Конструкция редукторного турбовентиляторного газотурбинного двигателя

Иллюстрации

Показать все

Газотурбинный двигатель содержит вентилятор, компрессорную секцию, камеру сгорания, сообщающуюся по текучей среде с компрессорной секцией, турбинную секцию, сообщающуюся по текучей среде с камерой сгорания, а также систему изменения скорости. Турбинная секция содержит турбину привода вентилятора и вторую турбину, при этом турбина привода вентилятора содержит множество ступеней турбины. Вентилятор содержит множество лопаток, выполненных с возможностью вращения вокруг оси, при этом соотношение между числом лопаток вентилятора и числом ступеней турбины привода вентилятора составляет от 2,5 до 8,5. Система изменения скорости приводится в действие турбиной привода вентилятора для вращения вентилятора вокруг оси. Турбина привода вентилятора содержит первый задний ротор, присоединенный к первому валу, а вторая турбина содержит второй задний ротор, присоединенный ко второму валу. Между первым валом и вторым валом образован кольцевой зазор. Первый подшипниковый узел расположен аксиально позади первого соединения между первым задним ротором и первым валом, а второй подшипниковый узел расположен в кольцевом зазоре, образованном между первым валом и вторым валом. Изобретение позволяет исключить потребность в несущих конструкциях, соединенных с неподвижной конструкцией через промежуточную силовую раму, уменьшить длину валов, обеспечить поддержку внешнего вала соосно с втулкой соединения ротора турбины высокого давления и внешнего вала, обеспечить более компактную турбинную секцию, а также снизить ее вес и потребление топлива. 19 з.п. ф-лы, 13 ил.

Реферат

Перекрестная ссылка на родственную заявку

[0001] Настоящая заявка является частичным продолжением заявки на патент США №13/363154, поданной 31 января 2012 г., и испрашивает приоритет согласно предварительной заявке на патент США №61/653794, поданной 31 мая 2012 г.

Уровень техники

[0002] Газотурбинный двигатель, как правило, содержит вентиляторную секцию, компрессорную секцию, секцию камеры сгорания и турбинную секцию. Воздух, поступающий в компрессорную секцию, сжимают и подают в секцию камеры сгорания, где происходит его смешивание с топливом и воспламенение для образования высокоскоростного потока газов сгорания. Высокоскоростной поток газов сгорания проходит через турбинную секцию, приводя в действие компрессор и вентиляторную секцию. Компрессорная секция обычно содержит компрессоры низкого и высокого давления, а турбинная секция содержит турбины низкого и высокого давления.

[0003] Турбина высокого давления приводит в действие компрессор высокого давления при помощи внешнего вала, причем вместе они составляют каскад высокого давления, а турбина низкого давления приводит в действие компрессор низкого давления при помощи внутреннего вала, причем вместе они составляют каскад низкого давления. Внутренний вал также может приводить в действие вентиляторную секцию. Безредукторный газотурбинный двигатель содержит вентиляторную секцию, приводимую в действие внутренним валом, причем компрессор низкого давления, турбина низкого давления и вентиляторная секция имеют одни и те же скорость и направление вращения.

[0004] Для приведения в действие вентиляторной секции могут быть использовано устройство изменения скорости, например, эпициклический редуктор, обеспечивающий вращение вентиляторной секции со скоростью, отличной от скорости вращения турбинной секции, с целью увеличения суммарного тягового КПД двигателя. В двигателях такой конструкции вал, приводимый во вращение одной из турбинных секций, приводит в действие эпициклический редуктор, который вращает вентиляторную секцию со скоростью, отличной от скорости вращения турбинной секции, что обеспечивает возможность вращения турбинной секции и вентиляторной секции со скоростями, более близкими к оптимальным.

[0005] В качестве ближайшего аналога настоящего изобретения можно назвать газотурбинный двигатель, известный из англоязычного документа: «Pratt and Whitney PW8000", Jane's Aero-Engines (JAENG), №7, 1 марта 2000, стр. 510-512, XP 008174951, ISSN: 1748-2534». Хотя редукторные конструкции имеют более высокий тяговый КПД, производители турбинных двигателей по-прежнему испытывают потребность в повышении КПД двигателей, в том числе термического КПД, КПД передачи и тягового КПД. Таким образом, задача и технический результат настоящего изобретения заключаются в улучшении эксплуатационных характеристик газотурбинных двигателей, в том числе в повышении термического КПД, КПД передачи и тягового КПД. Кроме того, задача и технический результат настоящего изобретения заключаются в исключении потребности в несущих конструкциях, соединенных с неподвижной конструкцией через промежуточную силовую раму; обеспечении возможности как уменьшения длины валов, так и поддержки внешнего вала в положении, по существу, соосном с втулкой соединения ротора турбины высокого давления и внешнего вала; и обеспечении более компактной турбинной секции, которая характеризуется пониженным весом и потреблением топлива и которую проще разместить под крылом летательного аппарата.

Сущность изобретения

[0006] Газотурбинный двигатель согласно иллюстративному варианту осуществления настоящего изобретения содержит, в числе прочих возможных элементов, компрессорную секцию, камеру сгорания, сообщающуюся по текучей среде с компрессорной секцией, и турбинную секцию, сообщающуюся по текучей среде с камерой сгорания. Турбинная секция содержит турбину привода вентилятора и вторую турбину. Турбина привода вентилятора содержит множество роторов турбины. Вентилятор содержит множество лопаток, способных вращаться вокруг оси, при этом соотношение между числом лопаток вентилятора и числом роторов турбины привода вентилятора составляет приблизительно от 2,5 до приблизительно 8,5. Редуктор приводится во вращение турбиной привода вентилятора для обеспечения вращения вентилятора вокруг оси. Турбина привода вентилятора содержит первый задний ротор, присоединенный к первому валу. Вторая турбина содержит второй задний ротор, присоединенный ко второму валу, при этом между первым валом и вторым валом образован кольцевой зазор. Первый подшипниковый узел расположен аксиально позади первого соединения между первым задним ротором и первым валом. Второй подшипниковый узел расположен в кольцевом зазоре, образованном между первым валом и вторым валом.

[0007] В другом варианте осуществления раскрытого выше двигателя первый подшипниковый узел и второй подшипниковый узел содержат роликовые подшипники.

[0008] В еще одном варианте осуществления любого из раскрытых выше двигателей компрессорная секция содержит первый компрессор, приводимый во вращение турбиной привода вентилятора посредством первого вала. Вторая компрессорная секция приводится во вращение второй турбиной посредством второго вала. Первый подшипник поддерживает для задней части первого вала. Второй подшипник поддерживает заднюю часть второго вала на первом валу.

[0009] В еще одном варианте осуществления любого из раскрытых выше двигателей передние части первого и второго вала опираются на упорный подшипник.

[0010] В еще одном варианте осуществления любого из раскрытых выше двигателей турбина привода вентилятора имеет первую площадь выходного сечения в первой точке выхода и вращается с первой скоростью. Вторая турбинная секция имеет вторую площадь выходного сечения во второй точке выхода и вращается со второй скоростью, которая превышает первую скорость. Первый характеризующий параметр определяется как произведение квадрата первой скорости и первой площади. Второй характеризующий параметр определяется как произведение квадрата второй скорости и второй площади. Характеризующее отношение первого характеризующего параметра ко второму характеризующему параметру составляет приблизительно от 0,5 до приблизительно 1,5.

[0011] В еще одном варианте осуществления любого из раскрытых выше двигателей характеризующее отношение больше или равно приблизительно 0,8.

[0012] В еще одном варианте осуществления любого из раскрытых выше двигателей первый характеризующий параметр больше или равен приблизительно 4.

[0013] В еще одном варианте осуществления любого из раскрытых выше двигателей система изменения скорости содержит редуктор. Вентилятор и турбина привода вентилятора вращаются в первом направлении вокруг оси. Вторая турбинная секция вращается во втором направлении, противоположном первому направлению.

[0014] В еще одном варианте осуществления любого из раскрытых выше двигателей система изменения скорости содержит редуктор. Вентилятор, турбинная секция привода вентилятора и вторая турбинная секция - все вращаются в первом направлении вокруг оси.

[0015] В еще одном варианте осуществления любого из раскрытых выше двигателей система изменения скорости содержит редуктор. Вентилятор и вторая турбинная секция вращаются в первом направлении вокруг оси. Турбина привода вентилятора вращается во втором направлении, противоположном первому направлению.

[0016] В еще одном варианте осуществления любого из раскрытых выше двигателей система изменения скорости содержит редуктор. Вентилятор и турбина привода вентилятора вращаются в первом направлении, а вторая турбинная секция вращается вокруг оси во втором направлении, противоположном первому направлению.

[0017] В еще одном варианте осуществления любого из раскрытых выше двигателей редуктор содержит понижающую передачу, которая имеет передаточное отношение большее, чем приблизительно 2,3.

[0018] В еще одном варианте осуществления любого из раскрытых выше двигателей вентилятор подает часть воздуха во внешний контур. Степень двухконтурности определяется как отношение доли воздуха, подаваемой во внешний контур к доле воздуха, подаваемой в компрессорную секцию, при этом степень двухконтурности превышает приблизительно 6,0.

[0019] В еще одном варианте осуществления любого из раскрытых выше двигателей степень двухконтурности составляет больше чем приблизительно 10,0.

[0020] В еще одном варианте осуществления любого из раскрытых выше двигателей степень повышения давления в вентиляторе составляет меньше чем приблизительно 1,5.

[0021] В еще одном варианте осуществления любого из раскрытых выше двигателей вентилятор содержит 26 или менее лопаток.

[0022] В еще одном варианте осуществления любого из раскрытых выше двигателей первая турбинная секция содержит приблизительно от 3 до 6 ступеней.

[0023] В еще одном варианте осуществления любого из раскрытых выше двигателей перепад давления в первой турбинной секции составляет больше чем приблизительно 5:1.

[0024] В еще одном варианте осуществления любого из раскрытых выше двигателей удельная мощность двигателя превышает приблизительно 1,5 фунт-сила/дюйм3 и меньше или равна приблизительно 5,5 фунт-сила/дюйм3.

[0025] В еще одном варианте осуществления любого из раскрытых выше двигателей вторая турбина содержит по меньшей мере две ступени и работает при первом отношении давлений. Турбина привода вентилятора содержит более двух ступеней и работает при втором отношении давлений, которое меньше, чем первое отношение давлений.

[0026] Различные примеры содержат определенные компоненты, показанные на чертежах, однако, варианты осуществления настоящего изобретения не ограничены этими конкретными комбинациями. Поэтому возможно использование компонентов или узлов из одного примера в сочетании с узлами или компонентами из другого примера.

[0027] Эти и другие раскрытые характеристики будут более понятными из следующего описания и прилагаемых чертежей, краткое описание которых приведено ниже.

Краткое описание чертежей

[0028] На фиг. 1 схематически представлен пример осуществления газотурбинного двигателя.

[0029] На фиг. 2 представлена схема, иллюстрирующая относительное вращение различных секций в примере осуществления газотурбинного двигателя.

[0030] На фиг. 3 представлена другая схема, иллюстрирующая относительное вращение различных секций в примере осуществления газотурбинного двигателя.

[0031] На фиг. 4 представлена другая схема, иллюстрирующая относительное вращение различных секций в примере осуществления газотурбинного двигателя.

[0032] На фиг. 5 представлена другая схема, иллюстрирующая относительное вращение различных секций в примере осуществления газотурбинного двигателя.

[0033] На фиг. 6 представлена схема конфигурации подшипников, обеспечивающих вращение каскадов низкого и высокого давления в примере осуществления газотурбинного двигателя.

[0034] На фиг. 7 представлена другая схема конфигурации подшипников, обеспечивающих вращение каскадов низкого и высокого давления в примере осуществления газотурбинного двигателя.

[0035] На фиг. 8А представлена другая схема конфигурации подшипников, обеспечивающих вращение каскадов низкого и высокого давления в примере осуществления газотурбинного двигателя.

[0036] На фиг. 8В представлен пример осуществления конфигурации подшипников по фиг. 8А в увеличенном виде.

[0037] На фиг. 9 представлена другая схема конфигурации подшипников, обеспечивающих вращение каскадов низкого и высокого давления в примере осуществления газотурбинного двигателя.

[0038] На фиг. 10 схематически представлен пример осуществления компактной турбинной секции.

[0039] На фиг. 11 схематически представлены в разрезе ступени газотурбинного двигателя по одному из примеров осуществления изобретения.

[0040] На фиг. 12 схематически представлен пример осуществления ротора турбины в плоскости, перпендикулярной оси вращения.

Подробное раскрытие изобретения

[0041] Фиг. 1 схематически иллюстрирует пример осуществления газотурбинного двигателя 20, который содержит вентиляторную секцию 22, компрессорную секцию 24, секцию 26 камеры сгорания и турбинную секцию 28. В альтернативных вариантах осуществления двигатель может содержать секцию форсажной камеры (не показана), а также другие системы и элементы. Вентиляторная секция 22 нагнетает воздушный поток В наружного контура, а компрессорная секция 24 засасывает воздушный поток С внутреннего контура, сжимая воздух и подавая его в секцию 26 камеры сгорания. В секции 26 камеры сгорания воздух смешивают с топливом и воспламеняют для формирования потока газов сгорания под высоким давлением, который выходит через турбинную секцию 28, в которой энергию, извлеченную из этого потока, используют для приведения в движение вентиляторной секции 22 и компрессорной секции 24.

[0042] Хотя описываемые не накладывающие ограничений варианты осуществления изобретения относятся к турбовентиляторному газотурбинному двигателю, следует понимать, что описываемые принципы не ограничены применением к системам с использованием турбовентиляторов и могут быть применены к турбинным двигателям других типов, например, к турбинному двигателю с трехкаскадной конструкцией, в котором предусмотрены три концентрических каскада, вращающихся вокруг общей оси, причем каскад низкого давления обеспечивает приведение в действие вентилятора турбиной низкого давления посредством редуктора, каскад промежуточного давления обеспечивает приведение в действие первого компрессора компрессорной секции турбиной промежуточного давления, а каскад высокого давления обеспечивает приведение в действие компрессора высокого давления компрессорной секции турбиной высокого давления.

[0043] Проиллюстрированный двигатель 20 обычно содержит низкоскоростной каскад 30 и высокоскоростной каскад 32, установленные с возможностью вращения вокруг центральной продольной оси А двигателя относительно неподвижной конструкции 36 двигателя с помощью нескольких систем 38 подшипников. Следует понимать, что могут быть предусмотрены другие или дополнительные различные системы 38 подшипников, установленные в различных местах.

[0044] Низкоскоростной каскад 30 обычно содержит внутренний вал 40, соединяющий вентилятор 42 и секцию компрессора 44 низкого давления (или первый компрессор) с секцией турбины 46 низкого давления (или первой турбиной). Внутренний вал 40 приводит вентилятор 42 во вращение через устройство для изменения скорости, которое может представлять собой редуктор 48, чтобы обеспечить вращение вентилятора 42 со скоростью, которая меньшей скорости низкоскоростного каскада 30. Высокоскоростной каскад 32 содержит внешний вал 50, соединяющий секцию компрессора 52 высокого давления (или второй компрессор) с секцией турбины 54 высокого давления (или второй турбиной). Внутренний вал 40 и внешний вал 50 установлены концентрично с возможностью вращения вокруг центральной продольной оси А двигателя посредством систем 38 подшипников.

[0045] Между компрессором 52 высокого давления и турбиной 54 высокого давления расположена камера 56 сгорания. В соответствии с одним из примеров турбина 54 высокого давления содержит по меньшей мере две ступени, образуя двухступенчатую турбину 54 высокого давления. В другом примере турбина 54 высокого давления содержит всего одну ступень. В контексте настоящего описания компрессор или турбина «высокого давления» испытывают воздействие более высокого давления, чем соответствующие компрессор или турбина «низкого давления».

[0046] Представленная турбина 46 низкого давления имеет отношение давлений, которое больше чем приблизительно 5. Отношение давлений представленной турбины 46 низкого давления определяют как отношение давления, измеренного перед входом турбины 46 низкого давления, к давлению, измеренному на выходе турбины 46 низкого давления, перед выпускным соплом.

[0047] Между турбиной 54 высокого давления и турбиной 46 низкого давления обычно предусмотрена промежуточная силовая рама 58 неподвижной конструкции 36 двигателя. Промежуточная силовая рама 58 дополнительно поддерживает системы 38 подшипников турбинной секции 28, а также направляет воздушный поток, входящий в турбину 46 низкого давления.

[0048] Воздушный поток С внутреннего контура сжимают при помощи компрессора 44 низкого давления, а затем - компрессора 52 высокого давления, смешивают с топливом и воспламеняют в камере 56 сгорания для формирования высокоскоростных газов сгорания, которые затем выходят через турбину 54 высокого давления и турбину 46 низкого давления. Промежуточная силовая рама 58 содержит направляющие лопатки 60, расположенные в канале течения воздушного потока внутреннего контура и действующие как входные направляющие лопатки турбины 46 низкого давления. Использование направляющих лопаток 60 промежуточной силовой рамы 58 в качестве входных направляющих лопаток турбины 46 низкого давления позволяет уменьшить длину турбины 46 низкого давления без увеличения аксиальной длины промежуточной силовой рамы 58. Уменьшение числа направляющих лопаток турбины 46 низкого давления или полное их устранение позволяет уменьшить аксиальную длину турбинной секции 28. Таким образом можно увеличить компактность газотурбинного двигателя 20 и повысить его удельную мощность.

[0049] Представленный газотурбинный двигатель 20 в одном из примеров представляет собой редукторный авиационный двигатель с высокой степенью двухконтурности. В других примерах осуществления газотурбинный двигатель 20 имеет степень двухконтурности, превышающую приблизительно шесть (6), а в одном из вариантов осуществления - превышающую приблизительно десять (10). Типовой редуктор 48 может представлять собой, например, эпициклическую зубчатую передачу, такую как планетарную зубчатую передачу, звездную зубчатую передачу или зубчатую передачу другого известного типа с передаточным числом, превышающим приблизительно 2,3.

[0050] В одном из раскрытых вариантов осуществления газотурбинный двигатель 20 имеет степень двухконтурности, превышающую приблизительно десять (10:1), причем диаметр вентилятора значительно больше, чем внешний диаметр компрессора 44 низкого давления. Однако следует понимать, что вышеуказанные параметры соответствуют лишь одному из вариантов осуществления газотурбинного двигателя с редукторной конструкцией, а настоящее изобретение также применимо и к другим газотурбинным двигателям.

[0051] В связи с высокой степенью двухконтурности внешний контур В обеспечивает значительную величину тяги. Вентиляторная секция 22 двигателя 20 рассчитана на работу в определенных условиях полета - как правило, для крейсерского полета со скоростью около 0,8 Маха на высоте около 35000 футов. Условия полета со скоростью 0,8 Маха на высоте 35000 футов при работе двигателя в режиме устойчивого оптимального потребления топлива на единицу производимой тяги - также известного под названием устойчивого удельного расхода топлива на единицу тяги в час (TSFC, от англ. Thrust Specific Fuel Consumption) - определяют по промышленному стандартному параметру, измеряемому как отношение количества топлива, сжигаемого в течение одного часа, выраженного в фунтах массы, к тяге, вырабатываемой двигателем в такой точке устойчивого минимума, выраженной в фунтах-сила.

[0052] «Минимальная степень повышения давления в вентиляторе» равна отношению давлений исключительно на лопатке вентилятора, без учета системы выходных направляющих лопаток вентилятора (FEGV, от англ. Fan Exit Guide Vane).

[0053] «Минимальная скорректированная окружная скорость лопатки вентилятора» равна отношению реальной окружной скорости лопатки вентилятора в фут/сек, разделенной на промышленную стандартную температурную поправку, равную [(Tram°R)/518,7)0,5]. В одном из описываемых вариантов осуществления изобретения, не налагающем каких-либо ограничений, «минимальная скорректированная окружная скорость лопатки вентилятора» составляет меньше чем приблизительно 1150 фут/сек.

[0054] Взятый в качестве примера газотурбинный двигатель содержит вентилятор 42, который в одном из неограничивающих вариантов осуществления, содержит меньше чем приблизительно 26 лопаток вентилятора. В другом неограничивающем варианте осуществления, вентиляторная секция 22 содержит меньше чем приблизительно 18 лопаток вентилятора. Кроме того, в одном из раскрытых вариантов осуществления турбина 46 низкого давления содержит не более, чем приблизительно 6 ступеней турбины, схематически обозначенных номером позиции 34. В другом неограничивающем примере осуществления турбина 46 низкого давления содержит приблизительно 3 или более ступеней турбины. Отношение числа лопаток вентилятора 42 к числу ступеней турбины низкого давления составляет от приблизительно 2,5 до приблизительно 8,5. Представленная турбина 46 низкого давления обеспечивает приводную мощность для вращения вентиляторной секции 22, при этом соотношение между числом ступеней 34 турбины в турбине 46 низкого давления и числом лопаток 42 в вентиляторной секции 22 обеспечивает возможность получения газотурбинного двигателя 20 с повышенным КПД передачи мощности.

[0055] Повышенный КПД передачи мощности получают отчасти благодаря более широкому использованию усовершенствованных материалов и методов изготовления турбинных лопаток, таких как отливка с направленной кристаллизацией и монокристаллические материалы, обеспечивающих возможность увеличения скорости вращения турбин и сокращения числа ступеней. Кроме того, в описываемой турбине 46 низкого давления используют диски усовершенствованной конфигурации, позволяющие обеспечить дальнейшее увеличение прочности при повышенных скоростях вращения турбины.

[0056] На фиг. 2 и 3 представлен пример устройства изменения скорости, представляющего собой эпициклический редуктор планетарного типа, в котором входной элемент представляет собой центральную солнечную шестерню 62. Планетарные шестерни 64 (показана только одна) приводятся во вращение и пространственно разнесены посредством водила 68, которое вращается в том же направлении, что и солнечная шестерня 62. Вся система зубчатых колес заключена внутри кольцевой шестерни 66, жестко прикрепленной к неподвижному корпусу 36 двигателя (показано на фиг. 1). Вентилятор 42 прикреплен к водилу 68, которое приводит его в движение так, что направление вращения вентилятора 42 совпадает с направлением вращения водила 68, которое, в свою очередь, совпадает с направлением вращения входной солнечной шестерни 62.

[0057] В приведенных ниже чертежах использованы следующие обозначения для определения направления относительного вращения различных элементов газотурбинного двигателя 20. Вентиляторная секция показана со знаком «+», который соответствует первому направлению вращения. Вращение других элементов газотурбинного двигателя относительно вентиляторной секции 22 обозначено либо знаком «+», либо знаком «-». Знак «-» обозначает вращение в направлении, противоположном направлению вращения любых элементов, обозначенных знаком «+».

[0058] Кроме того, термин «турбина привода вентилятора» используется для обозначения турбины, которая обеспечивает приводную мощность для вращения лопаток 42 вентиляторной секции 22. Далее, термин «вторая турбина» используется для обозначения расположенной перед турбиной привода вентилятора турбины, которую не используют для приведения во вращение вентилятора 42. В описываемом примере турбина привода вентилятора представляет собой турбину 46 низкого давления, а вторая турбина представляет собой турбину 54 высокого давления. Однако следует понимать, что другие конфигурации турбинной секции, в которых могут быть предусмотрены дополнительные элементы помимо представленных турбин 54, 46 высокого и низкого давления, также входят в объем настоящего изобретения. Например, двигатель трехкаскадной конфигурации может содержать промежуточную турбину (не представлена), используемую для приведения во вращение вентиляторной секции 22, и также входит в объем настоящего изобретения.

[0059] В одном из раскрытых примеров осуществления изобретения (фиг. 2) турбина привода вентилятора представляет собой турбину 46 низкого давления, вследствие чего направления вращения вентиляторной секции 22 и турбины 46 низкого давления совпадают и обозначены одним и тем же знаком «+», определяющим направления вращения вентилятора 42 и турбины 46 низкого давления. Кроме того, в данном примере направление вращение турбины 54 высокого давления, или второй турбины, также совпадает с направлением вращения турбины 46 привода вентилятора. В другом примере, проиллюстрированном на фиг. 3, направление вращение турбины 54 высокого давления, или второй турбины, противоположно направлению вращения турбины привода вентилятора (турбины 46 низкого давления) и вентилятора 42.

[0060] Вращение компрессора 44 низкого давления и турбины 46 низкого давления в направлении, противоположном направлению вращения компрессора 52 высокого давления и турбины 54 высокого давления, создает более благоприятные аэродинамические условия в турбинной секции 28 при перемещении формируемого высокоскоростного потока газов сгорания из турбины 54 высокого давления в турбину 46 низкого давления. Относительное вращение в компрессорной и турбинной секциях создает приблизительно требуемые углы направления воздушного потока между секциями, что повышает общий КПД турбинной секции 28 и обеспечивает возможность уменьшения полной массы турбинной секции 28 благодаря сокращению или ликвидации аэродинамических профилей или целого ряда направляющих лопаток.

[0061] На фиг. 4 и 5 представлен другой пример осуществления устройства изменения скорости, представляющего собой эпициклический редуктор, называемый редуктором звездного типа, в которой входной элемент представляет собой центральную солнечную шестерню 62. Звездные шестерни 65 (представлена лишь одна) в фиксированном положении вращаются вокруг солнечной шестерни 62 и пространственно разнесены посредством водила 68, прикрепленного к неподвижному корпусу 36 (лучше видно на фиг. 1). Вся система зубчатых колес заключена внутри кольцевой шестерни 66, установленной с возможностью свободного вращения. Вентилятор 42 прикреплен к кольцевой шестерне 66, которая приводит его в движение так, что направление вращения вентилятора 42 противоположно направлению вращения входной солнечной шестерни 62. Соответственно, направление вращения компрессора 44 низкого давления и турбины 46 низкого давления противоположно направлению вращения вентилятора 42.

[0062] В одном из раскрытых примеров осуществления изобретения, проиллюстрированном на фиг. 4, турбина привода вентилятора представляет собой турбину 46 низкого давления, и, следовательно, направление вращения вентилятора 42 противоположно направлению вращения турбины 46 низкого давления и компрессора 44 низкого давления. Кроме того, в данном примере направление вращения каскада 32 высокого давления, содержащего турбину 54 высокого давления и компрессор 52 высокого давления, противоположно направлению вращения вентилятора 42 и совпадает с направлением вращения каскада 30 низкого давления, содержащего компрессор 44 низкого давления и турбину 46 привода вентилятора.

[0063] В другом примере осуществления газотурбинного двигателя, проиллюстрированном на фиг. 5, направление вращения турбины 54 высокого давления, или второй турбины, совпадает с направлением вращения вентилятора 42 и противоположно направлению вращения ротора 30 низкого давления, содержащего компрессор 44 низкого давления и турбину 46 привода вентилятора.

[0064] На фиг. 6 представлены подшипниковые узлы, расположенные вблизи переднего конца валов двигателя в точках 70 и 72, которые обеспечивают вращение внутреннего вала 40 и внешнего вала 50, обеспечивая противодействие результирующим осевым силам, направленным параллельно оси А, создаваемым обратной нагрузкой турбины 46 низкого давления и турбины 54 высокого давления за вычетом нагрузок компрессора 52 высокого давления и компрессора 44 низкого давления, которые также вносят вклад в осевые силы, воздействующие, соответственно, на каскад 30 низкого давления и каскад 32 высокого давления.

[0065] В данном примере осуществления изобретения первый передний подшипниковый узел 70 установлен на участке неподвижной конструкции, обозначенной на схеме номером позиции 36, и поддерживает передний конец внутреннего вала 40. В данном примере первый передний подшипниковый узел 70 представляет собой упорный подшипник, который регулирует перемещения внутреннего вала 40 и, следовательно, каскада 30 низкого давления, в аксиальном направлении. Второй передний подшипниковый узел 72 установлен на неподвижной конструкции 36 и обеспечивает вращение каскада 32 высокого давления, по существу, исключая перемещение в аксиальном направлении внешнего вала 50. Первый передний подшипниковый узел 70 установлен для поддержки внутреннего вала 40 в точке, расположенной перед соединением 88 ротора 90 компрессора низкого давления. Второй передний подшипниковый узел 72 установлен перед соединением, называемым втулкой 92, между ротором 94 компрессора высокого давления и внешним валом 50. Первый задний подшипниковый узел 74 поддерживает задний участок внутреннего вала 40. Первый задний подшипниковый узел 74 представляет собой роликовый подшипник, который обеспечивает возможность вращения, но не оказывает сопротивления смещению вала 40 в аксиальном направлении. Вместо этого задний подшипник 74 допускает тепловое расширение вала 74 между точкой своего расположения и подшипником 72. В данном примере первый задний подшипниковый узел 74 расположен после втулки 80 соединения между ротором 78 турбины низкого давления и внутренним валом 40. Второй задний подшипниковый узел 76 поддерживает задний участок внешнего вала 50. В данном примере второй задний подшипниковый узел 76 представляет собой роликовый подшипник, удерживаемый соответствующей неподвижной конструкцией 36 через промежуточную силовую раму 58 и обеспечивающий передачу радиальной нагрузки через проточный канал турбины на корпус 36. Второй задний подшипниковый узел 76 поддерживает внешний вал 50 и, следовательно, каскад 32 высокого давления в точке, расположенной за втулкой 84 соединения между ротором 82 турбины высокого давления и внешним валом 50.

[0066] В данном раскрытом примере осуществления изобретения первый и второй передние подшипниковые узлы 70, 72, а также первый и второй задние подшипниковые узлы 74, 76 имеют опору снаружи от соответствующих соединительных втулок 80, 88 компрессоров или турбин, что обеспечивает охватывающие опорные конструкции соответствующих внутреннего вала 40 и внешнего вала 50. Охватывающие опоры внутреннего вала 40 и внешнего вала 50 обеспечивают их поддержку и сообщают им жесткость, требуемые для работы газотурбинного двигателя 20.

[0067] На фиг. 7 представлен другой пример конфигурации поддержки валов, содержащей первый и второй передние подшипниковые узлы 70, 72, выполненные с возможностью поддержки передних участков соответствующих внутреннего вала 40 и внешнего вала 50. Первый задний подшипниковый узел 74 расположен после соединения 80 между ротором 78 и внутренним валом 40. Первый задний подшипниковый узел 74 представляет собой роликовый подшипник и поддерживает внутренний вал 40 посредством опоры охватывающей конфигурации. Поскольку охватывающая конфигурация может требовать дополнительной длины внутреннего вала 40, в альтернативном варианте может быть использована конфигурация, называемая подвешенной. В данном примере поддержку внешнего вала 50 обеспечивает второй задний подшипниковый узел 76, расположенный перед соединением 84 между ротором 82 турбины высокого давления и внешним валом 50. Соответственно, втулка 84 соединения ротора 82 турбины высокого давления с внешним валом 50 подвешена после подшипникового узла 76. Такое расположение второго заднего подшипника 76 в подвешенной конфигурации потенциально позволяет уменьшить длину внешнего вала 50.

[0068] Кроме того, такое расположение заднего подшипника 76 также может исключить потребность в использовании других несущих конструкций, таких как промежуточная силовая рама 58, так как подшипниковый узел 76 поддерживает турбину 54 высокого давления, а подшипниковый узел 74 поддерживает турбину 56 низкого давления. Стойка 58 промежуточной силовой рамы может дополнительно содержать дополнительный роликовый подшипник 74А, который может быть добавлен для сокращения мод вибрации внутреннего вала 40.

[0069] На фиг. 8А и 8В представлен другой пример конфигурации поддержки валов, содержащей первый и второй передние подшипниковые узлы 70, 72, выполненные с возможностью поддержки передних участков соответствующих внутреннего вала 40 и внешнего вала 50. Первый задний подшипниковый узел 74 поддерживает внутренний вал 40 в точке, расположенной после соединения 80, при помощи охватывающей несущей конструкции. В данном примере для поддержки заднего участка внешнего вала 50 предусмотрен роликоподшипниковый узел 86, установленный в зазоре 96, предусмотренном между внешней поверхностью внутреннего вала 40 и внутренней поверхностью внешнего вала 50.

[0070] Роликовый подшипниковый узел 86 поддерживает задний участок внешнего вала 50 на внутреннем валу 40. Использование роликового подшипникового узла 86 для поддержки внешнего вала 50 исключает потребность в несущих конструкциях, соединенных с неподвижной конструкцией 36 через промежуточную силовую раму 58. Кроме того, представленный подшипниковый узел 86 может обеспечить возможность как уменьшения длины валов, так и поддержки внешнего вала 50 в положении, по существу, соосном с втулкой 84 соединения ротора 82 турбины высокого давления и внешнего вала 50. Как видно из чертежа, подшипниковый узел 86 расположен после втулки 82, причем его поддерживает крайний задний участок вала 50. На фиг. 9 представлен другой пример конфигурации опирания валов, содержащей первый и второй передние подшипниковые узлы 70, 72, обеспечивающие поддержку передних участков, соответственно, внутреннего вала 40 и внешнего вала 50. Первый задний подшипниковый узел установлен в точке внутреннего вала 40, расположенной перед соединением 80 между ротором 78 турбины низкого давления и внутренним валом 40.

[0071] Размещение первого заднего подшипникового узла 74 перед соединением 80 может быть использовано для уменьшения общей длины двигателя 20. Кроме того, размещение первого заднего подшипникового узла 74 перед соединением 80 обеспечивает возможность опоры на неподвижный корпус 38 через промежуточную силовую раму 58. Кроме того, в данном примере осуществления предусмотрен второй задний подшипниковый узел, установленный в охватывающей несущей конструкции после соединения 84 между внешним валом 50 и ротором 82. Соответственно, в данном примере осуществления первый и второй задние подшипниковые узлы 74, 76 имеют общую конструкцию, обеспечивающую опирание на неподвижную внешнюю конструкцию 38. Следует отметить, что такой общий несущий элемент упрощает конструкцию двигателя и уменьшает общую массу двигателя. Кроме того, сокращение числа необходимых несущих конструкций приводит к уменьшению общей массы и, таким образом, к дальнейшему повышению эффективности сгорания топлива воздушного судна.

[0072] На фиг. 10 представлен участок турбинной секции 28 по одному из примеров осуществления изобретения, содержащий турбину 46 низкого давления и турбину 54 высокого давления, причем между выходом турбины высокого давления и турбиной низкого давления расположена промежуточная силовая рама 58. Промежуточная силовая рама 58 и направляющая лопатка 60 расположены перед первой ступенью 98 турбины 46 низкого давления. Хотя на чертеже представлена лишь одна направляющая лопатка 60, подразумевается наличие нескольких направляющих лопаток 60, разнесенных в направлении по окружности. Направляющая лопатка 60 изменяет направление потока, поступающего из турбины 54 высокого давления при его приближении к первой ступени 98 турбины 46 низкого давления. Как можно видеть, для увеличения КПД желательно обеспечить такое направление потока между турбиной 54 высокого давления и турбиной 46 низкого давления направляющей лопаткой 60, при котором поток расширяющихся г