Конструкция редукторного турбовентиляторного газотурбинного двигателя
Иллюстрации
Показать всеГазотурбинный двигатель содержит вентилятор, выполненный с возможностью вращения вокруг оси, компрессорную секцию, камеру сгорания, сообщающуюся по текучей среде с компрессорной секцией, и турбинную секцию, сообщающуюся по текучей среде с камерой сгорания. Турбинная секция содержит турбину привода вентилятора и вторую турбину. Вторая турбина расположена перед турбиной привода вентилятора. Турбина привода вентилятора содержит по меньшей мере три ротора, при этом по меньшей мере один ротор имеет радиус (R) канала и эффективный радиус (r) обода, а отношение r/R составляет от приблизительно 2,00 до приблизительно 2,30. Система изменения скорости приводится в действие турбиной привода вентилятора для обеспечения вращения вентилятора вокруг оси. 2 н. и 25 з.п. ф-лы, 1 табл., 12 ил.
Реферат
Перекрестная ссылка на родственные заявки
[0001] Настоящая патентная заявка частично является продолжением патентной заявки США №13/363,154 от 31 января 2012 г.
Уровень техники
[0002] Газотурбинный двигатель, в частности, двигатель, известный из патентного документа US 2008/190095, как правило, содержит вентиляторную секцию, компрессорную секцию, секцию камеры сгорания и турбинную секцию. Воздух, поступающий в компрессорную секцию, сжимают и подают в секцию камеры сгорания, где происходит его смешивание с топливом и воспламенение для образования высокоскоростного потока газов сгорания. Высокоскоростной поток газов сгорания проходит через турбинную секцию, приводя в действие компрессор и вентиляторную секцию. Компрессорная секция обычно содержит компрессоры низкого и высокого давления, а турбинная секция содержит турбины низкого и высокого давления.
[0003] Турбина высокого давления приводит в действие компрессор высокого давления при помощи наружного вала, причем вместе они составляют каскад высокого давления, а турбина низкого давления приводит в действие компрессор низкого давления при помощи внутреннего вала, причем вместе они составляют каскад низкого давления. Внутренний вал также может приводить в действие вентиляторную секцию. Безредукторный газотурбинный двигатель содержит вентиляторную секцию, приводимую в действие внутренним валом, причем компрессор низкого давления, турбина низкого давления и вентиляторная секция имеют одни и те же скорость и направление вращения.
[0004] Для приведения в действие вентиляторной секции могут быть использовано устройство изменения скорости, например, эпициклический редуктор, обеспечивающий вращение вентиляторной секции со скоростью, отличной от скорости вращения турбинной секции, с целью увеличения суммарного тягового КПД двигателя. В двигателях такой конструкции вал, приводимый во вращение одной из турбинных секций, приводит в действие эпициклический редуктор, который вращает вентиляторную секцию со скоростью, отличной от скорости вращения турбинной секции, что обеспечивает возможность вращения турбинной секции и вентиляторной секции со скоростями, более близкими к оптимальным.
[0005] Хотя редукторные конструкции имеют более высокий тяговый КПД, производители турбинных двигателей по-прежнему испытывают потребность в повышении КПД двигателей, в том числе термического КПД, КПД передачи и тягового КПД. Таким образом, задача и технический результат настоящего изобретения заключаются в улучшении эксплуатационных характеристик газотурбинных двигателей, в том числе в повышении термического КПД, КПД передачи и тягового КПД. Кроме того, задача и технический результат настоящего изобретения заключаются в разработке ротора турбины привода вентилятора, позволяющего работать с повышенной скоростью вращения по сравнению с роторами турбин приводов вентилятора, известных из уровня техники.
Сущность изобретения
[0006] Газотурбинный двигатель согласно иллюстративному варианту осуществления настоящего изобретения, содержит, в числе прочих возможных элементов, вентилятор, выполненный с возможностью вращения вокруг оси, компрессорную секцию, камеру сгорания, сообщающуюся по текучей среде с компрессорной секцией, и турбинную секцию, сообщающуюся по текучей среде с камерой сгорания. Турбинная секция содержит турбину привода вентилятора и вторую турбину. Вторая турбина расположена перед турбиной привода вентилятора. Турбина привода вентилятора содержит по меньшей мере один ротор, имеющий радиус (R) канала и эффективный радиус (r) обода. Отношение r/R составляет от приблизительно 2,00 до приблизительно 2,30. Система изменения скорости приводится в действие турбиной привода вентилятора, обеспечивающей вращение вентилятора вокруг оси.
[0007] В следующем варианте осуществления вышеуказанного двигателя радиус (R) канала включает в себя по меньшей мере одну ширину (W) канала в направлении, параллельном оси вращения. Отношение ширины (W) канала к эффективному радиусу (r) обода составляет от приблизительно 4,65 до приблизительно 5,55.
[0008] В следующем варианте осуществления любого из вышеуказанных двигателей радиус (R) канала включает в себя по меньшей мере одну ширину (W) канала в направлении, параллельном оси вращения. Ширина (W) канала составляет от приблизительно 1,20 дюйма до приблизительно 2,00 дюймов, при этом ширина (W) канала представляет собой канал без присоединенного диска.
[0009] В следующем варианте осуществления любого из вышеуказанных двигателей секция турбины привода вентилятора имеет первую площадь выходного сечения и вращается с первой скоростью. Вторая турбинная секция имеет вторую площадь выходного сечения и вращается со второй скоростью, которая превышает первую скорость. Первый характеризующий параметр определяется как произведение квадрата первой скорости на первую площадь. Второй характеризующий параметр определяется как произведение квадрата второй скорости на вторую площадь. Характеризующее отношение, представляющее собой отношение первого характеризующего параметра ко второму характеризующему параметру, составляет от приблизительно 0,5 до приблизительно 1,5.
[0010] В следующем варианте осуществления любого из вышеуказанных двигателей характеризующее отношение больше или равно приблизительно 0,8.
[0011] В следующем варианте осуществления любого из вышеуказанных двигателей первый характеризующий параметр больше или равен приблизительно 4.
[0012] В следующем варианте осуществления любого из вышеуказанных двигателей система изменения скорости содержит редуктор. Вентилятор и турбина привода вентилятора вращаются вокруг оси в первом направлении. Вторая турбинная секция вращается во втором направлении, противоположном первому направлению вращения.
[0013] В следующем варианте осуществления любого из вышеуказанных двигателей система изменения скорости вращения содержит редуктор. Вентилятор, турбина привода вентилятора, и вторая турбинная секция вращаются вокруг оси в первом направлении.
[0014] В следующем варианте осуществления любого из вышеуказанных двигателей система изменения скорости содержит редуктор. Вентилятор и вторая турбина вращаются вокруг оси в первом направлении. Турбина привода вентилятора вращается во втором направлении, противоположном первому направлению вращения.
[0015] В следующем варианте осуществления любого из вышеуказанных двигателей система изменения скорости содержит редуктор. Вентилятор выполнен с возможностью вращения в первом направлении, а турбина привода вентилятора и вторая турбинная секция вращаются вокруг оси во втором направлении, противоположном первому направлению вращения.
[0016] В следующем варианте осуществления любого из вышеуказанных двигателей система изменения скорости вращения содержит понижающую зубчатую передачу с передаточным отношением, превышающим приблизительно 2,3.
[0017] В следующем варианте осуществления любого из вышеуказанных двигателей вентилятор подает часть воздуха в наружный контур, при этом степень двухконтурности, определяемая как отношение части воздуха, подаваемой в наружный контур, к количеству воздуха, подаваемому в компрессорную секция, превышает приблизительно 6,0.
[0018] В следующем варианте осуществления любого из вышеуказанных двигателей степень двухконтурности превышает приблизительно 10,0.
[0019] В следующем варианте осуществления любого из вышеуказанных двигателей отношение давлений в вентиляторе составляет меньше, чем приблизительно 1,5.
[0020] В следующем варианте осуществления любого из вышеуказанных двигателей вентилятор содержит приблизительно 26 или менее лопаток.
[0021] В следующем варианте осуществления любого из вышеуказанных двигателей секция турбины привода вентилятора имеет по меньшей мере 3 ступени и вплоть до 6 ступеней.
[0022] В следующем варианте осуществления любого из вышеуказанных двигателей отношение между числом лопаток вентилятора и числом ступеней турбины привода вентилятора составляет от приблизительно 2,5 до приблизительно 8,5.
[0023] В следующем варианте осуществления любого из вышеуказанных двигателей отношение давлений в турбине привода вентилятора превышает приблизительно 5:1.
[0024] В следующем варианте осуществления любого из вышеуказанных двигателей удельная мощность больше, чем приблизительно 1,5 фунт-сила/дюйм3, и меньше или равна приблизительно 5,5 фунт-сила/дюйм3.
[0025] В следующем варианте осуществления любого из вышеуказанных двигателей вторая турбина содержит по меньшей мере две ступени и работает при первом отношении давлений. Турбина привода вентилятора содержит более двух ступеней, и работает при втором отношении давлений, которое меньше, чем первое отношение давлений.
[0026] Газотурбинный двигатель согласно иллюстративному варианту осуществления настоящего изобретения содержит, среди прочих возможных элементов, вентилятор, выполненный с возможностью вращения вокруг оси, компрессорную секцию, камеру сгорания, сообщающуюся по текучей среде с компрессорной секцией, и турбинную секцию, сообщающуюся по текучей среде с камерой сгорания. Турбинная секция содержит турбину привода вентилятора и вторую турбину. Вторая турбина расположена перед турбиной привода вентилятора. Турбина привода вентилятора содержит по меньшей мере один ротор, имеющий эффективный радиус (r) обода, и ширину (W) канала в направлении, параллельном оси вращения. Отношение ширины (W) канала к эффективному радиусу (r) обода составляет от приблизительно 4,65 до приблизительно 5,55. Система изменения скорости приводится в действие турбиной привода вентилятора для обеспечения вращения вентилятора вокруг оси.
[0027] В следующем варианте осуществления вышеуказанного двигателя, ширина (W) канала составляет от приблизительно 1,20 дюйма до приблизительно 2,00 дюймов, при этом ширина (W) канала соответствует каналу без присоединенного диска.
[0028] В следующем варианте осуществления любого из вышеуказанных двигателей ротор имеет радиус (R) канала. Отношение эффективного радиуса (r) обода и радиуса (R) канала составляет от приблизительно 2,00 до приблизительно 2,30.
[0029] В следующем варианте осуществления любого из вышеуказанных двигателей система изменения скорости содержит редуктор, при этом вентилятор и турбина привода вентилятора вращаются вокруг оси в первом направлении. Вторая турбинная секция вращается во втором направлении, противоположном первому направлению вращения.
[0030] В следующем варианте осуществления любого из вышеуказанных двигателей система изменения скорости содержит редуктор. Вентилятор, турбина привода вентилятора и вторая турбинная секция вращаются вокруг оси в первом направлении.
[0031] В следующем варианте осуществления любого из вышеуказанных двигателей система изменения скорости содержит редуктор. Вентилятор и вторая турбина вращаются вокруг оси в первом направлении. Турбина привода вентилятора вращается во втором направлении, противоположном первому направлению вращения.
[0032] В следующем варианте осуществления какого-либо из вышеуказанных двигателей система изменения скорости содержит редуктор. Вентилятор установлен с возможностью вращения в первом направлении, а турбина привода вентилятора, и вторая турбинная секция вращаются вокруг оси во втором направлении, противоположном первому направлению вращения.
[0033] Хотя различные примеры содержат специфические компоненты, показанные на иллюстрациях, варианты осуществления настоящего изобретения не ограничены этими конкретными комбинациями. Можно использовать некоторые компоненты или признаки из одного примера в сочетании с характеристиками или компонентами из другого примера.
[0034] Эти и другие признаки, раскрытые здесь, могут быть более понятными из следующего описания и чертежей, краткие пояснения к которым представлены ниже.
Краткое описание чертежей
[0035] Фиг. 1 - схематическое изображение примера газотурбинного двигателя.
[0036] Фиг. 2 - схематическое изображение, показывающее относительное вращение между секциями в примере газотурбинного двигателя.
[0037] Фиг. 3 - другое схематическое изображение, показывающее относительное вращение между секциями в примере газотурбинного двигателя.
[0038] Фиг. 4 - другое схематическое изображение, показывающее относительное вращение между секциями в примере газотурбинного двигателя.
[0039] Фиг. 5 - другое схематическое изображение, показывающее относительное вращение между секциями в примере газотурбинного двигателя.
[0040] Фиг. 6 - схематическое изображение конфигурации подшипников, обеспечивающей вращение примерных каскадов высокого и низкого давления в примере газотурбинного двигателя.
[0041] Фиг. 7 - схематическое изображение другой конфигурации подшипников, обеспечивающей вращение примерных каскадов высокого и низкого давления в примере газотурбинном двигателе.
[0042] Фиг. 8А - схематическое изображение еще одной конфигурации подшипников, обеспечивающей вращение примерных каскадов высокого и низкого давления в примере газотурбинном двигателе.
[0043] Фиг. 8В - вид в увеличенном масштабе примерной конфигурации подшипников, показанной на фиг. 8А.
[0044] Фиг. 9 - схематическое изображение другой конфигурации подшипников, поддерживающей вращение примерных каскадов высокого и низкого давления в примере газотурбинном двигателе.
[0045] Фиг. 10 - схематическое изображение примера компактной турбинной секции.
[0046] Фиг. 11 - схематический поперечный разрез примерных ступеней для раскрытого примерного газотурбинного двигателя.
[0047] Фиг. 12 - схематический вид примерного ротора турбины перпендикулярно оси вращения.
Подробное раскрытие изобретения
[0048] Фиг. 1 схематически иллюстрирует пример осуществления газотурбинного двигателя 20, который содержит вентиляторную секцию 22, компрессорную секцию 24, секцию 26 камеры сгорания и турбинную секцию 28. В альтернативных вариантах осуществления двигатель может содержать секцию форсажной камеры (не показана), а также другие системы и элементы. Вентиляторная секция 22 нагнетает воздушный поток В наружного контура, а компрессорная секция 24 засасывает воздушный поток С внутреннего контура, сжимая воздух и подавая его в секцию 26 камеры сгорания. В секции 26 камеры сгорания воздух смешивают с топливом и воспламеняют для формирования потока газов сгорания под высоким давлением, который выходит через турбинную секцию 28, в которой энергию, извлеченную из этого потока, используют для приведения в движение вентиляторной секции 22 и компрессорной секции 24.
[0049] Хотя раскрытые не имеющие ограничительного характера варианты осуществления изобретения относятся к турбовентиляторному газотурбинному двигателю, следует понимать, что описываемые принципы не ограничены применением к системам с использованием турбовентиляторов и могут быть применены к турбинным двигателям других типов, например, к турбинному двигателю с трехкаскадной конструкцией, в котором предусмотрены три концентрических каскада, вращающихся вокруг общей оси, причем каскад низкого давления обеспечивает приведение в действие вентилятора турбиной низкого давления посредством редуктора, каскад промежуточного давления обеспечивает приведение в действие первого компрессора компрессорной секции турбиной промежуточного давления, а каскад высокого давления обеспечивает приведение в действие компрессора высокого давления компрессорной секции турбиной высокого давления.
[0050] Проиллюстрированный двигатель 20 обычно содержит низкоскоростной каскад 30 и высокоскоростной каскад 32, выполненные с возможностью вращения вокруг центральной продольной оси А двигателя относительно неподвижной конструкции 36 двигателя с помощью нескольких систем 38 подшипников. Следует понимать, что могут быть предусмотрены другие или дополнительные различные системы 38 подшипников, установленные в различных местах.
[0051] Низкоскоростной каскад 30 обычно содержит внутренний вал 40, соединяющий вентилятор 42 и секцию компрессора 44 низкого давления (или первый компрессор) с секцией турбины 46 низкого давления (или первой турбиной). Внутренний вал 40 приводит вентилятор 42 во вращение через устройство для изменения скорости, которое может представлять собой редуктор 48, чтобы обеспечить вращение вентилятора 42 со скоростью, которая меньшей скорости низкоскоростного каскада 30. Высокоскоростной каскад 32 содержит наружный вал 50, соединяющий секцию компрессора 52 высокого давления (или второй компрессор) с секцией турбины 54 высокого давления (или второй турбиной). Внутренний вал 40 и наружный вал 50 установлены концентрично с возможностью вращения вокруг центральной продольной оси А двигателя посредством систем 38 подшипников.
[0052] Между компрессором 52 высокого давления и турбиной 54 высокого давления расположена камера 56 сгорания. В соответствии с одним из примеров турбина 54 высокого давления содержит по меньшей мере две ступени, образуя двухступенчатую турбину 54 высокого давления. В другом примере турбина 54 высокого давления содержит всего одну ступень. В контексте настоящего описания компрессор или турбина «высокого давления» испытывают воздействие более высокого давления, чем соответствующие компрессор или турбина «низкого давления».
[0053] Представленная в качестве примера турбина 46 низкого давления имеет отношение давлений, которое превышает приблизительно 5. Отношение давлений представленной турбины 46 низкого давления определяют как отношение давления, измеренного перед входом турбины 46 низкого давления, к давлению, измеренному на выходе турбины 46 низкого давления, перед выпускным соплом.
[0054] Между турбиной 54 высокого давления и турбиной 46 низкого давления обычно предусмотрена промежуточная силовая рама 58 неподвижной конструкции 36 двигателя. Промежуточная силовая рама 58 дополнительно поддерживает системы 38 подшипников турбинной секции 28, а также направляет воздушный поток, входящий в турбину 46 низкого давления.
[0055] Воздушный поток С внутреннего контура сжимают при помощи компрессора 44 низкого давления, а затем - компрессора 52 высокого давления, смешивают с топливом и воспламеняют в камере 56 сгорания для формирования высокоскоростных газов сгорания, которые затем выходят через турбину 54 высокого давления и турбину 46 низкого давления. Промежуточная силовая рама 58 содержит направляющие лопатки 60, расположенные в канале течения воздушного потока внутреннего контура и действующие как входные направляющие лопатки турбины 46 низкого давления. Использование направляющих лопаток 60 промежуточной силовой рамы 58 в качестве входных направляющих лопаток турбины 46 низкого давления позволяет уменьшить длину турбины 46 низкого давления без увеличения аксиальной длины промежуточной силовой рамы 58. Уменьшение числа направляющих лопаток турбины 46 низкого давления или полное их устранение позволяет уменьшить аксиальную длину турбинной секции 28. Таким образом можно увеличить компактность газотурбинного двигателя 20 и повысить его удельную мощность.
[0056] Представленный газотурбинный двигатель 20 в одном из примеров представляет собой редукторный авиационный двигатель с высокой степенью двухконтурности. В других примерах осуществления газотурбинный двигатель 20 имеет степень двухконтурности, превышающую приблизительно шесть (6), а в одном из вариантов осуществления - превышающую приблизительно десять (10). Типовой редуктор 48 может представлять собой, например, эпициклическую зубчатую передачу, такую как планетарную зубчатую передачу, звездную зубчатую передачу или зубчатую передачу другого известного типа с передаточным отношением, превышающим приблизительно 2,3.
[0057] В одном из раскрытых вариантов осуществления газотурбинный двигатель 20 имеет степень двухконтурности, превышающую приблизительно десять (10:1), причем диаметр вентилятора значительно больше, чем наружный диаметр компрессора 44 низкого давления. Однако следует понимать, что вышеуказанные параметры соответствуют лишь одному из вариантов осуществления газотурбинного двигателя с редукторной конструкцией, а настоящее изобретение также применимо и к другим газотурбинным двигателям.
[0058] В связи с высокой степенью двухконтурности наружный контур В обеспечивает значительную величину тяги. Вентиляторная секция 22 двигателя 20 рассчитана на работу в определенных условиях полета - как правило, для крейсерского полета со скоростью около 0,8 Маха на высоте около 35000 футов. Условия полета со скоростью 0,8 Маха на высоте 35000 футов при работе двигателя в режиме устойчивого оптимального потребления топлива на единицу производимой тяги - также известного под названием устойчивого удельного расхода топлива на единицу тяги в час (TSFC, от англ. Thrust Specific Fuel Consumption) - определяют по промышленному стандартному параметру, измеряемому как отношение количества топлива, сжигаемого в течение одного часа, выраженного в фунтах массы, к тяге, вырабатываемой двигателем в такой точке устойчивого минимума, выраженной в фунтах-сила.
[0059] «Минимальное отношение давлений в вентиляторе» равно отношению давлений исключительно на лопатке вентилятора, без учета системы выходных направляющих лопаток вентилятора (FEGV, от англ. Fan Exit Guide Vane). Минимальное отношение давлений в вентиляторе согласно одному раскрываемому в данном описании неограничительному варианту осуществления составляет менее, чем приблизительно 1,50. В другом неограничительном варианте осуществления минимальное отношение давлений в вентиляторе в вентиляторе составляет менее, чем приблизительно 1,45.
[0060] «Минимальная скорректированная окружная скорость лопатки вентилятора» равна отношению реальной окружной скорости лопатки вентилятора в фут/сек, разделенной на промышленную стандартную температурную поправку, равную [(Токружающей среды °R) / (518.7°R)]0,5. В одном из раскрытых вариантов осуществления изобретения, не имеющем ограничительного характера, «минимальная скорректированная окружная скорость лопатки вентилятора» составляет меньше, чем приблизительно 1150 фут/сек.
[0061] Взятый в качестве примера газотурбинный двигатель содержит вентилятор 42, который в одном из неограничивающих вариантов осуществления, содержит меньше, чем приблизительно 26 лопаток вентилятора. В другом неограничивающем варианте осуществления, вентиляторная секция 22 содержит меньше, чем приблизительно 18 лопаток вентилятора. Кроме того, в одном из раскрытых вариантов осуществления турбина 46 низкого давления содержит не более, чем приблизительно 6 ступеней турбины, схематически обозначенных номером позиции 34. В другом неограничивающим примере осуществления турбина 46 низкого давления содержит приблизительно 3 или более ступеней турбины. Отношение числа лопаток вентилятора 42 к числу ступеней турбины низкого давления составляет от приблизительно 2,5 до приблизительно 8,5. Представленная турбина 46 низкого давления обеспечивает приводную мощность для вращения вентиляторной секции 22, при этом соотношение между числом ступеней 34 турбины в турбине 46 низкого давления и числом лопаток 42 в вентиляторной секции 22 обеспечивает возможность получения газотурбинного двигателя 20 с повышенным КПД передачи мощности.
[0062] Повышенный КПД передачи мощности получают отчасти благодаря более широкому использованию усовершенствованных материалов и методов изготовления турбинных лопаток, таких как отливка с направленной кристаллизацией и монокристаллические материалы, обеспечивающих возможность увеличения скорости вращения турбин и сокращения числа ступеней. Кроме того, в описываемой турбине 46 низкого давления используют диски усовершенствованной конфигурации, позволяющие обеспечить дальнейшее увеличение прочности при повышенных скоростях вращения турбины.
[0063] На фиг. 2 и 3 представлен пример устройства изменения скорости, представляющего собой эпициклический редуктор планетарного типа, в котором входной элемент представляет собой центральную солнечную шестерню 62.
Планетарные шестерни 64 (показана только одна) приводятся во вращение и пространственно разнесены посредством водила 68, которое вращается в том же направлении, что и солнечная шестерня 62. Вся система зубчатых колес заключена внутри кольцевой шестерни 66, жестко прикрепленной к неподвижному корпусу 36 двигателя (показано на фиг. 1). Вентилятор 42 прикреплен к водилу 68, которое приводит его в движение так, что направление вращения вентилятора 42 совпадает с направлением вращения водила 68, которое, в свою очередь, совпадает с направлением вращения входной солнечной шестерни 62.
[0064] В приведенных ниже чертежах использованы следующие обозначения для определения направления относительного вращения различных элементов газотурбинного двигателя 20. Вентиляторная секция показана со знаком «+», который соответствует первому направлению вращения. Вращение других элементов газотурбинного двигателя относительно вентиляторной секции 22 обозначено либо знаком «+», либо знаком «-». Знак «-» обозначает вращение в направлении, противоположном направлению вращения любых элементов, обозначенных знаком «+».
[0065] Кроме того, термин «турбина привода вентилятора» используется для обозначения турбины, которая обеспечивает приводную мощность для вращения лопаток 42 вентиляторной секции 22. Далее, термин «вторая турбина» используется для обозначения расположенной перед турбиной привода вентилятора турбины, которую не используют для приведения во вращение вентилятора 42. В описываемом примере турбина привода вентилятора представляет собой турбину 46 низкого давления, а вторая турбина представляет собой турбину 54 высокого давления. Однако следует понимать, что другие конфигурации турбинной секции, в которых могут быть предусмотрены дополнительные элементы помимо представленных турбин 54, 46 высокого и низкого давления, также входят в объем настоящего изобретения. Например, двигатель трехкаскадной конфигурации может содержать промежуточную турбину (не представлена), используемую для приведения во вращение вентиляторной секции 22, и также входит в объем настоящего изобретения.
[0066] В одном из раскрытых примеров осуществления изобретения (фиг. 2) турбина привода вентилятора представляет собой турбину 46 низкого давления, вследствие чего направления вращения вентиляторной секции 22 и турбины 46 низкого давления совпадают и обозначены одним и тем же знаком «+», определяющим направления вращения вентилятора 42 и турбины 46 низкого давления. Кроме того, в данном примере направление вращение турбины 54 высокого давления, или второй турбины, также совпадает с направлением вращения турбины 46 привода вентилятора. В другом примере, проиллюстрированном на фиг. 3, направление вращение турбины 54 высокого давления, или второй турбины, противоположно направлению вращения турбины привода вентилятора (турбины 46 низкого давления) и вентилятора 42.
[0067] Вращение компрессора 44 низкого давления и турбины 46 низкого давления в направлении, противоположном направлению вращения компрессора 52 высокого давления и турбины 54 высокого давления, создает более благоприятные аэродинамические условия в турбинной секции 28 при перемещении формируемого высокоскоростного потока газов сгорания из турбины 54 высокого давления в турбину 46 низкого давления. Относительное вращение в компрессорной и турбинной секциях создает приблизительно требуемые углы направления воздушного потока между секциями, что повышает общий КПД турбинной секции 28 и обеспечивает возможность уменьшения полной массы турбинной секции 28 благодаря сокращению или ликвидации аэродинамических профилей или целого ряда направляющих лопаток.
[0068] На фиг. 4 и 5 представлен другой пример осуществления устройства изменения скорости, представляющего собой эпициклический редуктор, называемый редуктором звездного типа, в которой входной элемент представляет собой центральную солнечную шестерню 62. Звездные шестерни 65 (представлена лишь одна) в фиксированном положении вращаются вокруг солнечной шестерни 62 и пространственно разнесены посредством водила 68, прикрепленного к неподвижному корпусу 36 (лучше видно на фиг. 1). Вся система зубчатых колес заключена внутри кольцевой шестерни 66, установленной с возможностью свободного вращения. Вентилятор 42 прикреплен к кольцевой шестерне 66, которая приводит его в движение так, что направление вращения вентилятора 42 противоположно направлению вращения входной солнечной шестерни 62. Соответственно, направление вращения компрессора 44 низкого давления и турбины 46 низкого давления противоположно направлению вращения вентилятора 42.
[0069] В одном из раскрытых примеров осуществления, показанном на фиг. 4, турбина привода вентилятора представляет собой турбину 46 низкого давления, при этом вентилятор 42 вращается в направлении, противоположном направлению вращения турбины 46 низкого давления и компрессора 44 низкого давления. Кроме того, в этом примере каскад 32 высокого давления, содержащий турбину 54 высокого давления и компрессор 52 высокого давления, вращается в направлении, противоположном направлению вращения вентилятора 42, и в одном направлении с каскадом 30 низкого давления, содержащим компрессор 44 низкого давления и турбину 46 привода вентилятора.
[0070] В другом примере газотурбинного двигателя, показанном на фиг. 5, турбина 54 высокого давления, или вторая турбина, вращается в направлении, совпадающем с направлением вращения вентилятора 42 и противоположном направлению вращения каскада 30 низкого давления, содержащего компрессор 44 низкого давления и турбину 46 привода вентилятора.
[0071] На фиг. 6 представлены подшипниковые узлы, расположенные вблизи переднего конца валов двигателя в точках 70 и 72, которые обеспечивают вращение внутреннего вала 40 и наружного вала 50, обеспечивая противодействие результирующим осевым силам, направленным параллельно оси А, создаваемым обратной нагрузкой турбины 46 низкого давления и турбины 54 высокого давления за вычетом нагрузок компрессора 52 высокого давления и компрессора 44 низкого давления, которые также вносят вклад в осевые силы, воздействующие, соответственно, на каскад 30 низкого давления и каскад 32 высокого давления.
[0072] В данном примере осуществления изобретения первый передний подшипниковый узел 70 установлен на участке неподвижной конструкции, обозначенной на схеме номером позиции 36, и поддерживает передний конец внутреннего вала 40. В данном примере первый передний подшипниковый узел 70 представляет собой упорный подшипник, который регулирует перемещения внутреннего вала 40 и, следовательно, каскада 30 низкого давления, в аксиальном направлении. Второй передний подшипниковый узел 72 установлен на неподвижной конструкции 36 и обеспечивает вращение каскада 32 высокого давления, по существу, исключая перемещение в аксиальном направлении наружного вала 50. Первый передний подшипниковый узел 70 установлен для поддержки внутреннего вала 40 в точке, расположенной перед соединением 88 ротора 90 компрессора низкого давления. Второй передний подшипниковый узел 72 установлен перед соединением, называемым втулкой 92, между ротором 94 компрессора высокого давления и наружным валом 50. Первый задний подшипниковый узел 74 поддерживает задний участок внутреннего вала 40. Первый задний подшипниковый узел 74 представляет собой роликовый подшипник, который обеспечивает возможность вращения, но не оказывает сопротивления смещению вала 40 в аксиальном направлении. Вместо этого задний подшипник 74 допускает тепловое расширение вала 74 между точкой своего расположения и подшипником 72. В данном примере первый задний подшипниковый узел 74 расположен после втулки 80 соединения между ротором 78 турбины низкого давления и внутренним валом 40. Второй задний подшипниковый узел 76 поддерживает задний участок наружного вала 50. В данном примере второй задний подшипниковый узел 76 представляет собой роликовый подшипник, удерживаемый соответствующей неподвижной конструкцией 36 через промежуточную силовую раму 58 и обеспечивающий передачу радиальной нагрузки через проточный канал турбины на корпус 36. Второй задний подшипниковый узел 76 поддерживает наружный вал 50 и, следовательно, каскад 32 высокого давления в точке, расположенной за втулкой 84 соединения между ротором 82 турбины высокого давления и наружным валом 50.
[0073] В данном раскрытом примере осуществления изобретения первый и второй передние подшипниковые узлы 70, 72, а также первый и второй задние подшипниковые узлы 74, 76 имеют опору снаружи от соответствующих соединительных втулок 80, 88 компрессоров или турбин, что обеспечивает охватывающие опорные конструкции соответствующих внутреннего вала 40 и наружного вала 50. Охватывающие опоры внутреннего вала 40 и наружного вала 50 обеспечивают их поддержку и сообщают им жесткость, требуемые для работы газотурбинного двигателя 20.
[0074] На фиг. 7 представлен другой пример конфигурации поддержки валов, содержащей первый и второй передние подшипниковые узлы 70, 72, выполненные с возможностью поддержки передних участков соответствующих внутреннего вала 40 и наружного вала 50. Первый задний подшипниковый узел 74 расположен после соединения 80 между ротором 78 и внутренним валом 40. Первый задний подшипниковый узел 74 представляет собой роликовый подшипник и поддерживает внутренний вал 40 посредством опоры охватывающей конфигурации. Поскольку охватывающая конфигурация может требовать дополнительной длины внутреннего вала 40, в альтернативном варианте может быть использована конфигурация, называемая подвешенной. В данном примере поддержку наружного вала 50 обеспечивает второй задний подшипниковый узел 76, расположенный перед соединением 84 между ротором 82 турбины высокого давления и наружным валом 50. Соответственно, втулка 84 соединения ротора 82 турбины высокого давления с наружным валом 50 подвешена после подшипникового узла 76. Такое расположение второго заднего подшипника 76 в подвешенной конфигурации потенциально позволяет уменьшить длину наружного вала 50.
[0075] Кроме того, такое расположение заднего подшипника 76 также может исключить потребность в использовании других несущих конструкций, таких как промежуточная силовая рама 58, так как подшипниковый узел 76 поддерживает турбину 54 высокого давления, а подшипниковый узел 74 поддерживает турбину 56 низкого давления. Стойка 58 промежуточной силовой рамы может дополнительно содержать дополнительный роликовый подшипник 74А, который может быть добавлен для сокращения мод вибрации внутреннего вала 40.
[0076] На фиг. 8А и 8В представлен другой пример конфигурации поддержки валов, содержащей первый и второй передние подшипниковые узлы 70, 72, выполненные с возможностью поддержки передних участков соответствующих внутреннего вала 40 и наружного вала 50. Первый задний подшипниковый узел 74 поддерживает внутренний вал 40 в точке, расположенной после соединения 80, при помощи охватывающей несущей конструкции. В данном примере для поддержки заднего участка наружного вала 50 предусмотрен роликоподшипниковый узел 86, установленный в зазоре 96, предусмотренном между наружной поверхностью внутреннего вала 40 и внутренней поверхностью наружного вала 50.
[0077] Роликовый подшипниковый узел 86 поддерживает задний участок наружного вала 50 на внутреннем валу 40. Использование роликового подшипникового узла 86 для поддержки наружного вала 50 исключает потребность в несущих конструкциях, соединенных с неподвижной конструкцией 36 через промежуточную силовую раму 58. Кроме того, представленный подшипниковый узел 86 может обеспечить возможность как уменьшения длины валов, так и поддержки наружного вала 50 в положении, по существу, соосном с втулкой 84 соединения ротора 82 турбины высокого давления и наружного вала 50. Как видно из чертежа, подшипниковый узел 86 расположен после втулки 82, причем его поддерживает крайний задний участок вала 50. На фиг. 9 представлен другой пример конфигурации опирания валов, содержащей первый и второй передние подшипниковые узлы 70, 72, обеспечивающие поддержку передних участков, соответственно, внутреннего вала 40 и наружного вала 50. Первый задний подшипниковый узел установлен в точке внутреннего вала 40, расп