Удаляющий агрегаты фильтрующий материал, способ удаления агрегатов, фильтр для удаления лейкоцитов и способ фильтрования продукта крови
Иллюстрации
Показать всеИзобретение относится к медицине, а именно к методам очищения крови. Фильтрующий материал, удаляющий агрегаты из крови, используют в способе удаления агрегатов и в фильтре для удаления лейкоцитов, а также в способе фильтрования продукта крови. Удаляющий агрегаты фильтрующий материал состоит только из волокон, имеющих длину волокон 100-1000 мм и тонину 0,7-4,0 дтекс, поверхностную плотность 20-100 г/м2 и объемную плотность без нагрузки 0,03-0,10 г/см3. Использование фильтрующего материала, удаляющего агрегаты из крови, обеспечивает эффективное удаление агрегатов из крови при предотвращении закупоривания агрегатами фильтрующего материала. 4 н. и 16 з.п. ф-лы, 5 ил., 8 пр.
Реферат
Область техники, к которой относится изобретение
[0001] Настоящее изобретение относится к удаляющему агрегаты фильтрующему материалу, способу удаления агрегатов, фильтру для удаления лейкоцитов и способу фильтрования продукта крови.
Уровень техники
[0002] В области переливания крови в последние годы распространилось переливание крови, перед которым из продукта крови удаляют лейкоциты, содержащиеся в продукте крови, так называемый лейкаферез. Это связано с тем, что были обнаружены относительно незначительные побочный эффекты, такие как головная боль, тошнота, озноб, лихорадочное негемолитическое реагирование на переливание, которые связаны с переливанием крови, а также были обнаружены серьезные побочные эффекты, такие как аллоантигенная сенсибилизация, вирусная инфекция, а также гомологичная болезнь (GVHD) (реакция "трансплантат против хозяина") после переливания крови, которые могут плохо влиять на реципиентов крови, вызываются лейкоцитами, смешанными с продуктом крови, который применяется, главным образом, для переливания крови.
[0003] Способ удаления лейкоцитов из продукта крови ориентировочно подразделяют на два типа: способ отделения центрифугированием для отделения и удаления лейкоцитов путем использования разделяющей центрифуги, используя разницу в удельных весах между компонентами клетки крови; и способ фильтрования для удаления лейкоцитов путем адгезии или абсорбции с использованием фильтрующих материалов, состоящей из волокнистой сборки, а именно, нетканого материала, пористой структуры, имеющей непрерывные поры, или тому подобного. Среди них способ фильтрования для удаления лейкоцитов путем адгезии или абсорбции является легко управляемым, а также имеет преимущество низкой стоимости и тому подобное, поэтому широко распространился.
[0004] Много фильтровальных устройств для удаления лейкоцитов, которые в настоящее время доступны на рынке, составлены из многообразных типов фильтрующих материалов, и в прямой близости от впускного канала (порта) для крови размещают крупнозернистый, удаляющий агрегаты фильтрующий материал для удаления агрегатов продукта крови. Кроме того, в нижней по потоку части на стороне выпускного канала (порта) размещают мелкозернистый, удаляющий лейкоциты фильтрующий материал для удаления лейкоцитов. Агрегат получается путем агрегации эритроцитов, лейкоцитов, тромбоцитов, фибрина, фибриногена, других денатурированных белков, жирового шарика и тому подобного.
[0005] Агрегат имеет размер от примерно равный размеру наименьшего лейкоцита, до лейкоцита превышающего 1 мм у наибольшего лейкоцита, и обогащен слипанием. К тому же, что касается агрегата, есть тенденция, что чем дольше время хранения продукта крови, и/или чем ниже температура хранения, тем больше число агрегатов, а также больше размер. Следовательно, если продукт крови обрабатывают только удаляющим лейкоциты фильтрующим материалом без применения удаляющего агрегаты фильтрующего материала, то может быть случай, когда удаляющий лейкоциты фильтрующий материал закупоривается агрегатами, и становится трудно поддерживать ожидаемую скорость потока.
[0006] К тому же, для того чтобы улучшить качество продукта крови, преобладающую тенденцию имеет удаление лейкоцитов перед хранением, которое осуществляет удаление лейкоцитов в день взятия крови или на следующий день после взятия крови. В последние годы, для того чтобы эффективно осуществлять удаление лейкоцитов, число приспособлений для осуществления удаления уменьшают, а число продуктов крови, обработанных в одном приспособлении повышается. В приспособлении, из-за того что кровь берут также на далеком расстоянии, количество фильтруемой крови после хранения в охлажденном состоянии для одного дня увеличивается, поэтому количество крови, производящей агрегаты, также увеличивается. Соответственно, во время фильтрации производится прекращение подачи, а если фильтрация останавливается, то продукт крови должен быть выброшен, следовательно, драгоценный продукт крови пропадает. Следовательно, есть большая необходимость в фильтре, в который ввели удаляющий агрегаты фильтрующий материал.
[0007] Для того чтобы направить усилия на такую проблему, например, в Патентной литературе 1 было раскрыто устройство для фильтрации, имеющее конструкцию, в которой вверху по потоку фильтрующего материала для удаления лейкоцитов размещены два или более типов фильтрующих материалов для удаления агрегатов, которые выбирают из группы, состоящей из нетканого материала, текстильной ткани, а также трикотажного полотна, и имеют объемную плотность, отличающуюся друг от друга в интервале 0,1-1,0 г/см3, а объемная плотность удаляющего агрегаты фильтрующего материала увеличена в нижней части стороны внизу по потоку.
[0008] В Патентной литературе 2 раскрыли фильтрующее устройство, составленное из многих типов волокнистых материалов, а также определяемое XY среднего волоконного диаметра X и среднего волоконного интервала Y волокон. Это фильтрующее устройство имеет конструкцию, в которой фильтрующий материал с XY>50 размещен в направлении вверх по потоку для захвата больших агрегатов, фильтрующий материал с 50≥XY>7 размещен в направлении вниз по потоку для захвата относительно меньших агрегатов, а фильтрующий материал с 7≥XY размещен дополнительно в направлении вниз по потоку для удаления лейкоцитов.
[0009] В Патентной литературе 3 раскрыли фильтрующий материал для удаления агрегатов, в котором находятся, по меньшей мере, два типа групп пор группы пор А, имеющей диаметр отдельных пор 500 мкм или более, и группа пор В, имеющая диаметр отдельных пор 150-500 мкм, и средний диаметр пор группы пор А составляет 600-1500 мкм, средний диаметр пор группы пор В составляет 200-450 мкм, и коэффициент отверстия составляет 40% или более.
[0010] В Патентной литературе 4 раскрыли фильтрующее устройство, в котором содержатся от одного до трех элементов, и первый элемент установлен в качестве фильтрующего материала для удаления геля (это синоним относительно большого агрегата), второй элемент установлен в качестве фильтрующего материала мельчайших агрегатов, и третий элемент установлен в качестве фильтрующего материала для удаления лейкоцитов.
[0011] В Патентной литературе 5 раскрыли удаляющий агрегаты фильтрующий материал, состоящий из нетканого материала спанлейс, использующего короткие волокна. К тому же, в Патентной литературе 6 раскрыли удаляющий агрегаты материал, использующий тканевую основу из длинных волокон, а также использующий короткие волокна.
Список ссылок
Патентная литература
[0012] Патентная литература 1: Японская выложенная патентная заявка (JP-A) No. H03-173824
Патентная литература 2: JP-A No. H01-236064
Патентная литература 3: JP-A No. H07-67958
Патентная литература 4: Национальная Японская публикация патентной заявки No. H03-502094
Патентная литература 5: JP-A No. 2010-213820
Патентная литература 6: Международная Публикация WO 2009/128435
Сущность изобретения
Техническая проблема
[0013] удаляющие агрегаты фильтрующие материалы, которые были раскрыты в вышеописанных (ссылках) на Патентную литературу 1-3, могут применяться без наличия каких-либо проблем, если фильтруется продукт крови, содержащий относительно малое количество агрегатов. Однако, что касается продукта крови через длительное время хранения, то продукт крови, хранящийся при низкой температуре, такой температуре как температура ниже 4°C, скорректированный продукт крови, наряду с тем, что смеси антикоагулянтного реагента с продуктом крови недостаточно, или подобного, в случае, когда обрабатывают продукт крови, который как ожидается, содержит относительно большое количество больших агрегатов, скорость фильтрации значительно снижается за счет закупоривания. К тому же, существует проблема, что фильтрация останавливается, не закончившись во многих случаях. В случае, когда время фильтрации чрезмерно увеличивается, эффективная площадь удаления лейкоцитов уменьшается, а еще может уменьшаться производительность удаления лейкоцитов.
[0014] Предполагается, что причиной того, почему получается проблема удаления большеразмерных агрегатов, является то, что волокнистая форма удаляющего агрегаты фильтрующего материала, примененного в ссылках 1-3 Патентной литературы, имеет плотную структуру, а также высокую объемную плотность. Такой фильтрующий материал имеет диаметр пор меньше, чем диаметр большеразмерного агрегата, имеющего размер в несколько десятков мкм или более. Следовательно, считают, что когда фильтруется кровь, содержащая большеразмерные агрегаты, то агрегаты остаются вблизи поверхности фильтрующего материала и получается закупоривание.
[0015] Более того, первым элементом, раскрытым в ссылке 4 Патентной литературы, называется полотно из стального волокна, и стальное волокно, полученное путем прошивания иглой и механического переплетения волокон, и нетканый материал использующий короткие волокна, имеющие короткую длину волокна. В первом элементе переплетение волокон не является сильным, поэтому, по мере нахождения в таких условиях, могут получаться деформация растяжения, разрыв и тому подобное. Поэтому, первый элемент, описанный в ссылке 4 Патентной литературы, подвергают предварительной обработке, называемой горячим сжатием, во время загрузки в фильтрующее устройство. С помощью этого горячего сжатия может удерживаться форма первого элемента. Однако была проблема, что сопротивление движению воздуха фильтрующего материала становится высоким за счет горячего сжатия, сопротивление закупориванию агрегатами уменьшается, и производительность не является стабильной.
[0016] Удаляющий агрегаты фильтрующий материал, раскрытый в ссылке 5 Патентной литературы, использует короткие волокна, следовательно, есть проблема, что прочность является низкой. В случае, когда прочность является низкой, то есть проблема, что нетканый материал растягивается во время изготовления фильтра и сопротивление закупориванию снижается или получается усадочная деформация в процессе стерилизации, в котором производят нагрев, структура нетканого материала становится плотной и сопротивление закупориванию снижается. Кроме того, удаляющий агрегаты фильтрующий материал, состоящий из тканевой основы из длинных волокон, а также из коротких волокон, который был раскрыт в ссылке 6 Патентной литературы, прочность может быть улучшена путем повышения поверхностной плотности длинноволокнистой части, тем не менее, существует проблема, что если поверхностная плотность избыточно увеличивается, для того чтобы получать достаточную прочность, то переплетение коротких волокон затрудняется, и не проявляется сопротивление агрегации. Вдобавок, ухудшение производительности может получаться из-за падения коротких волокон.
[0017] Более того, в ссылках 4-6 Патентной литературы применяют короткие волокна, однако обычно, короткие волокна легко отпадают, следовательно, была проблема, что если короткие волокна переплетены, то прочность становится слабой, а снижение производительности получается из-за выпадения коротких волокон, связанного с применением, в результате которого производительность становится нестабильной.
[0018] Как описано выше, в настоящей ситуации не был найден фильтрующий материал для удаления агрегатов, в котором сопротивление закупориванию большеразмерными агрегатами является большим, и прочность является большой, а производительность является стабильной.
[0019] Целью настоящего изобретения является обеспечение удаляющего агрегаты фильтрующего материала, в котором сопротивление закупориванию большеразмерными агрегатами является высоким, и прочность является высокой, а свойства и производительность являются стабильными, и его использование, способ удаления агрегатов, фильтр для удаления лейкоцитов, а также способ фильтрования продукта крови.
Решение проблемы
[0020] Удаляющий агрегаты фильтрующий материал согласно одному аспекту настоящего изобретения представляет собой удаляющий агрегаты фильтрующий материал для удаления агрегата в продукте крови и состоит только из волокна, имеющего длину волокон 100-1000 мм и тонину 0,7-4,0 дтекс, в котором поверхностная плотность составляет 20-100 г/м2, а объемная плотность без нагрузки составляет 0,03-0,10 г.
[0021] В одном варианте осуществления содержание волокна, имеющего длину волокон 100-1000 мм, может быть 70% или более.
[0022] В одном варианте осуществления содержание волокна, имеющего длину волокон 100-1000 мм, может быть 92% или более.
[0023] В одном варианте осуществления тонина волокна может быть 1,3-2,4 дтекс.
[0024] В одном варианте осуществления волокно может иметь компонент в объемном направлении.
[0025] В одном варианте осуществления в случае, когда направление параллельно волокну установлено как ось Х, а направление в объемном направлении волокна установлено как ось Y, линию прочерчивают с интервалами в 250 мкм вдоль каждой из оси Х и оси Y для получения 16 сеток, среди 16 сеток может быть четыре или более сеток, каждая из сеток имеет волокно, имеющее угол между нижней и верхней линией сетки и волокно с 30 градусами или более, среди 16 сеток.
[0026] В одном варианте осуществления эффективная площадь фильтрации может составлять 90-100% общей площади.
[0027] В одном варианте осуществления величина, полученная делением относительного удлинения (%) в первом направлении волокна на относительное удлинение (%) в направлении, перпендикулярном к первому направлению волокна, составляет 2 или более, и ориентация может быть обеспечена в плоскостном направлении.
[0028] В одном варианте осуществления удлинение в направлении, в котором относительное удлинение становится максимальным, может составлять 2% или менее.
[0029] В одном варианте осуществления относительное удлинение в направлении, перпендикулярном к направлению, в котором относительное удлинение становится максимальным, может составлять 1% или менее.
[0030] В одном варианте осуществления удаляющим агрегаты фильтрующим материалом может быть фильерный нетканый материал, полученный из расплава способом с эжектированием высокоскоростным потоком воздуха (спанбонд способ).
[0031] В одном варианте осуществления удаляющий агрегаты фильтрующий материал может быть спанлейс нетканым материалом, полученным спанлейс способом.
[0032] В одном варианте осуществления волокно может формироваться из сложного полиэфира.
[0033] В одном варианте осуществления волокно может формироваться из полиэтилентерефталата
[0034] В одном варианте осуществления величина падения волокон может составлять 100 тысяч волокон/м2 или менее.
[0035] В одном варианте осуществления скорость фильтрования в конце фильтрации после фильтрования 460 мл продукта крови может быть обеспечена как 50% или более от скорости потока фильтрации в начале фильтрации.
[0036] В одном варианте осуществления потеря давления в конце фильтрации 460 мл продукта крови может быть удвоенной или меньше потери давления (Па) в начале фильтра.
[0037] Способ удаления агрегатов согласно одному аспекту настоящего изобретения использует вышеописанный удаляющий агрегаты фильтрующий материал.
[0038] Фильтр для удаления лейкоцитов согласно одному аспекту настоящего изобретения состоит из вышеописанного удаляющего агрегаты фильтрующего материала, а также удаляющего лейкоциты материала.
[0039] Способ фильтрования продукта крови согласно одному аспекту настоящего изобретения использует вышеописанный фильтр для удаления лейкоцитов.
Полезные эффекты изобретения
[0040] Согласно настоящему изобретению агрегаты могут быть эффективно удалены наряду с предотвращением закупоривания агрегатами.
Краткое описание чертежей
[0041] Фиг. 1 представляет собой изображение, показывающее увеличенное поперечное сечение удаляющего агрегаты фильтрующего материала согласно одному варианту осуществления, который представляет собой нетканый материал спанлейс, состоящий только из длинных волокон.
Фиг. 2 представляет собой таблицу, показывающую результаты оценки.
Фиг. 3 представляет собой таблицу, показывающую результаты оценки.
Фиг. 4 представляет собой изображение, показывающее увеличенное поперечное сечение нетканого материала спанлейс, состоящего из длинных волокон и коротких волокон.
Фиг. 5 представляет собой изображение, показывающее увеличенное поперечное сечение фильерного нетканого материала (спанбонд), состоящего только из длинных волокон.
Описание вариантов осуществления
[0042] В дальнейшем в этом документе пригодный вариант осуществления настоящего изобретения будет описан подробно. Фиг. 1 представляет собой изображение, показывающее увеличенное поперечное сечение удаляющего агрегаты фильтра согласно одному варианту осуществления, то есть нетканый материал спанлейс, состоящий только из длинных волокон. Удаляющий агрегаты фильтрующий материал, показанный на фиг. 1, представляет собой удаляющий агрегаты фильтрующий материал для удаления агрегатов в продукте крови. Удаляющий агрегаты фильтрующий материал состоит только из волокна, имеющего длину волокон 100-1000 мм и тонину 0,7-4,0 дтекс, а также имеет поверхностную плотность 20-100 г/м2 и объемную плотность без нагрузки 0,03-0,10 г/см3. К тому же, "продукт крови", описанный в настоящем описании, означает различные продукты крови, использующиеся в переливании крови, а именно, препарат цельной крови, концентрированный препарат эритроцитов, а также концентрированный препарат тромбоцитов. В дальнейшем в этом документе удаляющий агрегаты фильтрующий материал будет описан подробно.
[0043] Как описано выше, тонина удаляющего агрегаты фильтрующего материала составляет 0,7-4,0 дтекс. В случае, когда тонина составляет менее 0,7 дтекс, ячейки сети чрезвычайно малы, поэтому есть тенденция, что удаление большеразмерных агрегатов станет трудным. С другой стороны, в случае, когда плотность превышает 4,0 дтекс, запутанность волокон уменьшается, и есть тенденция, что прочность становится недостаточной. Тонина удаляющего агрегаты фильтрующего материала составляет предпочтительно 1,0-3,0 дтекс, и более предпочтительно 1,3-2,4 дтекс. В случае, когда тонина составляет 1,3 дтекс и более, переплетение волокон является среднераспределенным, и большеразмерные агрегаты также легко удаляются, следовательно, это является предпочтительным. В случае, когда плотность составляет 2,4 дтекс или менее, может быть сохранена достаточная прочность, если удаляющий агрегаты фильтрующий материал используют в качестве фильтра, следовательно, это является предпочтительным.
[0044] Кроме того, в настоящем варианте осуществления "тонина" представляет собой величину, определенную длиной и весом волокон, оговоренную в Японских промышленных стандартах JIS L0104 и JIS L1013. Более того, в случае, когда волокна имеют приблизительно цилиндрическую столбчатую форму, диаметр волокна определяется следующими процедурами, а затем определенный диаметр волокна может быть преобразован в диаметр волокна путем использования плотности волокна (г/см3). Что касается диаметра волокна, во-первых, получают произвольные пять или более образцов от фильтрующего материала, и изображения образцов делают с помощью сканирующего электронного микроскопа или тому подобного при соответствующем увеличении, при котором диаметр волокна может быть измерен. Далее сеткообразный лист помещали на изображения, и диаметр 100 или более волокон измеряли в узлах сетки. Диаметр в настоящем описании означает ширину волокна в направлении, перпендикулярном оси волокна. Величина (средняя величина), полученная делением суммы диаметров измеренных волокон на число волокон устанавливается как диаметр волокна, и "тонина" может определяться путем использования такой величины и плотности волокна.
[0045] Однако, в случае, когда многочисленные волокна перекрываются друг с другом, и ширина не может быть измерена из-за того, что они скрыты за другими волокнами, или в случае, где многочисленные волокна расплавлены или тому подобное, и становятся толстым волокном, и более того, в случае, когда волокна, имеющие диаметр, значительно отличающийся друг от друга, а также тому подобное, полученные данные вычеркиваются. Кроме того, в случае, когда смешаны многочисленные типы волокон, имеющие диаметр, видимо отличающийся друг от друга, каждая тонина определяется из средней величины диаметров соответствующих волокон, а в случае, когда определенная плотность находится в интервале 0,7-4,0 дтекс, удаляющий агрегаты фильтрующий материал включен в волокно настоящего варианта осуществления.
[0046] Как форма поперечного сечения, которая может быть использована для удаляющего агрегаты фильтрующего материала, не только круглая форма, но любая форма также может быть использована. Например, может использоваться модифицированная структура поперечного сечения, как описано в JP-ANo. H08-170221, JP-ANo. H08-291424, JP-ANo. 2002-61023, JP-ANo. 2004-225184, JP-ANo. 2005-82939 или тому подобное. Однако с точки зрения продуктивности самого волокна, структура поперечного сечения предпочтительна в круглой форме.
[0047] Удаляющий агрегаты фильтрующий материал состоит только из волокон, имеющих длину волокон 100-1000 мм. Состоящий только из волокон, имеющих длину волокон 100-1000 мм, означает, что доля (содержание) волокон, имеющих длину волокон 100-1000 мм составляет 70% или более. Доля волокон, имеющих длину волокон 100-1000 мм, составляет предпочтительно 80% и более, более предпочтительно 90% или более, и еще более предпочтительно 92% или более. Когда доля волокон, имеющих длину волокон 100-1000 мм, составляет 92% или более, то подтверждено, что прочность исключительно высока. В случае, когда доля волокон, имеющих длину волокон 100-1000 мм, составляет 94% или более, обрывание волокна меньше, и падение волокон становится меньше, следовательно, это является предпочтительным. В случае когда доля волокон, имеющих длину волокон 100-1000 мм составляет 98% или более, короткие волокна едва ли содержатся, следовательно, не вызываются изменения в физических свойствах нетканого материала, которые получаются с учетом ворса коротких волокон, в процессе производства и стерилизации, поэтому может проявляться высокая производительность.
[0048] В случае, когда удаляющий агрегаты фильтрующий материал имеет длину волокон менее 100 мм, волокна легко выпадают, и есть тенденция, что сопротивление закупориванию снижается. С другой стороны, в случае, когда удаляющий агрегаты фильтрующий материал имеет длину волокон 100 мм или более, компоненты в объемном направлении уменьшаются и есть тенденция, что сопротивление закупориванию снижается. К тому же, ″длина волокна″ в настоящем описании представляет собой величину, полученную измерением длины волокна, отобранного как образец путем разрезания нетканого материала по 20см х 20см и выдергивания произвольно волокон из центральной части нетканого материала, используя анализатор изображения, линейку или тому подобное. Однако, обрыв волокна во время выдергивания не подвергают измерению. ″Доля волокон, имеющих длину волокон 100-1000 мм″ представляет собой величину, полученную осуществлением измерения длины волокна у 50 волокон, путем деления на число волокон, имеющих длину волокон 100-1000 мм, на число измеренных волокон, и путем умножения на 100.
[0049] Удаляющий агрегаты фильтрующий материал, состоящий из волокон, имеющих длину волокна 100-1000 мм, может быть получен путем обрабатывания нетканого материала, состоящего только из длинных волокон, с помощью подходящего способа, а также путем резания нетканого материала на подходящий размер, который будет использоваться для фильтрующего материала. Следовательно, в случае, когда используется нетканый материал, который получен путем переплетения друг с другом намеренно коротких волокон, имеющих длину волокна около 1-80 мм, доля волокон, имеющих длину волокна короче, чем 100-1000 мм, увеличивается, следовательно, не может быть получен удаляющий агрегаты фильтрующий материал настоящего изобретения.
[0050] В качестве одного примера, то, что получено резанием фильерного нетканого материала (спанбонд), полученного способом спанбонд, на подходящий размер, может быть применено в качестве фильтра. Кроме того, может быть использовано то, что получено осуществлением другого обрабатывания, такого как методом спанлейс на фильерном нетканом материале. В это же время стало известно, что увеличиваются волокна, имеющие длину волокна 300-1000 мм или 500-1000 мм
[0051] Удаляющий агрегаты фильтрующий материал имеет поверхностную плотность 100 г/м2. В случае, когда удаляющий агрегаты фильтрующий материал имеет поверхностную плотность менее чем 20 г/м2, есть тенденция, что эффективность удаления агрегатов уменьшается, и вызывается недостаточная прочность. С другой стороны, в случае, когда удаляющий агрегаты фильтрующий материал имеет превышение поверхностной плотности 100 г/м2, может быть случай, когда становится трудной загрузка в фильтрующее устройство. Кроме того, в случае, когда поверхностная плотность превышает 100 г/м2, если удаляющий агрегаты фильтрующий материал загружен в устройство фильтрования вместе с фильтрующим материалом для удаления лейкоцитов, и тому подобным, то может быть случай, когда удаляющий лейкоциты фильтрующий материал сжимается, и скорость потока фильтрации продукта крови снижается. Поверхностная плотность удаляющего лейкоциты фильтрующего материала составляет предпочтительно 40-90 г/м2, и более предпочтительно 70-90 г/м2. К тому же, ″поверхностную плотность фильтрующего материала″ определяют, например, путем отбора трех или более частей от произвольных частей, имеющих размер 5 см х 5 см, и имеющих физические свойства, которые по-видимому, однородны, измерением веса каждого фильтрующего материала для определения средней величины, а также преобразованием средней величины относительно веса на единицу квадратный метр.
[0052] Удаляющий агрегаты фильтрующий материал имеет объемную плотность без нагрузки 0,03-0,10 г/см3. Объемная плотность без загрузки составляет более предпочтительно 0,04-0,10 г/см3, и кроме того более предпочтительно 0,06-0,10 г/см3. В удаляющем агрегаты фильтрующем материале, в случае, когда объемная плотность без нагрузки составляет менее чем 0,03 г/см3, прочность нетканого материала становится недостаточной, а производительность удаления агрегатов не является стабильной. С другой стороны, в удаляющем агрегаты фильтрующем материале в случае, когда объемная плотность без загрузки составляет менее чем 0,10 г/см3 или более, нетканый материал имеет плотную структуру, и производительность удаления агрегатов не обеспечивается. К тому же, объемная плотность без загрузки определяется делением поверхностной плотности на объем без нагрузки. Объем без нагрузки представляет собой объем нетканого материала, измеренный путем исследования поперечного сечения нетканого материала при атмосферном давлении с помощью микроскопа или электронного микроскопа, а толщину измеряют без нагрузки. Более точно, измерение осуществляли согласно следующему способу. Во-первых, нетканый материал нарезали по размеру 5 см х 5 см ножницами или тому подобным, так чтобы по возможности не прикладывать давление, и три стороны нетканого материала фиксировали зажимом. Затем одну сторону, которую не закрепили, изучали в перпендикулярном направлении к поперечному сечению с помощью цифрового микроскопа (Тип VHX-900, произведенный KEYENCE), измеряли толщину трех или более частей из произвольных частей нетканого материала, и определяли среднюю величину.
[0053] Кроме того, что касается удаляющего агрегаты фильтрующего материала, введенного в фильтр, который единожды сформировали, измеряют объем без нагрузки, и может быть определена объемная плотность без нагрузки. В данном случае, удаляющий агрегаты фильтрующий материал, вынимаемый при демонтаже фильтра, оставляют на время около одного часа, затем толщину части, к которой ребро (острый край) и тому подобное не примыкает при формировании фильтра (части, не имеющей истории деформации), измеряют тем же способом, как указано выше, и полученная величина устанавливается как объем без нагрузки. К тому же, толщина может изменяться в результате того, что часть удаляющего агрегаты фильтрующего материала была сжата в зависимости от структуры ребра и тому подобного внутри фильтра, однако выяснили, что изменение в толщине в части, не имеющей истории деформации, до и после формирования фильтра составляет около 3%. К тому же, даже если фильтрующий материал после разборки фильтра оставляют на время один час или более, то подтвердили, что едва ли производится изменение в толщине. Кроме того, если рассчитывают поверхностную плотность, то требуется объем нетканого материала, и использование величины, полученной умножением площади нетканого материала в это время на объем без нагрузки, полученный измерением согласно способу, описанному выше как объем, вес (поверхностная плотность) на единицу объема может быть рассчитан.
[0054] Объемная плотность без нагрузки удаляющего агрегаты фильтрующего материала в фильтре после формирования составляет 0,03-0,10 г/см3, более предпочтительно 0,04-0,10 г/см3, и кроме того более предпочтительно 0,06-0,10 г/см3.
[0055] Один пример способа получения удаляющего агрегаты фильтрующего материала, описанного выше, будет описан подробно. Во-первых, гранулы смолы, которая должна быть сырьем, нагревают и расплавляют, и экструдируют из фильеры, имеющей определенный диаметр, и непосредственно прядут. Далее, длинные волокна, которые непрерывно прядут без их разрезания, загружают на конвейерную ленту путем перекрывания заданного числа волокон, и формируются в нетканый материал. Нетканый материал в этом состоянии представляет собой нетканый материал в состоянии перекрывания длинных волокон друг с другом, и прочность является недостаточной. Поэтому обрабатыванием нетканого материала способом спанлейс или иглопробивным способом, можно получать нетканый материал, имеющий значительную прочность.
[0056] Способ спанлейс представляет собой способ переплетения длинных волокон синтетического полимера струями воды под высоким давлением, и с помощью которого может быть получен нетканый материал, имеющий объемистость и чрезвычайно сильную прочность. Кроме этого, иглопробивной способ представляет собой способ переплетения волокон путем вставления иглы, имеющей надсечку, называемой крючком, для спутывания волокон из числа верхних и нижних, и может получаться нетканый материал, имеющий объемистость и значительную прочность.
[0057] Кроме того, если нетканый материал обрабатывают методом спанлейс или иглопробивным методом, кроме метода обрабатывания в длинные волокна сразу после прядения, то нетканый материал, который заранее обработали способом спанбонд, сматывают единожды в рулон, и затем может быть обработан способом спанлейс или иглопробивным методом. Этот метод будет описан подробно.
[0058] Во-первых, гранулы смолы, которые должны быть сырьем, нагревают и расплавляют, и расплавленную смолу экструдируют из фильеры, имеющей определенный диаметр, и непосредственно прядут. Затем, длинные волокна, которые непрерывно прядут без их разрезания, загружаются на конвейерную ленту путем перекрывания заданного числа волокон, и формируются в нетканый материал. Далее, нетканый материал приклеивают на валок, называемый каландровым валком, и наматывают как фильерный нетканый материал. Более подробно, каландровый валок, имеющий гравировку, нагревают от 120°C до 200°C, и нетканый материал приклеивается на каландровый вал. В этот момент температуру и давление для добавления к каландру предпочтительно устанавливают слабее, чем те, которые используют для обычного фильерного нетканого материала (спанбонд). С помощью этой процедуры переплетение гидроструйным соединением или иглой осуществляется эффективно. Осуществляя способ спанлейс или иглопробивной способ для так произведенного фильерного нетканого материала, может быть получен нетканый материал, имеющий объемность и значительную прочность.
[0059] Удаляющий агрегаты фильтрующий материал, полученный согласно способу, описанному выше, является предпочтительным по сравнению с тем, который получен способом скрепления волокон друг с другом, а именно, способом термоскрепления, а также способом химического скрепления, поскольку может быть приготовлен нетканый материал с низкой объемной плотностью. Нетканый материал, полученный вышеописанным способом обрабатывания, использующим фильерный способ (спанлейс) или иглопробивной способ настоящего изобретения, возможно сделать более объемным по сравнению с фильерным нетканым материалом, состоящим только из длинных волокон.
[0060] Вышеописанный способ спанлейс будет описан подробно. В способе спанлейс воду проливают через нетканый материал и дают возможность влиться перед осуществлением обрабатывания гидроструйным переплетением, в результате которой количество воды, отраженной волокнами во время гидроструйного переплетения, уменьшается, следовательно, эффективность гидроструйного переплетения улучшается. Целевой фильтрующий материал может получаться в условиях обрабатывания со скоростью обрабатывания при обработке 3-20 м/мин, давление воды 40-200 кгс/см2, диаметр патрубка льющейся струей воды 80-150 мкм, и наклоне патрубка 0,5-2,0 мм.
[0061] В способе спанлейс, если скорость обрабатывания при обработке более медленная, чем 3 м/мин, то продуктивность снижается. С другой стороны, в способе спанлейс, если скорость обрабатывания более быстрая, чем 20 м/мин, достаточной прочности гидроструйным переплетением может не получаться. В способе спанлейс, если скорость обрабатывания более быстрая, чем 20 м/мин, то требуется увеличивать число форсунок с двух до трех форсунок и вверху и внизу. Более предпочтительная скорость обрабатывания в способе спанлейс составляет 4-15 м/мин.
[0062] В способе спанлейс, когда давление воды ниже, чем 40 кгс/см2, переплетение не проходит достаточно, и требуемая прочность не может получаться. С другой стороны, в способе спанлейс, если давление воды выше, чем 200 кгс/см2, получается резание волокон и переплетение проходит чрезмерно, в результате которого объем может уменьшаться. Более предпочтительное давление воды в способе спанлейс составляет 50-150 кгс/см2.
[0063] В способе спанлейс, если диметр форсунки меньше, чем 80 мкм, потеря давления в части форсунки становится большой, требуемое давление становится чрезвычайно высоким, следовательно, обрабатывание затрудняется. С другой стороны, в способе спанлейс, если диаметр форсунки больше, чем 150 мкм, то давление уменьшается, следовательно, не может гарантироваться требуемое давление для переплетения волокон. Более предпочтительный диаметр форсунки в способе спанлейс составляет 90-140 мкм.
[0064] В способе спанлейс, если наклон сопла составляет 0,5 мм или менее, то расстояние между форсункой и форсункой является коротким, следовательно, обрабатывание затруднено. С другой стороны, в способе спанлейс, если наклон больше, чем 2,0 мм, то уменьшается часть, переплетающаяся струями воды, и не получаются достаточно объемность и прочность. Более предпочтительным наклоном сопла в способе спанлейс является 0,7-1,8 мм, и более предпочтительно 0,9-1,5 мм.
[0065] Кроме того, нетканый материал, в котором относительное содержание волокон, имеющих длину волокон 100-1000 мм, составляет 92% или более, может быть произведен способом, использующим вышеописанный способ спанлейс. В способе спанлейс условия производства регулируют, так чтобы были давление 40-150 кгс/см2, диаметр сопла 90-150 мкм и наклон 0,7-2,0 мм. В результате, сила воды не становится достаточной, чтобы резать волокна, следовательно, волокна в процессе производства едва ли режутся, и может производиться нетканый материал, в котором относительное содержание волокон, имеющих длину волокон 100-1000 мм, является высоким.
[0066] Иглопробивной способ будет описан подробно. В иглопробивной способе скорость обрабатывания устанавливают 3-50 м/мин, и еще используют иглу, имеющую диаметр 0,5-2,0 мм. В иглопробивном способе используют иглу с треугольным или звездообразным поперечным сечением, число крючков устанавливают от 1 до 3, число уколов на единицу пл