Стабилизированная трёхвходовая аксиальная генераторная установка

Иллюстрации

Показать все

Изобретение относится к электротехнике и предназначено для суммирования механической энергии, световой энергии, с предварительным преобразованием ее в электрическую энергию и тепловой энергии с предварительным преобразованием ее в электрическую энергию. С одновременным преобразованием полученной суммарной энергии в электрическую энергию постоянного тока высокого качества. Стабилизированная трехвходовая аксиальная генераторная установка содержит корпус, в котором установлены блок управления, датчики положения ротора, в корпусе каждого из которых размещена сигнальная обмотка и обмотка возбуждения, боковой аксиальный магнитопровод с многофазной обмоткой якоря основного генератора, боковой аксиальный магнитопровод с дополнительной многофазной обмоткой, внутренний аксиальный магнитопровод с многофазной обмоткой якоря подвозбудителя, основной и дополнительной однофазными обмотками возбуждения возбудителя, и ротор, на валу которого посредством дисков жестко закреплены постоянный аксиальный многополюсный магнит индуктора подвозбудителя и аксиальный вращающийся магнитопровод с многофазной обмоткой якоря возбудителя и однофазной обмоткой возбуждения основного генератора. Однофазная обмотка возбуждения основного генератора подключена к многофазной обмотке якоря возбудителя через многофазный двухполупериодный выпрямитель, основная однофазная обмотка возбуждения возбудителя подключена к многофазной обмотке якоря подвозбудителя через многофазный двухполупериодный выпрямитель, а многофазная обмотка якоря основного генератора подключена к выходному многофазному двухполупериодному выпрямителю. В верхней части корпуса установлен фотоэлектрический преобразователь, подключенный к дополнительной однофазной обмотке возбуждения возбудителя. В нижней части корпуса установлен тепловой преобразователь, выполненный с возможностью подключения к дополнительной многофазной обмотке через блок управления. Выходной многофазный двухполупериодный выпрямитель выполнен с возможностью подключения к внешнему резервному источнику энергии аккумуляторной батарее, при этом дополнительная многофазная обмотка выполнена с возможностью подключения через блок управления к внешнему тепловому преобразователю. 3 з.п. ф-лы, 7 ил.

Реферат

Изобретение относится к электротехнике, в частности к электрическим машинам, и предназначено для суммирования механической энергии (например, энергии ветра), световой энергии (например, световой энергии Солнца, с предварительным преобразованием ее фотоэлектрическими преобразователями в электрическую энергию постоянного тока) и тепловой энергии (например, тепловой энергии Земли или Солнца, с предварительным преобразованием ее тепловым преобразователем в электрическую энергию постоянного тока) с одновременным преобразованием полученной суммарной энергии в электрическую энергию постоянного тока высокого качества и может быть использовано для генерирования электрической энергии постоянного тока для нужд локальных объектов, например, фермерских хозяйств и др.

Известна аксиальная двухвходовая бесконтактная электрическая машина-генератор (пат. РФ №2450411, авторы Гайтов Б.Х., Кашин Я.М. и др.), содержащая корпус, подвозбудитель, возбудитель и основной генератор, установленные на одном валу, при этом подвозбудитель состоит из постоянного многополюсного магнита индуктора подвозбудителя и магнитопровода с обмоткой якоря подвозбудителя, возбудитель состоит из магнитопровода с обмоткой возбуждения возбудителя и магнитопровода с обмоткой якоря возбудителя, основной генератор состоит из магнитопровода с обмоткой возбуждения основного генератора и магнитопровода с обмоткой якоря основного генератора, при этом постоянный многополюсный магнит индуктора подвозбудителя и магнитопроводы, в пазы которых уложены обмотки подвозбудителя, возбудителя и основного генератора, выполнены аксиальными, при этом боковые аксиальные магнитопроводы жестко установлены в корпусе, а постоянный многополюсный магнит индуктора подвозбудителя и внутренний аксиальный магнитопровод жестко установлены на валу с возможностью вращения относительно боковых аксиальных магнитопроводов, при этом постоянный многополюсный магнит индуктора подвозбудителя установлен с торца одного бокового аксиального магнитопровода, а внутренний аксиальный магнитопровод установлен между боковыми аксиальными магнитопроводами, внутренний аксиальный магнитопровод и боковой аксиальный магнитопровод, с торца которого установлен постоянный многополюсный магнит индуктора подвозбудителя, выполнены с двумя активными торцовыми поверхностями с пазами, а другой боковой аксиальный магнитопровод выполнен с одной активной торцовой поверхностью с пазами, при этом в пазы бокового аксиального магнитопровода с двумя активными торцовыми поверхностями со стороны постоянного многополюсного магнита подвозбудителя уложена многофазная обмотка якоря подвозбудителя, а с противоположной стороны уложена однофазная обмотка возбуждения возбудителя, которая подключена к обмотке якоря подвозбудителя через многофазный двухполупериодный выпрямитель, и дополнительная обмотка возбуждения возбудителя, подключенная к источнику постоянного тока, в пазы внутреннего аксиального магнитопровода со стороны обмотки возбуждения возбудителя и дополнительной обмотки возбуждения возбудителя уложена многофазная обмотка якоря возбудителя, а с противоположной стороны уложена однофазная обмотка возбуждения основного генератора, которая подключена к обмотке якоря возбудителя через многофазный двухполупериодный выпрямитель, при этом в пазы бокового аксиального магнитопровода с одной активной торцовой поверхностью уложена многофазная обмотка якоря основного генератора.

Однако известная из пат. РФ №2450411 электрическая машина не может суммировать энергию разного вида (механическую, световую и тепловую), поступающую от трех различных источников с одновременным преобразованием полученной суммарной энергии в электрическую энергию, так как имеет только два входа: один механический вход - вал ротора, один электрический - контакты для подключения дополнительной обмотки возбуждения возбудителя.

Из известных технических решений наиболее близким к заявляемому изобретению по технической сущности и достигаемому техническому результату является трехвходовая аксиальная генераторная установка (ТАГУ) (пат. РФ №2589730, авторы Кашин Я.М., Кашин А.Я., Князев А.С.), содержащая корпус, в котором установлены блок управления, датчики положения ротора, в корпусе каждого из которых размещена сигнальная обмотка и обмотка возбуждения, боковой аксиальный магнитопровод с многофазной обмоткой якоря основного генератора, боковой аксиальный магнитопровод с дополнительной многофазной обмоткой, внутренний аксиальный магнитопровод с многофазной обмоткой якоря подвозбудителя, основной и дополнительной однофазными обмотками возбуждения возбудителя, и ротор, на валу которого посредством дисков жестко закреплены постоянный аксиальный многополюсный магнит индуктора подвозбудителяи аксиальный вращающийся магнитопровод с многофазной обмоткой якоря возбудителя и однофазной обмоткой возбуждения основного генератора, при этом постоянный аксиальный многополюсный магнит индуктора подвозбудителя выполнен с постоянными магнитами положения ротора, закрепленными на нем по внешнему радиусу, а корпус датчика положения ротора с сигнальной обмоткой и обмоткой возбуждения установлен на линии пересечения плоскости, проходящей через оси симметрии постоянных магнитов положения ротора и перпендикулярной оси вращения ротора, при этом каждый датчик положения ротора закреплен на внутренней поверхности корпуса посредством штанги и равноудален от соседних датчиков положения ротора, а вал ротора закреплен в подшипниковых узлах, закрыт крышкой с одной стороны и выходит за пределы корпуса с другой стороны, при этом однофазная обмотка возбуждения основного генератора подключена к многофазной обмотке якоря возбудителя через многофазный двухполупериодный выпрямитель, основная однофазная обмотка возбуждения возбудителя подключена к многофазной обмотке якоря подвозбудителя через многофазный двухполупериодный выпрямитель, а многофазная обмотка якоря основного генератора подключена к выходному многофазному двухполупериодному выпрямителю. В верхней части корпуса установлен фотоэлектрический преобразователь, подключенный к дополнительной однофазной обмотке возбуждения возбудителя, которая выполнена с возможностью подключения к внешнему фотоэлектрическому преобразователю, в нижней части корпуса установлен тепловой преобразователь, выполненный с возможностью подключения к дополнительной многофазной обмотке через блок управления, а на конце вала ротора, выходящем за пределы корпуса, установлен магнитный редуктор, состоящий из вала магнитного редуктора, ведущего и ведомого дисков, выполненных из немагнитного материала, и постоянных магнитов, размещенных на ведущем и ведомом дисках разноименными полюсами навстречу друг к другу, при этом ведущий диск жестко закреплен на валу магнитного редуктора, ведомый диск жестко закреплен на валу ротора трехвходовой аксиальной генераторной установки, а выходной многофазный двухполупериодный выпрямитель выполнен с возможностью подключения к внешнему резервному источнику энергии аккумуляторной батарее, при этом дополнительная многофазная обмотка выполнена с возможностью подключения через блок управления к внешнему тепловому преобразователю.

Блок управления ТАГУ содержит дифференциально-минимальное реле, блок питания, выполненный с возможностью подключения посредством дифференциально-минимального реле к тепловому преобразователю, к внешнему тепловому преобразователю или к внешнему резервному источнику энергии аккумуляторной батарее и имеющий выходы высокого уровня и низкого уровня напряжения, и блоки формирования импульсов по одному для каждой фазы дополнительной многофазной обмотки.

Каждый из блоков формирования импульсов ТАГУ содержит первый, второй, третий, четвертый и пятый ограничительные резисторы, первый и второй управляющие транзисторы, первую и вторую пары переключающих транзисторов и два транзистора, образующих логический элемент «НЕ».

Логический элемент «НЕ» каждого блока формирования импульсов ТАГУ через пятый ограничительный резистор подключен к низкоуровневому выходу блока питания, а его вход и база первого управляющего транзистора подключены к сигнальной обмотке датчика положения ротора, при этом база второго управляющего транзистора подключена к выходу логического элемента «НЕ», а коллекторы первого и второго управляющих транзисторов через первый и третий ограничительные резисторы подключены к низкоуровневому выходу блока питания, при этом эмиттеры первого и второго управляющих транзисторов заземлены, а базы каждой пары переключающих транзисторов соединены между собой, при этом базы первой пары переключающих транзисторов подключены к коллектору первого управляющего транзистора, а базы второй пары переключающих транзисторов подключены к коллектору второго управляющего транзистора, при этом коллекторы переключающих транзисторов по одному из каждой пары подключены к высокоуровневому выходу блока питания, а их эмиттеры через второй и четвертый ограничительные резисторы подключены к соответствующим выводам соответствующей фазы дополнительной многофазной обмотки и к коллекторам переключающих транзисторов другой пары.

Однако, выходное напряжение известной из пат. РФ №2589730 генераторной установки зависит от скорости вращения ротора, на валу которого посредством дисков жестко закреплены постоянный аксиальный многополюсный магнит индуктора подвозбудителя и аксиальный вращающийся магнитопровод с многофазной обмоткой якоря возбудителя и однофазной обмоткой возбуждения основного генератора:

где С - конструктивный коэффициент, w - скорость вращения ротора, Φ - магнитный поток возбуждения.

В связи с тем, что интенсивность поступления механической, световой и тепловой энергии может быть неравномерной, величина выпрямленного (выходного) напряжения ТАГУ является нестабильной. Это ограничивает область применения принятой за прототип известной ТАГУ, которая может быть использована только для питания потребителей, некритичных к качеству выпрямленного напряжения.

Задачей предполагаемого изобретения является расширение области применения трехвходовой аксиальной генераторной установки.

Техническим результатом заявленного изобретения является стабилизация выпрямленного напряжения.

Технический результат достигается тем, что в блоке управления предлагаемой стабилизированной трехвходовой аксиальной генераторной установки, содержащей корпус, в котором установлены блок управления, датчики положения ротора, в корпусе каждого из которых размещена сигнальная обмотка и обмотка возбуждения, боковой аксиальный магнитопровод с многофазной обмоткой якоря основного генератора, боковой аксиальный магнитопровод с дополнительной многофазной обмоткой, внутренний аксиальный магнитопровод с многофазной обмоткой якоря подвозбудителя, основной и дополнительной однофазными обмотками возбуждения возбудителя, и ротор, на валу которого посредством дисков жестко закреплены постоянный аксиальный многополюсный магнит индуктора подвозбудителя и аксиальный вращающийся магнитопровод с многофазной обмоткой якоря возбудителя и однофазной обмоткой возбуждения основного генератора, при этом постоянный аксиальный многополюсный магнит индуктора подвозбудителя выполнен с постоянными магнитами положения ротора, закрепленными на нем по внешнему радиусу, а корпус датчика положения ротора с сигнальной обмоткой и обмоткой возбуждения установлен на линии пересечения плоскости, проходящей через оси симметрии постоянных магнитов положения ротора и перпендикулярной оси вращения ротора, при этом каждый датчик положения ротора закреплен на внутренней поверхности корпуса посредством штанги и равноудален от соседних датчиков положения ротора, а вал ротора закреплен в подшипниковых узлах, закрыт крышкой с одной стороны и выходит за пределы корпуса с другой стороны, при этом однофазная обмотка возбуждения основного генератора подключена к многофазной обмотке якоря возбудителя через многофазный двухполупериодный выпрямитель, основная однофазная обмотка возбуждения возбудителя подключена к многофазной обмотке якоря подвозбудителя через многофазный двухполупериодный выпрямитель, а многофазная обмотка якоря основного генератора подключена к выходному многофазному двухполупериодному выпрямителю. В верхней части корпуса установлен фотоэлектрический преобразователь, подключенный к дополнительной однофазной обмотке возбуждения возбудителя, которая выполнена с возможностью подключения к внешнему фотоэлектрическому преобразователю, в нижней части корпуса установлен тепловой преобразователь, выполненный с возможностью подключения к дополнительной многофазной обмотке через блок управления, а на конце вала ротора, выходящем за пределы корпуса, установлен магнитный редуктор, состоящий из вала магнитного редуктора, ведущего и ведомого дисков, выполненных из немагнитного материала, и постоянных магнитов, размещенных на ведущем и ведомом дисках разноименными полюсами навстречу друг к другу, при этом ведущий диск жестко закреплен на валу магнитного редуктора, ведомый диск жестко закреплен на валу ротора стабилизированной трехвходовой аксиальной генераторной установки, а выходной многофазный двухполупериодный выпрямитель выполнен с возможностью подключения к внешнему резервному источнику энергии аккумуляторной батарее, при этом дополнительная многофазная обмотка выполнена с возможностью подключения через блок управления к внешнему тепловому преобразователю, при этом блок управления содержит дифференциально-минимальное реле, блок питания, выполненный с возможностью подключения посредством дифференциально-минимального реле к тепловому преобразователю, к внешнему тепловому преобразователю или к внешнему резервному источнику энергии аккумуляторной батарее и имеющий выходы высокого уровня и низкого уровня напряжения, и блоки формирования импульсов по одному для каждой фазы дополнительной многофазной обмотки, а каждый из блоков формирования импульсов содержит первый, второй, третий, четвертый и пятый ограничительные резисторы, первый и второй управляющие транзисторы, первую и вторую пары переключающих транзисторов и два транзистора, образующих логический элемент «НЕ», вход которого и база первого управляющего транзистора подключены к сигнальной обмотке датчика положения ротора, при этом база второго управляющего транзистора подключена к выходу логического элемента «НЕ», а эмиттеры первого и второго управляющих транзисторов заземлены, при этом базы каждой пары переключающих транзисторов соединены между собой, базы первой пары переключающих транзисторов подключены к коллектору первого управляющего транзистора, а базы второй пары переключающих транзисторов подключены к коллектору второго управляющего транзистора, при этом коллекторы переключающих транзисторов по одному из каждой пары подключены к высокоуровневому выходу блока питания, а их эмиттеры через второй и четвертый ограничительные резисторы подключены к соответствующим выводам соответствующей фазы дополнительной многофазной обмотки и к коллекторам переключающих транзисторов другой пары, дополнительно устанавливается стабилизатор напряжения, содержащий блок сравнения, блок формирования пилообразного сигнала, выход которого подключается к инвертирующему входу блока сравнения, блок формирования управляющего сигнала, выход которого подключается к неинвертирующему входу блока сравнения, к выходу которого через пятый ограничительный резистор подключается логический элемент «НЕ», через первый ограничительный резистор подключается коллектор первого управляющего транзистора, а через третий ограничительный резистор подключается коллектор второго управляющего транзистора каждого блока формирования импульсов.

Блок сравнения (БСР) предлагаемой СТАГУ выполняется на первом операционном усилителе, а блок формирования пилообразного сигнала (БФПС) содержит:

- генератор прямоугольных импульсов, состоящий из второго операционного усилителя генератора прямоугольных импульсов, первого резистора положительной обратной связи, подключенного к выходу и неинвертирующему входу второго операционного усилителя генератора прямоугольных импульсов;

- генератор пилообразного сигнала, состоящий из третьего операционного усилителя генератора пилообразного сигнала, второго резистора положительной обратной связи, подключенного к выходу третьего операционного усилителя генератора пилообразного сигнала и неинвертирующему входу второго операционного усилителя генератора прямоугольных импульсов, интегрирующего конденсатора отрицательной обратной связи, подключенного к выходу и инвертирующему входу третьего операционного усилителя генератора пилообразного сигнала;

- подключенный к низкоуровневому выходу блока питания делитель напряжения, состоящий из первого и второго резисторов делителя напряжения, выход которого подключен к инвертирующему входу второго операционного усилителя генератора прямоугольных импульсов и к неинвертирующему входу третьего операционного усилителя генератора пилообразного сигнала;

- резистор, подключенный к выходу второго операционного усилителя генератора прямоугольных импульсов и инвертирующему входу третьего операционного усилителя генератора пилообразного сигнала.

Блок формирования управляющего сигнала (БФУС) содержит

- четвертый операционный усилитель формирования управляющего сигнала;

- регулировочный резистор, подключенный к низкоуровневому выходу блока питания;

- первый понижающий резистор, подключенный к положительному выходу многофазного двухполупериодного выпрямителя и инвертирующему входу четвертого операционного усилителя формирования управляющего сигнала;

- второй понижающий резистор, подключенный к регулировочному резистору и неинвертирующему входу четвертого операционного усилителя формирования управляющего сигнала;

- резистор отрицательной обратной связи, подключенный к выходу и инвертирующему входу четвертого операционного усилителя формирования управляющего сигнала;

- резистор смещения, подключенный к неинвертирующему входу четвертого операционного усилителя формирования управляющего сигнала, определяющий величину смещения напряжения на неинвертирующем входе четвертого операционного усилителя формирования управляющего сигнала.

Блоки формирования импульсов предлагаемой СТАГУ выполняются двухвходовыми, при этом первый вход каждого блока формирования импульсов сформирован соединением базы его первого управляющего транзистора с входом его логического элемента «НЕ», а второй вход каждого блока формирования импульсов сформирован соединением первого, третьего и пятого ограничительных резисторов, при этом со вторым входом через пятый ограничительный резистор каждого блока формирования импульсов соединяется его логический элемент «НЕ», через его первый ограничительный резистор соединяется коллектор его первого управляющего транзистора, а через его третий ограничительный резистор соединяется коллектор его второго управляющего транзистора, при этом первый вход каждого блока формирования импульсов подключается к сигнальной обмотке соответствующего ДПР, а второй вход каждого блока формирования импульсов подключается к выходу блока сравнения.

Предлагаемое изобретение, в отличие от прототипа, позволяет расширить область применения трехвходовой аксиальной генераторной установки за счет стабилизации выпрямленного (выходного) напряжения.

Возможность стабилизации выпрямленного (выходного) напряжения обеспечивается за счет регулирования скорости вращения ротора путем изменения скважности импульсов, подаваемых на фазы дополнительной многофазной обмотки. Для этого в блоке управления предлагаемой СТАГУ дополнительно устанавливается стабилизатор напряжения, в блоке сравнения которого осуществляется сравнение пилообразного сигнала, формируемого блоком формирования пилообразного сигнала, выход которого подключается к инвертирующему входу БСР, с управляющим сигналом постоянного напряжения, формируемым блоком формирования управляющего сигнала в зависимости от величины отклонения фактического значения выпрямленного напряжения от заданного регулировочным резистором. Для этого выход БФУС подключается к неинвертирующему входу БСР, к выходу которого через пятый ограничительный резистор подключаются логические элементы «НЕ», через первые ограничительные резисторы подключаются коллекторы первых управляющих транзисторов, а через третьи ограничительные резисторы подключаются коллекторы вторых управляющих транзисторов каждого блока формирования импульсов.

ШИМ-сигнал с выхода БСР через пятый ограничительный резистор поступает на логические элементы «НЕ», через первые ограничительные резисторы поступает на коллекторы первых управляющих транзисторов, а через третьи ограничительные резисторы поступает на коллекторы вторых управляющих транзисторов каждого блока формирования импульсов, которые формируют импульсы требуемой скважности, подаваемые на фазы дополнительной многофазной обмотки.

В зависимости от скважности импульсов за период импульса меняется время протекания тока в дополнительной многофазной обмотке, что приводит к изменению величины среднего крутящего момента, приводящего во вращение ротор предлагаемой СТАГУ. При этом меняется частота вращения ротора, что, в свою очередь, вызывает изменение значения напряжения на выходе предлагаемой СТАГУ.

На фиг. 1 представлен общий вид предлагаемой стабилизированной трехвходовой аксиальной генераторной установки, на фиг. 2 - структурная схема предлагаемой стабилизированной трехвходовой аксиальной генераторной установки, на фиг. 3 - принципиальная электрическая схема блока управления, на фиг. 4 - принципиальная электрическая схема предлагаемой стабилизированной трехвходовой аксиальной генераторной установки с блоком управления, на фиг. 5 - график напряжений на выходе блоков формирования импульсов, на фиг. 6 - формирование ШИМ-сигнала в блоке сравнения, на фиг. 7 - ШИМ-регулирование при уменьшении (а) и увеличении (б) напряжения на выходе стабилизированной трехвходовой аксиальной генераторной установки.

Стабилизированная трехвходовая аксиальная генераторная установка (СТАГУ) содержит: корпус 1, в котором установлены блок управления 20, датчики положения ротора 24 (ДПР), в корпусе каждого из которых размещена сигнальная обмотка 25 и обмотка возбуждения (на фиг. 1-7 не показана), боковой аксиальный магнитопровод 10 с многофазной обмоткой 11 якоря основного генератора, боковой аксиальный магнитопровод 21 с дополнительной многофазной обмоткой 22, внутренний аксиальный магнитопровод 3 с многофазной обмоткой 4 якоря подвозбудителя, основной 5 и дополнительной 6 однофазными обмотками возбуждения возбудителя, и ротор, на валу 12 которого посредством дисков 15 и 16 жестко закреплены постоянный аксиальный многополюсный магнит 2 индуктора подвозбудителя и аксиальный вращающийся магнитопровод 7 с многофазной обмоткой 8 якоря возбудителя и однофазной обмоткой 9 возбуждения основного генератора, при этом постоянный аксиальный многополюсный магнит 2 индуктора подвозбудителя выполнен с постоянными магнитами 23 положения ротора, закрепленными на нем по внешнему радиусу, а корпус ДПР 24 с сигнальной обмоткой 25 и обмоткой возбуждения (на фиг. 1-7 не показана) установлен на линии пересечения плоскости, проходящей через оси симметрии постоянных магнитов 23 положения ротора и перпендикулярной оси вращения ротора, при этом каждый ДПР 24 закреплен на внутренней поверхности корпуса 1 посредством штанги 26 и равноудален от соседних ДПР 24, а вал 12 ротора закреплен в подшипниковых узлах 13 и 14, закрыт крышкой 55 с одной стороны и выходит за пределы корпуса 1 с другой стороны, при этом однофазная обмотка 9 возбуждения основного генератора подключена к многофазной обмотке 8 якоря возбудителя через многофазный двухполупериодный выпрямитель 18, основная однофазная обмотка 5 возбуждения возбудителя подключена к многофазной обмотке 4 якоря подвозбудителя через многофазный двухполупериодный выпрямитель 17, а многофазная обмотка 11 якоря основного генератора подключена к выходному многофазному двухполупериодному выпрямителю 19, который выполнен с возможностью подключения к внешнему резервному источнику энергии аккумуляторной батарее (АБ) 40. В верхней части корпуса 1 установлен фотоэлектрический преобразователь (ФЭП) 32, подключенный к дополнительной однофазной обмотке 6 возбуждения возбудителя, которая выполнена с возможностью подключения к внешнему фотоэлектрическому преобразователю (на фиг. 1-7 не показан), через контакты 56 (фиг. 2). В нижней части корпуса 1 установлен тепловой преобразователь (ТП) 33, выполненный с возможностью подключения к дополнительной многофазной (на фиг. 2 - трехфазной) обмотке 22 через блок управления (БУ) 20, а на конце вала 12 ротора, выходящем за пределы корпуса 1 установлен магнитный редуктор 27, состоящий из вала 34 магнитного редуктора, ведущего 28 и ведомого 29 дисков, выполненных из немагнитного материала, и постоянных магнитов 30 и 31, размещенных на ведущем 28 и ведомом 29 дисках разноименными полюсами навстречу друг к другу, при этом ведущий диск 28 жестко закреплен на валу 34 магнитного редуктора 27, ведомый диск 29 жестко закреплен на валу 12 ротора СТАГУ. Дополнительная многофазная обмотка 22 выполнена с возможностью подключения через БУ 20 к внешнему тепловому преобразователю (ВТП) 57 (фиг. 2, 3, 4).

БУ 20 (фиг. 3, 4) содержит дифференциально-минимальное реле (ДМР) 38, блок питания (БП) 39, выполненный с возможностью подключения посредством ДМР 38 к ТП 33, внешнему тепловому преобразователю (ВТП) 57 или к внешнему резервному источнику энергии АБ 40, и имеющий выходы высокого уровня (ВУ) и низкого уровня (НУ) (фиг. 3) напряжения, блоки формирования импульсов (ФИ «А» 35, ФИ «В» 36 и ФИ «С» 37 по одному для каждой фазы (А, В и С соответственно) дополнительной многофазной обмотки 22, и стабилизатор напряжения (СН) 58 (фиг. 3, 4).

Низкий уровень (НУ) БП 39 обеспечивает работу электронных компонентов схемы, в частности, транзисторов, ДПР 24 и СН 58; высокий уровень (ВУ) обеспечивает возможность получения в дополнительной многофазной обмотке 22 большой силы тока, при протекании которого возникает магнитный поток, участвующий в создании вращающего электромагнитного момента, приводящего в движение ротор СТАГУ.

Резервное питание БУ 20 осуществляется от АБ 40 (фиг. 2, 3, 4) (в состав БУ 20 не входит).

Каждый из блоков ФИ «А» 35, ФИ «В» 36 и ФИ «С» 37 блока управления 20 (фиг. 3, 4) содержит первый 49 (R1), второй 50 (R2), третий 51 (R3), четвертый 52 (R4) и пятый 53 (R5) ограничительные резисторы, первый и второй управляющие транзисторы 41 (VT6) и 42 (VT7), первую и вторую пары переключающих транзисторов 45 (VT2) и 46 (VT3) - первая пара, 47 (VT1) и 48 (VT4) - вторая пара и два транзистора 43 (VT5) и 44 (VT8), образующих логический элемент «НЕ» 54.

Вход логического элемента «НЕ» 54 каждого блока ФИ «А» 35, ФИ «В» 36 и ФИ «С» 37 и база первого управляющего транзистора 41 (VT6) подключены к сигнальной обмотке 25 ДПР 24, а база второго управляющего транзистора 42 (VT7) подключена к выходу логического элемента «НЕ» 54, при этом эмиттеры первого 41 (VT6) и второго 42 (VT7) управляющих транзисторов заземлены, а базы каждой пары переключающих транзисторов соединены между собой: база переключающего транзистора 45 (VT2) с базой переключающего транзистора 46 (VT3) - первая пара, база переключающего транзистора 47 (VT1) с базой переключающего транзистора 48 (VT4) - вторая пара, при этом базы первой пары переключающих транзисторов 45 (VT2) и 46 (VT3) подключены к коллектору первого управляющего транзистора 41 (VT6), а базы второй пары переключающих транзисторов 47 (VT1) и 48 (VT4) подключены к коллектору второго управляющего транзистора 42 (VT7), при этом коллекторы переключающих транзисторов по одному из каждой пары (транзистор 45 (VT2) из первой пары и транзистор 47 (VT1) из второй пары) подключены к высокоуровневому (ВУ) выходу БП 39, а их эмиттеры через второй и четвертый ограничительные резисторы 50 (R2) и 52 (R4) соответственно, подключены к соответствующим выводам соответствующей фазы (для блока ФИ «А» 35: эмиттер переключающего транзистора 45 (VT2) первой пары через четвертый ограничительный резистор 52 (R4) подключен к началу А фазы А, а эмиттер переключающего транзистора 47 (VT1) второй пары через второй ограничительный резистор 50 (R2) подключен к концу X фазы А) дополнительной многофазной (на фиг. 2 - трехфазной) обмотки 22 и к коллекторам переключающих транзисторов другой пары (эмиттер переключающего транзистора 45 (VT2) первой пары через четвертый ограничительный резистор 52 (R4) подключен к коллектору переключающего транзистора 48 (VT4) второй пары, эмиттер переключающего транзистора 47 (VT1) второй пары через второй ограничительный резистор 50 (R2) подключен к коллектору переключающего транзистора 46 (VT3) первой пары).

В БУ 20 предлагаемой СТАГУ установлен стабилизатор напряжения (СН) 58, содержащий блок сравнения (БСР) 61, блок формирования пилообразного сигнала (БФПС) 59, выход которого подключен к инвертирующему входу второго БСР 61, блок формирования управляющего сигнала (БФУС) 60, выход которого подключен к неинвертирующему входу БСР 61, к выходу которого через пятый ограничительный резистор 53 (R5) подключен логический элемент «НЕ» 54, через первый ограничительный резистор 49 (R1) подключен коллектор первого управляющего транзистора 41 (VT6), а через третий ограничительный резистор 51 (R3) подключен коллектор второго управляющего транзистора 42 (VT7) каждого блока ФИ «А» 35, ФИ «В» 36 и ФИ «С» 37.

БСР 61 выполнен на первом операционном усилителе (ОР1) 73.

БФПС 59 содержит:

- генератор прямоугольных импульсов, состоящий из второго операционного усилителя 75 (ОР2) генератора прямоугольных импульсов, первого резистора 65 (R14) положительной обратной связи, подключенного к выходу и неинвертирующему входу второго операционного усилителя 75 (ОР2) генератора прямоугольных импульсов;

- генератор пилообразного сигнала, состоящий из третьего операционного усилителя 76 (ОР3) генератора пилообразного сигнала, второго резистора 66 (R15) положительной обратной связи, подключенного к выходу третьего операционного усилителя 76 (ОР3) генератора пилообразного сигнала и неинвертирующему входу второго операционного усилителя 75 (ОР2) генератора прямоугольных импульсов, интегрирующего конденсатора 72 (С1) отрицательной обратной связи, подключенного к выходу и инвертирующему входу третьего операционного усилителя 76 (ОР3) генератора пилообразного сигнала;

- подключенный к низкоуровневому выходу (НУ) БП 39 делитель напряжения, состоящий из первого 62 (R11) и второго 63 (R12) резисторов делителя напряжения, выход которого подключен к инвертирующему входу второго операционного усилителя 75 (ОР2) генератора прямоугольных импульсов и к неинвертирующему входу третьего операционного усилителя 76 (ОР3) генератора пилообразного сигнала;

- резистор 64 (R13), подключенный к выходу второго операционного усилителя 75 (ОР2) генератора прямоугольных импульсов и инвертирующему входу третьего операционного усилителя 76 (ОР3) генератора пилообразного сигнала.

Блок формирования управляющего сигнала (БФУС) 60 содержит:

- четвертый операционный усилитель 74 (ОР4) формирования управляющего сигнала;

- регулировочный резистор 67 (R6), подключенный к низкоуровневому выходу БП 39;

- первый понижающий резистор 68 (R7), подключенный к положительному выходу многофазного двухполупериодного выпрямителя 19 и инвертирующему входу четвертого операционного усилителя 74 (ОР4) формирования управляющего сигнала;

- второй понижающий резистор 69 (R8), подключенный к регулировочному резистору 67 (R6) и неинвертирующему входу четвертого операционного усилителя 74 (ОР4) формирования управляющего сигнала;

- резистор отрицательной обратной связи 70 (R9), подключенный к выходу и инвертирующему входу четвертого операционного усилителя 74 (ОР4) формирования управляющего сигнала;

- резистор 71 (R10) смещения, подключенный к неинвертирующему входу четвертого операционного усилителя 74 (ОР4) формирования управляющего сигнала, определяющий величину смещения напряжения на неинвертирующем входе четвертого операционного усилителя 74 (ОР4) формирования управляющего сигнала.

Первый 62 (R11) и второй 63 (R12) резисторы делителя напряжения БФПС 59 выбираются одинакового номинала и подбираются таким образом, чтобы на инвертирующий вход второго операционного усилителя 75 (ОР2) генератора прямоугольных импульсов с выхода делителя напряжения БФПС 59 подавалась половина питающего напряжения, поступающего с низкоуровневого выхода БП 39.

Второй операционный усилитель 75 (ОР2) генератора прямоугольных импульсов за счет наличия положительной обратной связи, обеспечиваемой первым 65 (R14) и вторым 66 (R15) резисторами положительной обратной связи работает в генераторном режиме, выдавая прямоугольные импульсы на инвертирующий вход третьего операционного усилителя 76 (ОР3) через резистор 64 (R13). Первый 65 (R14) и второй 66 (R15) резисторы положительной обратной связи также влияют на высоту пилообразного сигнала относительно нуля.

Третий операционный усилитель 76 (ОР3) генератора пилообразного сигнала работает в режиме интегратора, превращая прямоугольные импульсы на выходе второго операционного усилителя 75 (ОР2) генератора прямоугольных импульсов в сигнал пилообразной формы (фиг. 6 и 7 - UвыхБФПС). Значение емкости интегрирующего конденсатора 72 (С1) отрицательной обратной связи третьего операционного усилителя 76 (ОР3) генератора пилообразного сигнала и сопротивление резистора 64 (R13) определяют частоту прямоугольных импульсов и, соответственно, частоту пилообразного сигнала. Чем меньше емкость интегрирующего конденсатора 72 (С1), тем выше частота пилообразного сигнала, и наоборот. Частота этого пилообразного сигнала определяет частоту импульсов опорного сигнала. Чем выше эта частота, тем точнее осуществляется регулирование частоты вращения ротора. Однако частота опорного сигнала не должна превышать допустимого значения частоты, определяемой характеристиками транзисторов блоков формирования импульсов.

Таким образом, в БФПС 59 формируется сигнал пилообразной формы UвыхБФПС (фиг. 6, 7).

В БФУС 60 формируется управляющий сигнал, уровень напряжения которого зависит от напряжения на выходе многофазного двухполупериодного выпрямителя 19. Регулировочным резистором 67 (R6) вручную устанавливается заданная величина напряжения на выходе многофазного двухполупериодного выпрямителя 19, относительно которого осуществляется стабилизация. Первый 68 (R7) и второй 69 (R8) понижающие резисторы подбираются таким образом, чтобы напряжение на инвертирующем и неинвертирующем входах четвертого операционного усилителя 74 (ОР4) были равны при условии, что напряжение на выходе многофазного двухполупериодного выпрямителя 19 (т.е. на выходе СТАГУ) равно установленному регулировочным резистором 67 (R6). Номинальные сопротивления первого 68 (R7) и второго 69 (R8) понижающих резисторов определяют значение коэффициента усиления четвертого операционного усилителя 74 (ОР4) - - и должны быть равны между собой. Резистор 71 (R10) смещения, подключенный к неинвертирующему входу четвертого операционного усилителя 74 (ОР4) формирования управляющего сигнала, определяет величину смещения напряжения на неинвертирующем входе четвертого операционного усилителя 74 (ОР4) формирования управляющего сигнала. Резистор 70 (R9) отрицательной обратной связи, подключенный к выходу и инвертирующему входу четвертого операционного усилителя 74 (ОР4) формирования управляющего сигнала обеспечивает его устойчивую работу.

В первом операционном усилителе 73 (ОР1) БСР 61 осуществляется сравнение уровня напряжения пилообразного сигнала, снимаемого с выхода третьего операционного усилителя 76 (ОР3) БФПС 59, с уровнем напряжения управляющего сигнала, снимаемого с выхода