Устройство обнаружения трехмерных объектов
Иллюстрации
Показать всеИзобретение относится к устройству обнаружения трехмерных объектов. Техническим результатом является обеспечение определения расстояния и положения объекта относительно транспортного средства. Устройство содержит: средство захвата изображений; средство преобразования изображений; модуль совмещения; средство обнаружения трехмерных объектов; средство обнаружения источников света; средство управления. 3 н. и 4 з.п. ф-лы, 34 ил.
Реферат
Область техники, к которой относится изобретение
[0001] Настоящее изобретение относится к устройству обнаружения трехмерных объектов.
Данная заявка испрашивает приоритет на основе заявки на патент Японии №2012-045349, поданной 1 марта 2012 года, и в указанных государствах, которые признают включение документа по ссылке, содержимое, описанное в вышеуказанной заявке, содержится в данном документе по ссылке и считается частью описания настоящей заявки.
Уровень техники
[0002] В традиционно известной технологии два захваченных изображения, захваченные в различные моменты времени, преобразуются в изображение вида "с высоты птичьего полета", и помеха обнаруживается на основе разностей в двух изображениях преобразованного вида "с высоты птичьего полета" (см. патентный документ 1).
Документы предшествующего уровня техники
Патентные документы
[0003] Патентный документ 1. Выложенная заявка на патент Японии №2008-227646
Сущность изобретения
Проблемы, разрешаемые изобретением
[0004] Когда другое транспортное средство, движущееся в соседней полосе движения, соседней с полосой движения, в которой движется рассматриваемое транспортное средство, должно быть обнаружено ночью с использованием изображения, в котором захвачена область позади рассматриваемого транспортного средства, и когда свет от передних фар другого транспортного средства, движущегося в полосе движения, соседней с соседней полосой движения (также называется ниже "соседняя для соседней полоса движения"), излучается в области обнаружения, могут быть случаи, в которых изображение света от передних фар ошибочно обнаруживается в качестве соседнего транспортного средства, движущегося в соседней полосе движения. Свет от передних фар является характерным в том, чтобы он является очень ярким, и можно идентифицировать свет передних фар транспортного средства, движущегося в соседней для соседней полосе движения, в соответствии с яркостью, но возникает проблема в том, что когда линза устройства захвата загрязнена, свет от передних фар другого транспортного средства, движущегося в соседней для соседней полосе движения, отражается нерегулярно, яркость вокруг передних фар увеличивается, и соседнее транспортное средство, расположенное около передних фар, не может быть обнаружено надлежащим образом.
[0005] Проблема, которая должна разрешаться посредством настоящего изобретения, состоит в том, чтобы исключать влияние передних фар другого транспортного средства, когда обнаруживается другое транспортное средство, движущееся в соседней полосе движения, соседней с полосой движения, в которой движется рассматриваемое транспортное средство, и точно обнаруживать другое транспортное средство, движущееся в соседней полосе движения.
Средство для разрешения указанных проблем
[0006] Настоящее изобретение разрешает проблему посредством обнаружения источника света, присутствующего позади рассматриваемого транспортного средства, и увеличения уровня обнаружения для обнаружения трехмерного объекта, присутствующего в соседней полосе движения, так что затруднительно обнаруживать трехмерный объект в области впереди относительно линии, соединяющей обнаруженный источник света и устройство захвата.
Преимущество изобретения
[0007] В соответствии с настоящим изобретением, увеличение уровня для обнаружения соседнего транспортного средства в области впереди относительно передних фар (источника света) эффективно не допускает ошибочного обнаружения соседнего транспортного средства около передних фар при предоставлении возможности надлежащего обнаружения шины/колеса соседнего транспортного средства, присутствующего сзади относительно передних фар (источника света), и, следовательно, дает возможность надлежащего обнаружения соседнего транспортного средства, движущегося в соседней полосе движения.
Краткое описание чертежей
[0008] Фиг. 1 является принципиальной структурной схемой транспортного средства, в котором смонтировано устройство обнаружения трехмерных объектов согласно первому варианту осуществления.
Фиг. 2 является видом сверху, иллюстрирующим состояние движения транспортного средства на фиг. 1.
Фиг. 3 является блок-схемой, иллюстрирующей детали компьютера согласно первому варианту осуществления.
Фиг. 4 является видом, описывающим общее представление обработки модуля совмещения согласно первому варианту осуществления; фиг. 4(a) является видом сверху, иллюстрирующим состояние движения транспортного средства, а фиг. 4(b) является изображением, иллюстрирующим общее представление совмещения.
Фиг. 5 является схематичным видом, иллюстрирующим способ, которым форма разностного сигнала формируется посредством модуля обнаружения трехмерных объектов согласно первому варианту осуществления.
Фиг. 6 является видом, описывающим способ для обнаружения соседнего транспортного средства согласно первому варианту осуществления.
Фиг. 7 является графиком, иллюстрирующим пример взаимосвязи между яркостью в положениях обнаружения в областях A1, A2 обнаружения и первым пороговым значением α1.
Фиг. 8 является видом, описывающим взаимосвязь между расстоянием сзади относительно камеры и первым пороговым значением α1.
Фиг. 9A является видом, иллюстрирующим случай, в котором свет от передних фар соседнего для соседнего транспортного средства излучается в область R2 в областях A1, A2 обнаружения.
Фиг. 9B является видом, иллюстрирующим случай, в котором свет от передних фар соседнего для соседнего транспортного средства излучается в область R1 в областях A1, A2 обнаружения.
Фиг. 9C является видом, иллюстрирующим случай, в котором свет от передних фар соседнего для соседнего транспортного средства излучается в область R3 в областях A1, A2 обнаружения.
Фиг. 10 является графиком, иллюстрирующим пример карты первых пороговых значений для иллюстрации взаимосвязи между яркостью в положениях обнаружения в областях A1, A2 обнаружения и пороговым значением α2.
Фиг. 11 является видом, иллюстрирующим пример карты вторых пороговых значений для иллюстрации взаимосвязи между яркостью в положениях обнаружения в областях A1, A2 обнаружения и пороговым значением α2.
Фиг. 12 является видом, иллюстрирующим пример карты управления, в которой указано взвешивание wt порогового значения α2ʺ, полученного из карты вторых пороговых значений.
Фиг. 13 является видом, описывающим способ для регулирования карты управления, проиллюстрированной на фиг. 12.
Фиг. 14 является видом, описывающим небольшие области, разделенные посредством модуля обнаружения трехмерных объектов согласно первому варианту осуществления.
Фиг. 15 является видом, иллюстрирующим пример гистограммы, получаемой посредством модуля обнаружения трехмерных объектов согласно первому варианту осуществления.
Фиг. 16 является видом, иллюстрирующим взвешивание, используемое посредством модуля обнаружения трехмерных объектов согласно первому варианту осуществления.
Фиг. 17 является видом, иллюстрирующим другой пример гистограммы, получаемой посредством модуля обнаружения трехмерных объектов согласно первому варианту осуществления.
Фиг. 18 является блок-схемой последовательности операций, иллюстрирующей способ для обнаружения соседнего транспортного средства согласно первому варианту осуществления.
Фиг. 19 является блок-схемой последовательности операций, иллюстрирующей процесс для задания порогового значения α этапа S105.
Фиг. 20 является блок-схемой, иллюстрирующей детали компьютера согласно второму варианту осуществления.
Фиг. 21 является видом, иллюстрирующим состояние движения транспортного средства; фиг. 21(a) является видом сверху, иллюстрирующим взаимное расположение области обнаружения и т.п., а фиг. 21(b) является видом в перспективе, иллюстрирующим взаимное расположение области обнаружения и т.п. в реальном пространстве.
Фиг. 22 является видом для описания работы модуля вычисления яркостного различия согласно второму варианту осуществления; фиг. 22(a) является видом, иллюстрирующим взаимное расположение линии концентрации внимания, опорной линии, точки концентрации внимания и опорной точки в изображении вида "с высоты птичьего полета", а фиг. 22(b) является видом, иллюстрирующим взаимное расположение линии концентрации внимания, опорной линии, точки концентрации внимания и опорной точки в реальном пространстве.
Фиг. 23 является видом для описания подробной работы модуля вычисления яркостного различия согласно второму варианту осуществления; фиг. 23(a) является видом, иллюстрирующим область обнаружения в изображении вида "с высоты птичьего полета", а фиг. 23(b) является видом, иллюстрирующим взаимное расположение линии концентрации внимания, опорной линии, точки концентрации внимания и опорной точки в изображении вида "с высоты птичьего полета".
Фиг. 24 является видом, иллюстрирующим пример изображения для описания операции обнаружения краев.
Фиг. 25 является графиком, иллюстрирующим пример взаимосвязи между яркостью в положениях обнаружения в областях A1, A2 обнаружения и третьим пороговым значением β1.
Фиг. 26 является видом, описывающим взаимосвязь между расстоянием сзади относительно камеры и третьим пороговым значением β1.
Фиг. 27 является видом, иллюстрирующим пример карты третьих пороговых значений для иллюстрации взаимосвязи между яркостью в областях A1, A2 обнаружения и пороговым значением β2ʹ.
Фиг. 28 является видом, иллюстрирующим пример карты четвертых пороговых значений для иллюстрации взаимосвязи между яркостью в областях A1, A2 обнаружения и пороговым значением β2ʺ.
Фиг. 29 является видом, иллюстрирующим пример карты управления, в которой указано взвешивание wt порогового значения β2ʺ, полученного из карты четвертых пороговых значений.
Фиг. 30 является видом, иллюстрирующим линию края и распределение яркости на линии края; фиг. 30(a) является видом, иллюстрирующим распределение яркости, когда трехмерный объект (соседнее транспортное средство) присутствует в области обнаружения, а фиг. 30(b) является видом, иллюстрирующим распределение яркости, когда трехмерный объект не присутствует в области обнаружения.
Фиг. 31 является блок-схемой последовательности операций, иллюстрирующей способ для обнаружения соседнего транспортного средства согласно второму варианту осуществления.
Фиг. 32 является видом, иллюстрирующим карту управления согласно другому варианту осуществления.
Предпочтительные варианты осуществления изобретения
[0009] Вариант осуществления 1
Фиг. 1 является схематичным видом транспортного средства, в котором смонтировано устройство 1 обнаружения трехмерных объектов согласно первому варианту осуществления. Цель устройства 1 обнаружения трехмерных объектов согласно настоящему варианту осуществления состоит в том, чтобы обнаруживать другое транспортное средство (ниже может называться "соседним транспортным средством"), присутствующее в соседней полосе движения, в которой контакт является возможным, если рассматриваемое транспортное средство V1 собирается сменять полосу движения. Устройство 1 обнаружения трехмерных объектов согласно настоящему варианту осуществления содержит камеру 10, датчик 20 скорости, компьютер 30 и предупреждающее устройство 40, как проиллюстрировано на фиг. 1.
[0010] Камера 10 крепится к рассматриваемому транспортному средству V1 таким образом, что оптическая ось составляет угол θ вниз от горизонтали в местоположении на высоте h в задней части рассматриваемого транспортного средства V1, как проиллюстрировано на фиг. 1. Из этого положения камера 10 захватывает предварительно определенную область окружения рассматриваемого транспортного средства V1. Датчик 20 скорости обнаруживает скорость движения рассматриваемого транспортного средства V1 и вычисляет скорость транспортного средства из скорости вращения колес, обнаруженной, например, посредством датчика скорости вращения колес для обнаружения скорости вращения колеса. Компьютер 30 обнаруживает соседнее транспортное средство, присутствующее в соседней полосе движения позади рассматриваемого транспортного средства.
[0011] Фиг. 2 является видом сверху, иллюстрирующим состояние движения рассматриваемого транспортного средства V1 на фиг. 1. Как проиллюстрировано на чертеже, камера 10 захватывает заднюю сторону относительно транспортного средства под предварительно определенным углом a обзора. В это время угол a обзора камеры 10 задается равным углу обзора, который дает возможность захвата левой и правой полос движения (соседних полос движения) в дополнение к полосе движения, в которой движется рассматриваемое транспортное средство V1.
[0012] Фиг. 3 является блок-схемой, иллюстрирующей детали компьютера 30 по фиг. 1. Камера 10 и датчик 20 скорости также иллюстрируются на фиг. 3, чтобы ясно указывать взаимосвязи соединений.
[0013] Как проиллюстрировано на фиг. 3, компьютер 30 содержит модуль 31 преобразования точки обзора, модуль 32 совмещения, модуль 33 обнаружения трехмерных объектов, модуль 34 оценки степени определенности и модуль 35 задания опорных значений обнаружения. Ниже описывается конфигурация этих модулей.
[0014] Захваченные данные изображений предварительно определенной области, полученные посредством захвата, выполняемого посредством камеры 10, вводятся в модуль 31 преобразования точки обзора, и захваченные данные изображений, введенные таким способом, преобразуются в данные изображений вида "с высоты птичьего полета", которые являются состоянием вида "с высоты птичьего полета". Состояние вида "с высоты птичьего полета" является состоянием просмотра с точки обзора воображаемой камеры, которая смотрит вниз сверху, например, вертикально вниз. Преобразование точки обзора может быть выполнено способом, описанным, например, в выложенной заявке на патент Японии №2008-219063. Причина, по которой захваченные данные изображений преобразуются в данные изображений вида "с высоты птичьего полета", основана на таком принципе, что перпендикулярные края, уникальные для трехмерного объекта, преобразуются в группу прямых линий, которая проходит через конкретную фиксированную точку, посредством преобразования точки обзора в данные изображений вида "с высоты птичьего полета", и использование этого принципа дает возможность различения плоского объекта и трехмерного объекта.
[0015] Данные изображений вида "с высоты птичьего полета", полученные посредством преобразования точки обзора, выполняемого посредством модуля 31 преобразования точки обзора, последовательно вводятся в модуль 32 совмещения, и введенные положения данных изображений вида "с высоты птичьего полета" в различные моменты времени совмещаются. Фиг. 4 является видом для описания общего представления обработки модуля 32 совмещения, фиг. 4(a) является видом сверху, иллюстрирующим состояние движения рассматриваемого транспортного средства V1, а фиг. 4(b) является изображением, иллюстрирующим общее представление совмещения.
[0016] Как проиллюстрировано на фиг. 4(a), рассматриваемое транспортное средство V1 в данный момент времени размещается в P1, и рассматриваемое транспортное средство V1 за один момент времени до этого размещается в P1'. Предполагается, что соседнее транспортное средство V2 размещается в направлении стороны сзади относительно рассматриваемого транспортного средства V1 и движется параллельно рассматриваемому транспортному средству V1, и что соседнее транспортное средство V2 в данный момент времени размещается в P2, и соседнее транспортное средство V2 за один момент времени до этого размещается в P2ʹ. Кроме того, предполагается, что рассматриваемое транспортное средство V1 проезжает расстояние d в течение одного момента времени. Фраза "за один момент времени до этого" может быть моментом времени в прошлом, сдвинутым на время, предварительно заданное (например, один цикл управления) с данного момента времени, либо может быть моментом времени в прошлом, сдвинутым на произвольное время.
[0017] В этом состоянии изображение PBt вида "с высоты птичьего полета" в текущее время является таким, как показано на фиг. 4(b). Белые линии дорожной разметки, нарисованные на поверхности дороги, являются прямоугольными в этом изображении PBt вида "с высоты птичьего полета" и являются относительно точными в виде сверху, но соседнее транспортное средство V2 (положение P2) сжимается. То же применимо к изображению PBt-1 вида "с высоты птичьего полета" за один момент времени до этого; белые линии дорожной разметки, нарисованные на поверхности дороги, являются прямоугольными и являются относительно точными в виде сверху, но соседнее транспортное средство V2 (положение P2ʹ) сжимается. Как описано выше, перпендикулярные края трехмерного объекта (края, которые расположены вертикально в трехмерном пространстве от поверхности дороги, также включаются в строгий смысл перпендикулярного края) появляются в качестве группы прямых линий вдоль направления сжимания вследствие процесса для преобразования точки обзора в данные изображений вида "с высоты птичьего полета", но поскольку плоское изображение на поверхности дороги не включает в себя перпендикулярные края, такое сжимание не возникает, даже когда точка обзора преобразована.
[0018] Модуль 32 совмещения совмещает изображения PBt и PBt-1 вида "с высоты птичьего полета", такие как изображения PBt и PBt-1, описанные выше, с точки зрения данных. Когда это выполняется, модуль 32 совмещения смещает изображение PBt-1 вида "с высоты птичьего полета" за один момент времени до этого и сопоставляет положение с изображением PBt вида "с высоты птичьего полета" в данный момент времени. Левое изображение и центральное изображение на фиг. 4(b) иллюстрируют состояние смещения посредством проезжаемого расстояния dʹ. Величина dʹ смещения является величиной перемещения в данных изображений вида "с высоты птичьего полета", которые соответствуют фактическому проезжаемому расстоянию d рассматриваемого транспортного средства V1, проиллюстрированного на фиг. 4(a), и определяется на основе сигнала из датчика 20 скорости и времени от одного момента времени до данного момента времени.
[0019] После совмещения модуль 32 совмещения получает разность между изображениями PBt и PBt-1 вида "с высоты птичьего полета" и формирует данные разностного изображения PDt. В настоящем варианте осуществления модуль 32 совмещения рассматривает абсолютное значение разности в пиксельных значениях изображений PBt и PBt-1 вида "с высоты птичьего полета" таким образом, что оно соответствует варьированию в среде освещения, и когда абсолютное значение равно или превышает предварительно определенное пороговое значение th, пиксельные значения разностного изображения PDt задаются равными 1, а когда абсолютное значение меньше предварительно определенного порогового значения th, пиксельные значения разностного изображения PDt задаются равными 0, что дает возможность формирования данных разностного изображения PDt, к примеру, данных разностного изображения PDt, проиллюстрированных справа на фиг. 4(b).
[0020] Возвращаясь к фиг. 3, модуль 33 обнаружения трехмерных объектов обнаруживает трехмерный объект на основе данных разностного изображения PDt, показанных на фиг. 4(b). В этом случае модуль 33 обнаружения трехмерных объектов вычисляет проезжаемое расстояние трехмерного объекта в реальном пространстве. Модуль 33 обнаружения трехмерных объектов сначала формирует форму разностного сигнала, когда обнаруживается трехмерный объект, и должно быть вычислено проезжаемое расстояние.
[0021] При формировании формы разностного сигнала модуль 33 обнаружения трехмерных объектов задает область обнаружения в разностном изображении PDt. Цель устройства 1 обнаружения трехмерных объектов настоящего примера состоит в том, чтобы вычислять проезжаемое расстояние для соседнего транспортного средства, с которым имеется вероятность контакта, если рассматриваемое транспортное средство V1 собирается сменять полосу движения. Соответственно, в настоящем примере прямоугольные области A1, A2 обнаружения задаются позади рассматриваемого транспортного средства V1, как проиллюстрировано на фиг. 2. Такие области A1, A2 обнаружения могут задаваться из относительного положения до рассматриваемого транспортного средства V1 или могут задаваться на основе положения белых линий дорожной разметки. Когда задаются на основе положения белых линий дорожной разметки, устройство 1 обнаружения трехмерных объектов может использовать, например, известные технологии распознавания белых линий дорожной разметки.
[0022] Модуль 33 обнаружения трехмерных объектов распознает в качестве линий L1, L2 пересечения с землей границы областей A1, A2 обнаружения, заданных таким способом, на стороне рассматриваемого транспортного средства V1 (стороне вдоль направления движения), как проиллюстрировано на фиг. 2. В общем, линия пересечения с землей означает линию, в которой трехмерный объект контактирует с землей, но в настоящем варианте осуществления линия пересечения с землей не является линией контакта с землей, вместо этого задается способом, описанным выше. Даже в таком случае разность между линией пересечения с землей согласно настоящему варианту осуществления и нормальной линией пересечения с землей, определенной из положения соседнего транспортного средства V2, не является чрезвычайно большой, как определено посредством опыта, и фактически не представляет собой проблемы.
[0023] Фиг. 5 является схематичным видом, иллюстрирующим способ, которым формируется форма разностного сигнала посредством модуля 33 обнаружения трехмерных объектов. Как проиллюстрировано на фиг. 5, модуль 33 обнаружения трехмерных объектов формирует форму DWt разностного сигнала из участка, который соответствует областям A1, A2 обнаружения в разностном изображении PDt (чертеж справа на фиг. 4(b)), вычисленном посредством модуля 32 совмещения. В этом случае модуль 33 обнаружения трехмерных объектов формирует форму DWt разностного сигнала вдоль направления сжимания трехмерного объекта посредством преобразования точки обзора. В примере, проиллюстрированном на фиг. 5, для удобства описана только область A1 обнаружения, но форма DWt разностного сигнала также формируется для области A2 обнаружения с использованием идентичной процедуры.
[0024] Более конкретно сначала модуль 33 обнаружения трехмерных объектов задает линию La в направлении, в котором трехмерный объект сжимается, в данных разностного изображения PDt. Модуль 33 обнаружения трехмерных объектов затем подсчитывает число разностных пикселов DP, указывающих предварительно определенную разность, на линии La. В настоящем варианте осуществления разностные пикселы DP, указывающие предварительно определенную разность, имеют пиксельные значения в разностном изображении PDt, которые представляются посредством 0 и 1, и пикселы, указываемые посредством 1, подсчитываются в качестве разностных пикселов DP.
[0025] Модуль 33 обнаружения трехмерных объектов подсчитывает число разностных пикселов DP и после этого определяет точку CP пересечения линии La и линии L1 пересечения с землей. Модуль 33 обнаружения трехмерных объектов затем коррелирует точку CP пересечения и подсчитанное число, определяет положение на горизонтальной оси, т. е. положение на оси в вертикальном направлении на чертеже справа на фиг. 5, на основе положения точки CP пересечения, определяет положение на вертикальной оси, т. е. положение на оси в поперечном направлении на чертеже справа на фиг. 5, из подсчитанного числа и определяет координаты в качестве подсчитанного числа в точке CP пересечения.
[0026] Аналогично модуль 33 обнаружения трехмерных объектов задает линии Lb, Lc, … в направлении, в котором трехмерный объект сжимается, подсчитывает число разностных пикселов DP, определяет положение на горизонтальной оси на основе положения каждой точки CP пересечения, определяет положение на вертикальной оси из подсчитанного числа (числа разностных пикселов DP) и вычерчивает положения. Модуль 33 обнаружения трехмерных объектов повторяет вышеуказанное в последовательности, чтобы формировать частотное распределение и за счет этого формировать первую форму разностного сигнала DW1t, как проиллюстрировано на чертеже справа на фиг. 5.
[0027] Здесь разностные пикселы PD в данных разностного изображения PDt представляют собой пикселы, которые изменены в изображении в различные моменты времени, другими словами, местоположения, которые могут истолковываться как места, в которых присутствовал трехмерный объект. Соответственно, в местоположениях, в которых присутствовал трехмерный объект, число пикселов подсчитывается вдоль направления, в котором трехмерный объект сжимается, чтобы формировать частотное распределение и за счет этого формировать форму DWt разностного сигнала. В частности, число пикселов подсчитывается вдоль направления, в котором трехмерный объект сжимается, и форма DWt разностного сигнала, следовательно, формируется из информации касательно направления высоты относительно трехмерного объекта.
[0028] Линии La и Lb в направлении, в котором трехмерный объект сжимается, имеют различные расстояния, которые перекрывают область A1 обнаружения, как проиллюстрировано на чертеже слева на фиг. 5. Соответственно, число разностных пикселов DP больше на линии La, чем на линии Lb, когда предполагается, что область A1 обнаружения заполнена разностными пикселами DP. По этой причине модуль 33 обнаружения трехмерных объектов выполняет нормализацию на основе расстояния, на котором линии La, Lb в направлении, в котором трехмерный объект сжимается, и область A1 обнаружения перекрываются, когда положение на вертикальной оси определяется из подсчитанного числа разностных пикселов DP. В конкретном примере существует шесть разностных пикселов DP на линии La, и существует пять разностных пикселов DP на линии Lb на чертеже слева на фиг. 5. Соответственно, когда положение на вертикальной оси определяется из подсчитанного числа на фиг. 5, модуль 33 обнаружения трехмерных объектов делит подсчитанное число на перекрывающееся расстояние или выполняет нормализацию другим способом. Значения формы DWt разностного сигнала, которые соответствуют линиям La, Lb в направлении, в котором трехмерный объект сжимается, в силу этого становятся практически идентичными, как проиллюстрировано в форме DWt разностного сигнала.
[0029] После того как сформирована форма DWt разностного сигнала, модуль 33 обнаружения трехмерных объектов обнаруживает соседнее транспортное средство, присутствующее в соседней полосе движения, на основе сформированной формы DWt разностного сигнала. Здесь фиг. 6 является видом, описывающим способ для обнаружения соседнего транспортного средства, выполняемого посредством модуля 33 обнаружения трехмерных объектов, и иллюстрирует пример формы DWt разностного сигнала и порогового значения α для обнаружения соседнего транспортного средства. Модуль 33 обнаружения трехмерных объектов определяет то, равен или превышает либо нет пик сформированной формы DWt разностного сигнала пороговое значение α, соответствующее положению пика формы DWt разностного сигнала, как проиллюстрировано на фиг. 6. Модуль 33 обнаружения трехмерных объектов затем определяет то, что соседнее транспортное средство не присутствует в областях A1, A2 обнаружения, когда пик формы DWt разностного сигнала меньше предварительно определенного порогового значения α, и наоборот, определяет то, что соседнее транспортное средство присутствует в областях A1, A2 обнаружения, когда пик формы DWt разностного сигнала имеет предварительно определенное пороговое значение α или больше, чтобы за счет этого обнаруживать соседнее транспортное средство, присутствующее в соседней полосе движения.
[0030] Таким образом, форма DWt разностного сигнала является режимом распределенной информации пикселов, которые указывают предварительно определенную разность яркости, и "распределенная информация пикселов" в настоящем варианте осуществления может размещаться с информацией, указывающей состояние распределения "пикселов, имеющих разность яркости, которая равна или превышает предварительно определенное пороговое значение", обнаруженное вдоль направления, в котором трехмерный объект сжимается, когда захваченное изображение преобразуется в точке обзора, чтобы создавать изображение вида "с высоты птичьего полета". Другими словами, модуль 33 обнаружения трехмерных объектов обнаруживает, на изображении вида "с высоты птичьего полета", полученном посредством модуля 31 преобразования точки обзора, распределенную информацию пикселов, в которых яркостное различие равно предварительно определенному пороговому значению th или больше, в качестве формы DWt разностного сигнала в направлении, в котором трехмерный объект сжимается, когда захваченное изображение преобразуется в точке обзора, чтобы создавать изображение вида "с высоты птичьего полета", и помимо этого обнаруживает трехмерный объект на основе формы DWt разностного сигнала, когда степень распределения пикселов (подсчитанное число разностных пикселов DP в форме DWt разностного сигнала) в направлении, в котором трехмерный объект сжимается, имеет пороговое значение α или больше.
[0031] Далее описывается способ для задания порогового значения α для обнаружения соседнего транспортного средства.
[0032] Пороговое значение α задается посредством модуля 35 задания опорных значений обнаружения, проиллюстрированного на фиг. 3. Как описано ниже, в настоящем варианте осуществления модуль 35 задания опорных значений обнаружения задает, на основе степени определенности, обнаруженной посредством модуля 34 оценки степени определенности, пороговое значение α1, заданное в соответствии с расстоянием сзади относительно камеры 10, или пороговое значение α2, заданное в соответствии с взаимным расположением камеры 10 и источника света, в качестве порогового значения α для обнаружения соседнего транспортного средства на основе формы DWt разностного сигнала, проиллюстрированной на фиг. 3.
[0033] Когда источник света обнаруживается в направлении сзади относительно рассматриваемого транспортного средства, модуль 34 оценки степени определенности выполняет оценку с использованием в качестве степени определенности вероятности того, что обнаруженный источник света представляет собой передние фары другого транспортного средства (ниже называемого "соседнее для соседнего транспортное средство), движущегося в соседней для соседней полосе движения (в полосе движения, соседней через одну полосу движения с полосой движения рассматриваемого транспортного средства) в направлении сзади относительно рассматриваемого транспортного средства. Ниже описан способ для оценки степени определенности, выполняемой посредством модуля 34 оценки степени определенности. В настоящем варианте осуществления обнаружение источника света выполняется посредством модуля 35 задания опорных значений обнаружения, как описано ниже.
[0034] В настоящем варианте осуществления модуль 34 оценки степени определенности оценивает степень определенности того, что обнаруженный источник света представляет собой передние фары соседнего для соседнего транспортного средства, на основе числа обнаруженных источников света, положения источника света и изменения во времени состояния источника света.
[0035] Например, модуль 34 оценки степени определенности определяет то, что обнаруженный источник света представляет собой, например уличное освещение, освещенный знак и т.п., и что вероятность того, что обнаруженный источник света представляет собой передние фары соседнего для соседнего транспортного средства, является низкой, когда число источников света, обнаруженных в областях A1, A2 обнаружения, является высоким, и оценивает степень определенности того, что обнаруженный источник света представляет собой передние фары соседнего для соседнего транспортного средства, как низкую.
[0036] Модуль 34 оценки степени определенности оценивает степень определенности того, что обнаруженный источник света представляет собой передние фары соседнего для соседнего транспортного средства на основе положения источника света, т. е. высоту источника света (положение источника света в перпендикулярном направлении), положение и ширину транспортного средства источника света и положение источника света в направлении продвижения рассматриваемого транспортного средства. Например, когда местоположение источника света является высоким, модуль 34 оценки степени определенности определяет то, что имеется высокая вероятность того, что обнаруженный источник света исходит из уличного освещения, и оценивает степень определенности того, что обнаруженный источник света представляет собой передние фары соседнего для соседнего транспортного средства, как низкую. Кроме того, модуль 34 оценки степени определенности определяет то, что чем дальше положение источника света находится в направлении ширины транспортного средства от рассматриваемого транспортного средства, тем больше вероятность того, что обнаруженный источник света представляет собой передние фары соседнего для соседнего транспортного средства, присутствующего в соседней для соседней полосе движения, которая дальше от рассматриваемого транспортного средства, чем соседняя полоса движения, и оценивает степень определенности того, что обнаруженный источник света представляет собой передние фары соседнего для соседнего транспортного средства, как высокую. Кроме того, модуль 34 оценки степени определенности определяет то, что чем дальше положение источника света в направлении продвижения рассматриваемого транспортного средства, тем меньше вероятность того, что обнаруженный источник света представляет собой передние фары соседнего для соседнего транспортного средства, и оценивает степень определенности того, что обнаруженный источник света представляет собой передние фары соседнего для соседнего транспортного средства, как низкую.
[0037] Кроме того, модуль 34 оценки степени определенности оценивает степень определенности того, что обнаруженный источник света представляет собой передние фары соседнего для соседнего транспортного средства, на основе изменения во времени состояния источника света. Например, когда изменение во времени размера обнаруженного источника света является небольшим, модуль 34 оценки степени определенности определяет то, что имеется высокая вероятность того, что обнаруженный источник света представляет собой передние фары соседнего для соседнего транспортного средства, движущегося в соседней для соседней полосе движения дальше от рассматриваемого транспортного средства, чем соседняя полоса движения, и оценивает степень определенности того, что обнаруженный источник света представляет собой передние фары соседнего для соседнего транспортного средства, как высокую. В другом примере, когда изменение во времени положения обнаруженного источника света является небольшим, или когда изменение во времени яркости обнаруженного источника света является небольшим, модуль 34 оценки степени определенности определяет то, что имеется высокая вероятность того, что обнаруженный источник света представляет собой передние фары соседнего для соседнего транспортного средства, движущегося в соседней для соседней полосе движения дальше от рассматриваемого транспортного средства, чем соседняя полоса движения, и оценивает степень определенности того, что обнаруженный источник света представляет собой передние фары соседнего для соседнего транспортного средства, как высокую.
[0038] Модуль 34 оценки степени определенности затем всесторонне оценивает степень определенности того, что обнаруженный источник света представляет собой передние фары соседнего для соседнего транспортного средства, на основе числа источников света, положения источника света и изменения во времени состояния источника света. Всестороннее определение числа ист