10°) относительно экваториальной плоскости шины.

Усилительный слой с нулевым углом образован путем намотки по спирали армированного непрерывного удлиненного элемента из эластомерного материала на специально предусмотренную формообразующую опору.

В этом случае формообразующая опора снабжена соответствующими элементами или устройствами, выполненными с возможностью удерживания вышеупомянутого удлиненного элемента в заданном положении во время его намотки.

Термины «радиальный» и «аксиальный» и выражения «внутренний/наружный в радиальном направлении» и «внутренний/наружный в аксиальном направлении» используются в данном документе по отношению к радиальному направлению и к аксиальному направлению формообразующей опоры, используемой для изготовления определенного компонента шины, подобного, например, каркасному конструктивному элементу или брекерному конструктивному элементу. С другой стороны, термины «окружной» и «в направлении вдоль окружности» используются по отношению к протяженности кольца вышеупомянутой формообразующей опоры.

Термин «армированный непрерывный удлиненный элемент из эластомерного материала» используется в данном документе для обозначения непрерывного элемента из эластомерного материала, имеющего удлиненную форму, то есть имеющего главным образом продольное направление протяженности, и содержащего один или несколько нитевидных усилительных элементов, таких как текстильные или металлические корды, по существу параллельные друг другу.

Более точно, подобные нитевидные усилительные элементы могут быть заделаны в матрицу из эластомерного материала или могут быть покрыты слоем эластомерного материала.

Термин «эластомерный материал» используется в данном документе для обозначения материала, состав которого содержит, по меньшей мере, один эластомерный полимер и, по меньшей мере, активный наполнитель. Подобный состав также предпочтительно содержит добавки, подобные, например, сшивающему агенту и/или пластификатору. Благодаря наличию сшивающего агента такой материал может быть подвергнут образованию поперечных связей посредством нагрева для образования конечного изготовленного изделия.

Термин «сила притяжения» используется в данном документе для обозначения силы, действующей со стороны формообразующей опоры на вышеупомянутый удлиненный элемент.

Термин «сила натяжения» используется в данном документе для обозначения силы сопротивления, которая приложена к вышеупомянутому удлиненному элементу во время его намотки на формообразующую опору и направлена противоположно растягивающей силе, одновременно приложенной посредством формообразующей опоры вследствие ее вращения.

В документе WO 2004/045839 описан барабан для сборки компонента шины, предусмотренного с металлическими элементами, проходящими в направлении вдоль окружности. Барабан содержит один или несколько опорных элементов, расположенных вдоль его окружной периферии, при этом каждый опорный элемент выполнен с опорной поверхностью для компонента шины. Опорные элементы содержат магниты, пригодные для притягивания металлических частей компонента шины, в результате чего компонент шины удерживается на опорной поверхности. Магниты расположены под поверхностью барабана, наружной в радиальном направлении.

В документе WO 2008/152453 описан формообразующий барабан для сборки брекерного конструктивного элемента шины для колес транспортных средств. Формообразующий барабан имеет по существу цилиндрическую наружную поверхность для наложения, на которую накладывают множество полосообразных элементов, при этом полосообразные элементы размещают рядом друг с другом для образования, по меньшей мере, одного первого кольцевого усилительного слоя. Барабан содержит множество секторов и исходно установлен с первым рабочим диаметром. Регулировочные устройства функционируют на формообразующем барабане для его расширения - после наложения множества полосообразных элементов - до второго рабочего диаметра, который превышает первый рабочий диаметр. Расширение происходит при одновременном сохранении наружной поверхностью, предназначенной для наложения, по существу цилиндрической формы. Секторы формообразующего барабана имеют множество магнитов, соединенных с ними, при этом магниты пригодны для взаимодействия с металлическим материалом, образующим армирующие корды, заделанные в полосообразные элементы, для гарантирования стабильного размещения полосообразных элементов в заданном положении также при наличии внутренних растягивающих напряжений. В завершение формообразующий барабан сужается в радиальном направлении до тех пор, пока не будет достигнут диаметр, который меньше первого диаметра, для обеспечения возможности. снятия усилительного конструктивного элемента, который был собран на нем, в аксиальном направлении.

В результате наблюдений было установлено, что несмотря на то, что, с одной стороны, использование формообразующих опор, снабженных отдельными магнитами, подобных, например, барабанам, проиллюстрированным выше, обеспечивает возможность выполнения усилительного конструктивного элемента (например, брекерного конструктивного элемента), содержащего усилительный слой с нулевым углом (содержащий, в свою очередь, металлические нитевидные элементы или корды), в радиальном направлении внутри по отношению к первому усилительному слою (например, первому слою брекера), с другой стороны, при этом имеются некоторые недостатки.

Особо критический аспект связан с тем, что выполнение спиральной намотки из армированного непрерывного удлиненного элемента из эластомерного материала требует эффективного удерживания на формообразующей опоре, по меньшей мере, начальной и концевой частей вышеупомянутого удлиненного элемента. Следовательно, необходимо, чтобы формообразующая опора содержала соответствующие магниты, по меньшей мере, в зонах прикрепления вышеупомянутых начальной и концевой частей.

Однако, наличие более одного магнита вдоль аксиального направления формообразующей опоры может привести к ухудшению регулярности наложения спиральной намотки. Действительно, в результате наблюдений было установлено, что вследствие силы притяжения, действующей на каждый виток вышеупомянутой намотки со стороны магнита(-ов), соседнего(-их) в аксиальном направлении, может происходить аксиальное смещение некоторых витков намотки, при этом подобное смещение имеет разную длину в зависимости от расстояния между витком и магнитом (магнитами), соседним(-и) в аксиальном направлении. В этом случае получают спиральную намотку с нерегулярным интервалом между различными витками и, следовательно, усилительный слой с нулевым углом, имеющий неудовлетворительное качество.

Проблема, рассмотренная выше, усугубляется, когда желательно изготавливать шины разного размера без необходимости в замене оборудования каждый раз (например, без необходимости в замене формообразующей опоры для усилительного конструктивного элемента). В этом случае действительно необходимо предусмотреть достаточно большое число магнитов, выровненных вдоль аксиального направления на формообразующей опоре.

В результате наблюдений было действительно установлено, что изменение размера шины, которая должна быть изготовлена, влечет за собой изменение осевой длины усилительного конструктивного элемента (например, брекерного конструктивного элемента) и, следовательно, изменение осевой длины усилительного слоя с нулевым углом, то есть изменение расстояния в аксиальном направлении между начальной частью и концевой частью спиральной намотки. Таким образом, необходимо предусмотреть множество магнитов в аксиальном направлении на формообразующей опоре для охвата всех различных мест прикрепления начальной и концевой частей спиральной намотки при изменении размера шины, которая должна быть изготовлена.

Также было установлено, что использование большого числа отдельных магнитов, расположенных бок о бок вдоль аксиального направления, помимо вышеупомянутой нерегулярности наложения различных витков намотки, приводит к созданию большой радиальной силы притяжения, действующей на сами витки. Подобная сила притяжения может вызвать нежелательное структурное расслоение между усилительным слоем с нулевым углом и первым усилительным слоем (например, первым слоем брекера) вследствие радиального сужения формообразующей опоры для снятия усилительного конструктивного элемента (например, брекерного конструктивного элемента), который был собран на ней.

Действительно, в результате наблюдений было установлено, что усилительный слой с нулевым углом и первый усилительный слой (например, первый слой брекера) соединяются друг с другом благодаря силе взаимной связи, образуемой исключительно за счет липкости соответствующих эластомерных материалов, и что подобная сила связи может быть недостаточной для удерживания двух компонентов прочно соединенными друг с другом, когда один из двух компонентов подвергается воздействию разъединяющей силы (подобной, например, силе притяжения, действующей в направлении формообразующей опоры во время ее радиального сужения) большей величины.

Также было установлено в результате наблюдений, что риск возникновения вышеупомянутого структурного расслоения увеличивается, если армированный непрерывный удлиненный элемент из эластомерного материала намотан на формообразующую опору с заданной силой натяжения. Действительно, в данном случае после радиального сужения формообразующей опоры для снятия усилительного конструктивного элемента (например, брекерного конструктивного элемента), который был собран на ней, сила натяжения прибавляется к силе притяжения, что по существу вызывает приложение к поверхности усилительного слоя с нулевым углом, внутренней в радиальном направлении, радиальной стягивающей/сжимающей силы большей величины по сравнению с вышеупомянутой силой связи.

Было установлено, что путем соответствующего регулирования различных сил, действующих во время изготовления усилительного конструктивного элемента, можно удовлетворить указанные по меньшей мере частично противоречащие требования, рассмотренные выше, то есть обеспечить прочное удерживание начальной и концевой частей спиральной намотки на формообразующей опоре и высокую регулярность наложения витков вышеупомянутой намотки при одновременном избежании структурного расслоения между усилительным слоем с нулевым углом и первым усилительным слоем (например, первым слоем брекера), когда усилительный конструктивный элемент (например, брекерный конструктивный элемент) снимают с формообразующей опоры.

В частности, за счет соответствующего регулирования силы притяжения, действующей на армированный непрерывный удлиненный элемент из эластомерного материала во время его намотки на формообразующую опору, можно обеспечить заданное прочное удерживание начальной и концевой частей спиральной намотки и заданную регулярность наложения витков вышеупомянутой намотки на формообразующем барабане. Заявитель также осознал, что за счет соответствующего регулирования, по меньшей мере, одной из вышеупомянутых силы притяжения и силы натяжения можно избежать отслаивания усилительного слоя с нулевым углом от первого усилительного слоя (например, от первого слоя брекера), когда усилительный конструктивный элемент (например, брекерный конструктивный элемент) снимают с формообразующей опоры.

В частности, существует возможность надлежащего регулирования вышеупомянутой силы притяжения посредством соответствующего регулирования возможных устройств, предусмотренных надлежащим образом у формообразующей опоры для создания вышеупомянутой силы притяжения (подобных, например, всасывающим устройствам или устройствам для создания вакуума в конкретном случае, в котором армирующие корды армированного непрерывного удлиненного элемента являются текстильными) или, альтернативно, посредством соответствующего выполнения возможных магнитов, соединенных надлежащим образом с формообразующей опорой (в конкретном случае, в котором армирующие корды армированного непрерывного удлиненного элемента являются металлическими).

Считается, что также можно избежать отслаивания усилительного слоя с нулевым углом от первого усилительного слоя (например, от первого слоя брекера), когда усилительный конструктивный элемент (например, брекерный конструктивный элемент) снимают с формообразующей опоры, посредством ограничения в максимально возможной степени величины силы натяжения и/или поддержания вышеупомянутой силы притяжения на уровне минимальной величины, необходимой для обеспечения заданного прочного удерживания начальной и концевой частей спиральной намотки и заданной регулярности наложения витков усилительного слоя с нулевым углом на формообразующем барабане.

В общем, было установлено, что, как только будет определено, какой элемент или какое устройство будет использован(-о) для создания силы притяжения, действующей на армированный непрерывный удлиненный элемент из эластомерного материала, можно будет изготовить на формообразующей опоре усилительный конструктивный элемент (например, брекерный конструктивный элемент), который содержит усилительный слой с нулевым углом, в котором витки будут распределены регулярно, и в котором первый усилительный слой (например, первый слой брекера) будет оставаться прочно прикрепленным к усилительному слою с нулевым углом даже после радиального сужения формообразующей опоры для снятия усилительного конструктивного элемента, который был собран на ней, посредством регулирования, по меньшей мере, одной из силы притяжения и силы натяжения так, чтобы сумма силы притяжения и силы натяжения была меньше силы связи между усилительным слоем с нулевым углом и первым усилительным слоем.

Настоящее изобретение в соответствии с его первым аспектом относится к способу управления сборкой усилительного конструктивного элемента шин для колес транспортных средств.

Способ предпочтительно включает приложение силы притяжения, действующей в направлении формообразующей опоры, к, по меньшей мере, одной начальной части, по меньшей мере, одного армированного непрерывного удлиненного элемента из эластомерного материала.

Способ предпочтительно включает наложение указанного, по меньшей мере, одного армированного непрерывного удлиненного элемента из эластомерного материала на указанную формообразующую опору с заданной силой натяжения для образования спиральной намотки.

Способ предпочтительно включает наложение, по меньшей мере, одного усилительного слоя в радиальном направлении снаружи по отношению к указанной спиральной намотке для образования усилительного конструктивного элемента, содержащего указанную спиральную намотку и указанный, по меньшей мере, один усилительный слой, при этом между указанной спиральной намоткой и указанным, по меньшей мере, одним усилительным слоем действует сила взаимной связи.

Способ предпочтительно включает отделение указанного усилительного конструктивного элемента от указанной формообразующей опоры посредством радиального сужения указанной формообразующей опоры.

В вышеупомянутом способе, по меньшей мере, одну из указанной силы притяжения и указанной силы натяжения предпочтительно регулируют так, чтобы сумма указанной силы притяжения и указанной силы натяжения была меньше указанной силы связи.

Способ по настоящему изобретению обеспечивает возможность изготовления усилительного конструктивного элемента (например, брекерного конструктивного элемента), в котором витки вышеупомянутой спиральной намотки будут распределены регулярно на формообразующей опоре и в котором усилительный слой (например, слой брекера), присоединенный в радиальном направлении снаружи по отношению к вышеупомянутой спиральной намотке, будет прочно прикреплен к спиральной намотке и будет оставаться прочно прикрепленным к ней даже после радиального сужения формообразующей опоры для снятия усилительного конструктивного элемента, который был собран на ней. Действительно, в соответствии с настоящим изобретением силы, действующие на армированный непрерывный удлиненный элемент, с одной стороны, такие, что они обеспечивают во время намотки на формообразующую опору стабильное и регулярное размещение различных витков спиральной намотки в заданном положении на формообразующей опоре, и, с другой стороны, такие, что при снятии усилительного конструктивного элемента (например, брекерного конструктивного элемента) с формообразующей опоры они образуют суммарную радиальную стягивающую/сжимающую силу, величина которой меньше силы связи, действующей между спиральной намоткой и расположенным над ней в радиальном направлении, усилительным слоем (например, слоем брекера).

Настоящее изобретение в соответствии с его вторым аспектом относится к способу изготовления шин для колес транспортных средств, включающему сборку усилительного конструктивного элемента на формообразующей опоре.

Сборка усилительного конструктивного элемента предпочтительно включает подачу, по меньшей мере, одного армированного непрерывного удлиненного элемента из эластомерного материала близко к указанной формообразующей опоре.

Сборка усилительного конструктивного элемента предпочтительно включает приложение силы притяжения, действующей в направлении указанной формообразующей опоры, к начальной части указанного, по меньшей мере, одного армированного непрерывного удлиненного элемента из эластомерного материала.

Сборка усилительного конструктивного элемента предпочтительно включает намотку указанного, по меньшей мере, одного армированного непрерывного удлиненного элемента из эластомерного материала на указанную формообразующую опору с заданной силой натяжения для образования спиральной намотки.

Сборка усилительного конструктивного элемента предпочтительно включает наложение, по меньшей мере, одного усилительного слоя в радиальном направлении снаружи по отношению к указанной спиральной намотке для образования усилительного конструктивного элемента, содержащего указанную спиральную намотку и указанный, по меньшей мере, один усилительный слой, при этом между указанной спиральной намоткой и указанным, по меньшей мере, одним усилительным слоем действует сила взаимной связи.

Сборка усилительного конструктивного элемента предпочтительно включает отделение указанного усилительного конструктивного элемента от указанной формообразующей опоры посредством радиального сужения указанной формообразующей опоры.

В вышеупомянутом способе, по меньшей мере, одну из указанной силы притяжения и указанной силы натяжения предпочтительно регулируют так, чтобы сумма указанной силы притяжения и указанной силы натяжения была меньше указанной силы связи.

Настоящее изобретение в соответствии с его третьим аспектом относится к устройству для изготовления шины для колес транспортных средств, при этом устройство содержит станцию сборки усилительного конструктивного элемента.

Станция сборки предпочтительно содержит выполненную с возможностью расширения/сужения в радиальном направлении, формообразующую опору, содержащую на, по меньшей мере, одной части ее поверхности, наружной в радиальном направлении, по меньшей мере, одну зону прикрепления, в которой действует сила притяжения.

Станция сборки предпочтительно содержит устройство для наложения, по меньшей мере, одного армированного непрерывного удлиненного элемента из эластомерного материала на указанную формообразующую опору с заданной силой натяжения для образования спиральной намотки.

Станция сборки предпочтительно содержит устройство для наложения, по меньшей мере, одного усилительного слоя в радиальном направлении снаружи по отношению к указанной спиральной намотке для образования усилительного конструктивного элемента, содержащего указанную спиральную намотку и указанный, по меньшей мере, один усилительный слой, при этом между указанной спиральной намоткой и указанным, по меньшей мере, одним усилительным слоем действует сила взаимной связи.

Станция сборки предпочтительно содержит регулировочное устройство, воздействующее на, по меньшей мере, один из компонентов, представляющих собой указанную, по меньшей мере, одну зону прикрепления и указанное устройство для наложения указанного, по меньшей мере, одного армированного непрерывного удлиненного элемента из эластомерного материала, так, чтобы сумма указанной силы притяжения и указанной силы натяжения была меньше указанной силы связи.

Подобное устройство предпочтительно обеспечивает возможность реализации способа, описанного выше.

Настоящее изобретение в соответствии с, по меньшей мере, одним из вышеупомянутых аспектов может иметь, по меньшей мере, один из нижеприведенных предпочтительных отличительных признаков.

Указанное регулирование предпочтительно выполняют по отношению к указанной силе натяжения.

Указанное регулирование предпочтительно включает измерение текущей величины натяжения, действующего на указанный, по меньшей мере, один армированный непрерывный удлиненный элемент из эластомерного материала во время его наложения, и регулирование указанной силы натяжения так, чтобы указанная текущая величина натяжения была меньше заданной пороговой величины. Таким образом, выполняют непрерывный мониторинг, или мониторинг с определенной частотой, натяжения, которому подвергается армированный непрерывный удлиненный элемент во время его намотки на формообразующую опору, с целью поддержания такого натяжения на уровне минимальных величин, то есть величин, как можно более близких к нулю, для минимизации суммарной радиальной стягивающей/сжимающей силы, действующей на спиральную намотку, когда формообразующая опора сужается в радиальном направлении для снятия усилительного конструктивного элемента.

В предпочтительных вариантах осуществления настоящего изобретения перед наложением указанного, по меньшей мере, одного усилительного слоя обеспечивают воздействие указанной силы притяжения на, по меньшей мере, одну концевую часть указанного, по меньшей мере, одного армированного непрерывного удлиненного элемента из эластомерного материала. Подобная мера способствует обеспечению стабильного размещения спиральной намотки в заданном положении на формообразующей опоре, что предпочтительно для правильности последующего наложения усилительного слоя в радиальном направлении снаружи по отношению к спиральной намотке.

В особо предпочтительных вариантах осуществления настоящего изобретения указанный, по меньшей мере, один армированный непрерывный удлиненный элемент из эластомерного материала содержит, по меньшей мере, один металлический корд, и указанная сила притяжения представляет собой магнитную силу. Тем не менее, предусмотрены альтернативные варианты осуществления, в которых армированный непрерывный удлиненный элемент из эластомерного материала содержит, по меньшей мере, один текстильный корд, и указанная сила притяжения представляет собой всасывающую силу, создаваемую соответствующим всасывающим устройством или устройством для создания вакуума.

Указанную магнитную силу предпочтительно создают посредством, по меньшей мере, одного первого магнитного листа, соединенного с указанной формообразующей опорой на части ее поверхности, наружной в радиальном направлении.

Термин «магнитный лист» используется в данном документе для обозначения магнитного элемента, имеющего пренебрежимо малую толщину (или высоту) по отношению к размерам его поверхности (длине и ширине). Длина магнитного листа соответствует его размеру в направлении вдоль окружности формообразующей опоры, когда магнитный лист соединен с формообразующей опорой. Ширина магнитного листа соответствует его размеру в аксиальном направлении формообразующей опоры, когда магнитный лист соединен с формообразующей опорой.

Использование магнитного листа чрезвычайно предпочтительно по ряду причин.

Во-первых, благодаря его малой толщине магнитный лист может идеально соответствовать профилю формообразующей опоры как в аксиальном направлении, так и в направлении вдоль окружности, также в случаях, когда формообразующая опора имеет определенную кривизну в аксиальном направлении. Следовательно, гарантируется то, что будет получена однородная опорная поверхность без каких-либо уступов или разрывов непрерывности. В этом случае магнитная сила, создаваемая магнитным листом, будет равномерно распределяться как в аксиальном направлении, так и в направлении вдоль окружности. Это обеспечивает возможность наличия одной и той же магнитной силы в каждой точке магнитного листа. В конечном счете обеспечивают заданную регулярность распределения витков спиральной намотки в аксиальном направлении.

Кроме того, благодаря тому, что магнитная сила, действующая со стороны магнитного листа, распределяется по значительно большей поверхности по сравнению с решениями, в которых используются отдельные магниты, получаются сравнительно малые величины силы притяжения на единицу площади поверхности. Это способствует уменьшению риска возникновения структурного отслаивания спиральной намотки от перекрывающего ее в радиальном направлении, усилительного слоя вследствие радиального сужения формообразующей опоры для снятия усилительного конструктивного элемента, который был собран на ней.

При осуществлении тщательного выбора размеров поверхности магнитного листа можно гарантировать то, что создаваемая магнитная сила будет достаточной для обеспечения притягивания армированного непрерывного удлиненного элемента к формообразующей опоре (и, следовательно, стабильного и регулярного размещения спиральной намотки в заданном положении на формообразующей опоре) при одновременном избежании ситуации, при которой подобная сила притяжения совместно с вышеупомянутой силой натяжения вызывает вышеупомянутое структурное расслоение.

Размеры магнитного листа предпочтительно выбраны такими, чтобы охватить все различные места прикрепления начальной и концевой частей спиральной намотки при изменении размера шины, которая должна быть изготовлена.

В предпочтительных вариантах осуществления настоящего изобретения указанную магнитную силу также создают посредством множества вторых магнитных листов, соединенных с указанной формообразующей опорой. Использование вторых магнитных листов позволяет улучшить притяжение и удерживание армированного непрерывного удлиненного элемента в заданном положении на формообразующей опоре. Они также способствуют сохранению заданной регулярности наложения витков спиральной намотки также в случае манипулирования усилительным слоем, перекрывающим ее в радиальном направлении. Подобное манипулирование может быть, например, необходимым для выполнения вручную соединения в вышеупомянутом усилительном слое.

Каждый из указанных вторых магнитных листов предпочтительно имеет окружную длину, которая меньше окружной длины указанного, по меньшей мере, одного первого магнитного листа. Размер подобных вторых магнитных листов такой, чтобы обеспечить регулируемое увеличение силы притяжения, действующей в направлении формообразующей опоры, для того, чтобы способствовать достижению стабильного и регулярного размещения спиральной намотки в заданном положении на формообразующей опоре, не вызывая, тем не менее, вышеупомянутого структурного расслоения при снятии усилительного конструктивного элемента с формообразующей опоры.

Указанный, по меньшей мере, один усилительный слой предпочтительно прижимают к указанной спиральной намотке, по меньшей мере, у указанного, по меньшей мере, одного первого магнитного листа. Подобная мера обеспечивает возможность прочного соединения спиральной намотки с перекрывающим ее в радиальном направлении, усилительным слоем, что способствует избежанию риска возникновения вышеупомянутого структурного расслоения.

Указанная сила натяжения предпочтительно составляет менее приблизительно 5 Н. Силу натяжения предпочтительно регулируют и сохраняют на уровне минимальных величин, чтобы также избежать вышеупомянутого структурного расслоения.

В предпочтительных вариантах осуществления настоящего изобретения указанный, по меньшей мере, один усилительный слой содержит на своей поверхности, внутренней в радиальном направлении, лист эластомерного материала. Подобный лист эластомерного материала способствует дополнительному усилению связи между спиральной намоткой и перекрывающим ее в радиальном направлении, усилительным слоем.

Указанный лист эластомерного материала может быть соединен с указанной внутренней в радиальном направлении поверхностью указанного, по меньшей мере, одного усилительного слоя.

В другом варианте осуществления указанный лист эластомерного материала может быть заделан в указанный, по меньшей мере, один усилительный слой рядом с указанной поверхностью, внутренней в радиальном направлении. В любом случае он объединен с усилительным слоем при изготовлении усилительного слоя, следовательно, при этом время цикла способа по изобретению никак не изменяется.

В предпочтительных вариантах осуществления настоящего изобретения указанный, по меньшей мере, один усилительный слой образует, по меньшей мере, один слой брекера, и указанный усилительный конструктивный элемент представляет собой брекерный конструктивный элемент. В этом случае формообразующая опора, рассмотренная выше, представляет собой вспомогательную формообразующую опору, используемую для изготовления коронного конструктивного элемента шины, при этом подобный коронный конструктивный элемент содержит брекерный конструктивный элемент и, возможно, протекторный браслет, расположенный в радиальном направлении снаружи по отношению к брекерному конструктивному элементу.

Указанное регулировочное устройство предпочтительно воздействует на устройство для наложения указанного, по меньшей мере, одного армированного непрерывного удлиненного элемента из эластомерного материала для регулирования указанной силы натяжения.

Еще более предпочтительно, если указанное регулировочное устройство содержит блок измерения текущей величины натяжения, действующего на указанный, по меньшей мере, один армированный непрерывный удлиненный элемент из эластомерного материала во время его наложения.

В дополнительном варианте осуществления указанное регулировочное устройство содержит блок регулирования указанной силы натяжения в зависимости от указанной текущей величины натяжения.

По меньшей мере, один первый магнитный лист предпочтительно соединен с указанной, по меньшей мере, одной зоной прикрепления.

Указанный, по меньшей мере, один первый магнитный лист может быть приклеен к указанной, по меньшей мере, одной зоне прикрепления.

В дополнительном варианте осуществления указанный, по меньшей мере, один первый магнитный лист может быть приклеен к вставке, которая может быть установлена в указанной, по меньшей мере, одной зоне прикрепления.

Размеры указанного, по меньшей мере, одного первого магнитного листа предпочтительно заданы в зависимости от расстояния в аксиальном направлении между указанной начальной частью и указанной концевой частью указанного, по меньшей мере, одного армированного непрерывного удлиненного элемента из эластомерного материала, когда указанный, по меньшей мере, один армированный непрерывный удлиненный элемент из эластомерного материала намотан на указанную формообразующую опору.

Более предпочтительно, если указанный, по меньшей мере, один первый магнитный лист имеет длину в аксиальном направлении, по меньшей мере, равную максимальному расстоянию в аксиальном направлении между указанной начальной частью и указанной концевой частью. Таким образом, существует возможность использования одного магнитн