Гуманизированные il-6 и рецептор il-6

Иллюстрации

Показать все

Изобретение относится к биотехнологии, генетической инженерии, в частности к генетически модифицированным животным семейства мышиных, а именно к мышам и крысам, которые экспрессируют IL-6 человека и дополнительно могут экспрессировать гуманизированный IL-6Rα. Указанное животное несет замену своего гена, кодирующего IL-6, в его эндогенном локусе IL-6 на ген человека, кодирующий IL-6 человека, и дополнительно замену последовательности, кодирующей внеклеточный домен IL-6Rα животного, в его эндогенном локусе IL-6Rα, на последовательность, кодирующую внеклеточный домен IL-6Rα человека, с получением гуманизированного гена IL-6Rα. При этом ген человека, кодирующий IL-6 человека, и гуманизированный ген IL-6Rα находятся под контролем эндогенных регуляторных элементов указанного животного в его эндогенном локусе IL-6 и IL-6Rα соответственно. Указанный гуманизированный ген IL-6Rα содержит эндогенные трансмембранную и цитоплазматическую последовательности IL-6Rα указанного животного. Изобретение также раскрывает способ получения указанных животных и выделенные эмбриональные стволовые клетки для получения таких животных. Изобретение позволяет получать трансгенных указазных мышей и крыс без каких-либо патологий. 5 н. и 13 з.п. ф-лы, 15 ил., 3 табл., 3 пр.

Реферат

Область техники, к которой относится настоящее изобретение

Предоставлены отличные от человека животные с заменой эндогенных генов IL-6 и/или рецептора IL-6 отличного от человека животного. Гены IL-6 и/или рецептора IL-6 отличного от человека животного в эндогенных не принадлежащих человеку локусах заменены генами IL-6 человека и/или генами гуманизированного рецептора IL-6, содержащими последовательность человека. Отличные от человека животные, несущие гены IL-6 человека и/или гуманизированного рецептора IL-6, где у отличных от человека животных не выявляют ни одной или более патологий, характерных для отличных от человека животных, трансгенных по IL-6 человека.

Предшествующий уровень техники настоящего изобретения

В данной области известны мыши, трансгенные по гену IL-6 человека. Однако случайная вставка трансгена IL-6 человека в геном мыши приводит к плохорегулируемой экспрессии белка IL-6 человека, которая проявляет себя во множестве патологий у таких трансгенных мышей, включая в качестве неограничивающих примеров, плазмацитоз и гломерулонефрит. В результате эти мыши имеют ограниченную применимость.

Существует необходимость в экспрессии у отличных от человека животных, например, у мышей и крыс, IL-6 человека или гуманизированного IL-6 и/или рецептора IL-6 человека или гуманизированного рецептора IL-6. Существует необходимость в таких гуманизированных мышах, у которых не выявлено ни одной или более патологий, демонстрируемых трансгенными по hIL-6 мышами.

Краткое раскрытие настоящего изобретения

Согласно одному из аспектов предоставлены генетически модифицированные отличные от человека животные, у которых проведена замена эндогенных локусов генов IL-6 и/или рецептора IL-6, кодирующих эндогенные IL-6 и/или рецептор IL-6, на гены, кодирующие IL-6 человека или гуманизированный IL-6 и/или рецептор IL-6. Предоставлены животные семейства мышиных, у которых проведена замена эндогенного гена IL-6 в эндогенном локусе IL-6 мыши на ген IL-6 человека; и/или у которых проведена замена эндогенного гена рецептора IL-6 (или нуклеотидной последовательности, кодирующей его внеклеточный домен) на ген рецептора IL-6 человека (или нуклеотидную последовательность, кодирующую его внеклеточный домен).

Согласно одному из аспектов предоставлены генетически модифицированные животные семейства мышиных, которые экспрессируют ген IL-6 человека под контролем эндогенного промотора мыши и/или эндогенных регуляторных элементов мыши с эндогенного локуса IL-6 мыши.

Согласно одному из аспектов предоставлены генетически модифицированные животные семейства мышиных, которые экспрессируют ген рецептора IL-6 человека (или ген, кодирующий внеклеточный домен человека и трансмембранный и внутриклеточный домены мыши) под контролем эндогенного промотора мыши и/или эндогенных регуляторных элементов мыши с эндогенного локуса рецептора IL-6 мыши.

Согласно одному из аспектов предоставлены генетически модифицированные животные (например, животные семейства мышиных, например, мышь или крыса), которые экспрессируют белок IL-6 человека, где у отличного от человека животного не выявляют патологии, выбранной из плазмацитоза, гломерулонефрита, гломерулосклероза, мезангиального пролиферативного гломерулонефрита, лимфомы кишечника, лимфомы почка, спленомегалии, увеличения лимфоузлов, увеличения печени, мегакариоцитов в костном мозге, уплотненных аномальных плазматических клеток, инфильтрации плазматических клеток в легкие, или печень, или почки, мезангиальной клеточной пролиферации в почки, церебральной сверхэкспрессии IL-6, ветвящихся микроглиальных клеток в белом веществе мозга, реактивных астроцитов в головном мозге, почечной недостаточности, повышенного количества мегакариоцитов в селезенке, мышечной атрофии (например, атрофии икроножной мышцы), повышенного количества мышечных катепсинов В и B+L (например, приблизительно в 20 раз и в 6 раз) и их сочетания.

Согласно одному из вариантов осуществления отличное от человека животное несет нормальную популяцию В-клеток. Согласно одному из вариантов осуществления нормальная популяция В-клеток по количеству и антигенному фенотипу приблизительно соответствует животному дикого типа, например, мыши дикого типа.

Согласно одному из вариантов осуществления отличное от человека животное является представителем семейства мышиные (например, мышью или крысой) и экспрессирует IL-6 человека (hIL-6) в сыворотке на уровне приблизительно ниже 800 пг/мл, приблизительно ниже 700, 600, 500, 400, 300 или 200 пг/мл. В конкретном варианте осуществления животное семейства мышиных экспрессирует hIL-6 в сыворотке на уровне приблизительно от 50 до приблизительно не более 200 пг/мл, согласно другому варианту осуществления приблизительно 75-125 пг/мл, согласно другому варианту осуществления приблизительно 100 пг/мл.

Согласно одному из аспектов предоставлено отличное от человека животное, которое экспрессирует hIL-6 и/или hIL-6R, где отличное от человека животное экспрессирует hIL-6 и/или hIL-6R с эндогенного не принадлежащего человеку локуса IL-6 и/или эндогенного не принадлежащего человеку локуса hIL-6R. В конкретном варианте осуществления отличное от человека животное является представителем семейства мышиных (например, мышью или крысой).

Согласно одному из аспектов предоставлена генетически модифицированная мышь, которая экспрессирует hIL-6 с эндогенного локуса IL-6 мыши, где эндогенный ген IL-6 мыши заменен геном hIL-6.

Согласно одному из вариантов осуществления мышь несет клетку, которая экспрессируют рецептор IL-6 (IL-6R), который на поверхности клетки содержит внеклеточный домен человека. Согласно одному из вариантов осуществления клетка представляет собой лимфоцит. Согласно одному из вариантов осуществления лимфоцит представляет собой В-клетку.

Согласно одному из вариантов осуществления приблизительно 6,8 т.п.н. в эндогенном локусе IL-6 мыши, включая экзоны с 1 по 5 и а 3'-нетранслируемую последовательность, удалены и замещены последовательностью гена IL-6 человека длиной приблизительно 4,8 т.п.н., содержащей экзоны с 1 по 5 гена IL-6 человека. В конкретном варианте осуществления ген IL-6 человека содержит экзоны с 1 по 5 гена IL-6 человека ВАС человека CTD-2369M23.

Согласно одному из аспектов предоставлена генетически модифицированная мышь, которая экспрессирует IL-6 с гена IL-6 человека, где мышь экспрессирует IL-6 человека в сыворотке.

Согласно одному из вариантов осуществления сыворотка у мышей выявляют сывороточную концентрацию IL-6 человека приблизительно от 25 до приблизительно 300 пг/мл, от 50 до приблизительно 250 пг/мл, от 75 до приблизительно 200 пг/мл или от 100 до приблизительно 150 пг/мл. В конкретном варианте осуществления уровень IL-6 человека в сыворотке мыши составляет приблизительно 100 пг/мл.

Согласно одному из вариантов осуществления уровень общего специфичного для В-клеток маркера в костном мозге мыши является приблизительно таким же, как уровень специфичного для В-клеток маркера в костном мозге мыши дикого типа. Согласно одному из вариантов осуществления уровень общего специфичного для В-клеток маркера в селезенке является приблизительно таким же, как уровень специфичного для В-клеток маркера в селезенке мыши дикого типа. Согласно одному из вариантов осуществления общий специфичный для В-клеток маркер выбран из В220, CD 19, CD20, CD22, CD79a, CD79b, L26 и Pax-5 (BSAP).

Согласно одному из аспектов предоставлена генетически модифицированная мышь, которая экспрессирует hIL6, где у мыши не выявляют свойства, выбранного из плазмацитоза, спленомегалии, увеличения лимфоузлов, уплотненных аномальных плазматических клеток и их сочетания.

Согласно одному из вариантов осуществления мышь обладает селезенкой, масса которой составляет приблизительно такую же массу (от массы тела), что и у мыши дикого типа. Согласно одному из вариантов осуществления масса лимфоузлов мыши составляет приблизительно такую же массу (от массы тела), что и у мыши дикого типа. Согласно одному из вариантов осуществления плазматические клетки мыши не демонстрируют характеристик плазмацитоза, характерных для мышей со сверхэкспрессией IL-6 человека.

Согласно одному из вариантов осуществления у мыши не выявляют гломерулонефрита.

Согласно одному из вариантов осуществления у мыши определяют уровень мезангиальных клеток, сравнимый с мышью дикого типа.

Согласно одному из аспектов предоставлена генетически модифицированная мышь, которая экспрессирует hIL6 с эндогенного локуса IL-6 мыши, где эндогенный ген IL-6 мыши заменен геном hIL-6, где у мыши не выявляют свойства, выбранного из морфологически детектируемой нейропатологии, реактивных астроцитов и их сочетания. Согласно одному из вариантов осуществления мышь обладает головным мозгом, который морфологически неотличим от головного мозга мыши дикого типа. Согласно одному из вариантов осуществления мышь обладает тканью головного мозга, которая демонстрирует уровень реактивных астроцитов, не выше чем уровень реактивных астроцитов мыши дикого типа.

Согласно одному из вариантов осуществления мышь не экспрессирует IL-6 человека в нейронах. Согласно одному из вариантов осуществления у мыши присутствуют уровни активированных астроцитов, сравнимые с уровнями активированных астроцитов у мыши дикого типа.

Согласно одному из вариантов осуществления мышь обладает ветвящимися микроглиальными клетками в белом веществе, где ветвящиеся микроглиальные клетки присутствуют в количестве, эквивалентном количеству ветвящихся микроглиальных клеток у мыши дикого типа.

Согласно одному из вариантов осуществления у мыши не выявляют реактивного астроцитоза. Согласно одному из вариантов осуществления белое вещество мыши морфологически неотличимо от белого вещества мыши дикого типа. Согласно одному из вариантов осуществления белое вещество мыши гистологически неотличима от белого вещества мыши дикого типа в отношении гистохимического окрашивания реактивных астроцитов.

Согласно одному из вариантов осуществления мышь обладает головным мозгом, который морфологически неотличим от головного мозга мыши дикого типа. Согласно одному из вариантов осуществления мышь обладает тканью головного мозга, которая демонстрирует уровень реактивных астроцитов не выше, чем уровень реактивных астроцитов у мыши дикого типа.

Согласно одному из аспектов предоставлена генетически модифицированная мышь, которая экспрессирует hIL6 с эндогенного локуса IL-6 мыши, где эндогенный ген IL-6 мыши заменен геном hIL-6, где у мыши не выявляют свойства, выбранного из продолжительности жизни, укороченной приблизительно на 50% или более, почечной недостаточности, гипергаммаглобулинемии, повышенного количества мегакариоцитов в селезенке, повышенного количества мегакариоцитов в костном мозге, плазмацитоза селезенки, плазмацитоза тимуса, плазмацитоза лимфоузлов, гломерулонефрита, гломерулосклероза и их сочетания.

Согласно одному из вариантов осуществления продолжительность жизни мышей превосходит 20 недель. Согласно одному из вариантов осуществления продолжительность жизни мышей превосходит 30 недель, 40 недель или 50 недель. Согласно одному из вариантов осуществления мыши демонстрируют продолжительность жизни приблизительно равную продолжительности жизни мышей дикого типа той же линии.

Согласно одному из вариантов осуществления у мышей определяют уровень мегакариоцитов в селезенке, который приблизительно не превышает уровень мегакариоцитов в селезенки у мышей дикого типа.

Согласно одному из вариантов осуществления мыши обладают лимфоидными органами, которые по существу не содержат аномальных и плотно расположенных плазмацитоидных клеток.

Согласно одному из вариантов осуществления у мышей определяют уровни гамма-глобулинов в сыворотке, эквивалентные уровням гамма-глобулинов в сыворотке у мышей дикого типа. Согласно одному из вариантов осуществления уровни α1- и β-глобулинов в сыворотке мышей эквивалентны уровням α1- и β-глобулинов в сыворотке мышей дикого типа той же линии.

Согласно одному из аспектов предоставлена генетически модифицированная мышь, которая экспрессирует IL-6 человека с эндогенного локуса IL-6 мыши, где эндогенный ген IL-6 мыши заменен геном hIL-6, где у мыши не выявляют свойства, выбранного из мышечной атрофии, повышенного уровень катепсина В по сравнению с мышью дикого типа той же линии, повышенного уровня катепсинов А+В по сравнению с мышью дикого типа той же линии, увеличенной массы печени по сравнению с мышью дикого типа той же линии и их сочетания.

Согласно одному из вариантов осуществления масса печени мыши на 12 неделе составляет приблизительно 800-900 мг.

Согласно одному из вариантов осуществления у мыши на всем протяжении ее жизни выявляют уровень катепсина В, который приблизительно не превышает уровня, наблюдаемого у мышей дикого типа. Согласно одному из вариантов осуществления у мыши на всем протяжении ее жизни выявляют уровень катепсинов А+В, который приблизительно не превышает уровня, наблюдаемого у мышей дикого типа.

Согласно одному из вариантов осуществления у мыши во взрослом возрасте определяют массу икроножной мышцы, которая находится в пределах приблизительно 10% от массы у мыши дикого типа той же линии. Согласно одному из вариантов осуществления у мыши во взрослом возрасте определяют массу икроножной мышцы, которая приблизительно является такой же, как масса икроножной мышцы мыши дикого типа.

Согласно одному из аспектов предоставлена мышь, которая несет нуклеотидную последовательность, кодирующую белок IL-6 человека, где нуклеотидная последовательность, кодирующая белок IL-6 человека, полностью или частично замещает эндогенную нуклеотидную последовательность, кодирующую эндогенный белок IL-6 мыши.

Согласно одному из аспектов предоставлена мышь, которая несет замену в эндогенном локус рецептора IL-6 мыши внеклеточного домена IL-6Rα мыши на последовательность внеклеточного домена IL-6Rα человека с формированием химерного гена IL-6Rα человека/мыши.

Согласно одному из вариантов осуществления химерный ген IL-6Rα находится под контролем промотора мыши и/или регуляторных элементов мыши в эндогенном локусе IL-6Rα мыши.

Согласно одному из вариантов осуществления последовательность длиной приблизительно 35,4 т.п.н., кодирующая внеклеточный домен IL-6Rα мыши, замещена последовательностью длиной приблизительно 45,5 т.п.н., кодирующей внеклеточный домен IL-6R человека.

Согласно одному из вариантов осуществления последовательность, кодирующая внеклеточный домен IL-6R человека, содержит первый (ATG) кодон от экзона 1 до экзона 8.

Согласно одному из вариантов осуществления замещаемая последовательность IL-6Rα мыши содержит непрерывную последовательность, которая содержит экзоны с 1 по 8. В конкретном варианте осуществления удалены экзоны с 1 по 8 и часть интрона 8.

Согласно одному из аспектов предоставлена генетически модифицированная мышь, несущая замену в эндогенном локусе IL-6 мыши гена мыши, кодирующего IL-6 на ген человека, кодирующий IL-6 человека, где ген человека, кодирующий IL-6 человека, находится под контролем эндогенных регуляторных элементов мыши в эндогенном локусе IL-6 мыши.

Согласно одному из вариантов осуществления ген человека, кодирующий IL-6 человека представляет собой ген IL-6 человека ВАС ID CTD-2369M23.

Согласно одному из вариантов осуществления мышь экспрессирует IL-6Rα мыши. Согласно одному из вариантов осуществления мышь экспрессирует IL-6Rα человека. Согласно одному из вариантов осуществления гуманизированный IL-6Rα содержит внеклеточный домен человека. Согласно одному из вариантов осуществления гуманизированный IL-6Rα содержит трансмембранный домен мыши и цитоплазматический домен мыши. Согласно одному из вариантов осуществления мышь экспрессирует гуманизированный IL-6Rα, который включает гуманизирование внеклеточного домена, но не трансмембранного и/или цитозольного домена.

Согласно одному из вариантов осуществления у мыши не выявляют свойства, выбранного из плазмацитоза, гломерулосклероза, гломерулонефрита, почечной недостаточности, гипергаммаглобулинемии, повышенного количество мегакариоцитов в селезенке, повышенного количества мегакариоцитов в костном мозге, спленомегалии, увеличение лимфоузлов, уплотненных аномальных плазматических клеток и их сочетания.

Согласно одному из аспектов предоставлена генетически модифицированная мышь, несущая гуманизированный эндогенный ген IL-6Rα мыши, где гуманизирование включает замену последовательности, кодирующей внеклеточный домен IL-6Rα мыши, на последовательность, кодирующую внеклеточный домен IL-6Rα человека, в эндогенном локусе IL-6Rα мыши.

Согласно одному из вариантов осуществления непрерывная последовательность мыши, содержащая экзоны с 1 по 8 мыши, замещена непрерывным геномным фрагментом последовательности IL-6Rα человека, кодирующей внеклеточный домен IL-6Rα человека. Согласно одному из вариантов осуществления непрерывный геномный фрагмент последовательности IL-6Rα человека, кодирующей внеклеточный домен, происходит из BACCTD-2192J23.

Согласно одному из вариантов осуществления мышь дополнительно несет гуманизированный ген IL-6. Согласно одному из вариантов осуществления у мыши в эндогенном локусе IL-6 мыши присутствует замена гена IL-6 мыши на ген IL-6 человека. Согласно одному из вариантов осуществления гуманизированный ген IL-6 находится под контролем эндогенных регуляторных элементов мыши.

Согласно одному из аспектов предоставлен способ получения гуманизированной мыши, включающий замену последовательности гена мыши, кодирующей IL-6 мыши на ген человека, кодирующий IL-6 человека.

Согласно одному из вариантов осуществления замену проводят в эндогенном локусе IL-6 мыши, и ген человека, кодирующий IL-6 человека, функционально связан с эндогенными регуляторными последовательностями мыши.

Согласно одному из аспектов предоставлен способ получения гуманизированной мыши, включающий замену экзонов мыши, кодирующих последовательности внеклеточного домена мыши IL-6Rα геномным фрагментом человека, кодирующим последовательности внеклеточного домена IL-6Rα человека с получением гуманизированного гена IL-6Rα.

Согласно одному из вариантов осуществления замену проводят в эндогенном локусе IL-6Rα мыши, и гуманизированный ген IL-6Rα функционально связан с эндогенными регуляторными последовательностями мыши.

Согласно одному из аспектов предоставлена генетически модифицированная мышь, несущая гуманизированный ген IL-6Rα, содержащий замену последовательности, кодирующей внеклеточный домен мыши, последовательностью внеклеточного домена человека, где гуманизированный ген IL-6Rα содержит трансмембранную последовательность мыши и цитоплазматическую последовательность мыши; где мышь дополнительно несет ген, кодирующий IL-6 человека, где ген, кодирующий IL-6 человека, находится под контролем эндогенных регуляторных элементов IL-6 мыши.

Согласно одному из вариантов осуществления мышь не способна к экспрессии полностью принадлежащий мыши IL-6Rα и не способна к экспрессии IL-6 мыши.

В различных аспектах генетически модифицированная мыши, описываемая в настоящем документе, несет генетические модификации в зародышевой линии.

Согласно одному из аспектов предоставлены ткань, клетка или фрагмент мембраны мыши, как описано в настоящем документе.

Согласно одному из вариантов осуществления ткань или клетка получены у мыши, которая экспрессирует белок IL-6 человека, но не экспрессирует белок IL-6 мыши. Согласно одному из вариантов осуществления ткань или клетка получены у мыши, которая экспрессирует гуманизированный белок IL-6Rα, но не белок IL-6Rα мыши. Согласно одному из вариантов осуществления гуманизированный белок IL-6Rα содержит внеклеточный домен человека и трансмембранный домен мыши и цитозольный домен мыши. Согласно одному из вариантов осуществления ткань или клетка получены у мыши, которая экспрессирует IL-6 человека, гуманизированный IL-6Rα и не экспрессирует IL-6 мыши и не экспрессирует IL-6Rα, который содержит внеклеточный домен мыши.

Согласно одному из аспектов предоставлен комплекс клетки мыши ex vivo, несущей гуманизированный IL-6Rα (внеклеточный домен человека и трансмембранный домен мыши и цитоплазматический домен мыши) и IL-6 человека.

Согласно одному из аспектов предоставлен эмбрион мыши, несущий генетическую модификацию, как описано в настоящем документе.

Согласно одному из аспектов предоставлен эмбрион мыши-хозяина, который содержит донорскую клетку, несущую генетическую модификацию, как описано в настоящем документе.

Согласно одному из аспектов предоставлена плюрипотентная или тотипотентная клетка отличного от человека животного, несущая генетическую модификацию, как описано в настоящем документе. Согласно одному из вариантов осуществления клетка представляет собой клетку мыши. Согласно одному из вариантов осуществления клетка представляет собой ES клетку.

Согласно одному из аспектов предоставлена яйцеклетка мыши, где яйцеклетка мыши несет эктопическую хромосому мыши, где эктопическая хромосома мыши содержит генетическую модификацию, как описано в настоящем документе.

Согласно одному из аспектов мышь, эмбрион, яйцеклетка или клетка, которая генетически модифицированы, чтобы нести ген IL-6 человека или ген IL-6α человека или гуманизированный ген IL-6Rα человека принадлежат мышам линии C57BL, выбранной из C57BL/A, C57BL/An, C57BL/GrFa, C57BL/KaLwN, C57BL/6, C57BL/6J, C57BL/6ByJ, C57BL/6NJ, C57BL/10, C57BL/10ScSn, C57BL/10Cr и C57BL/01a. Согласно другому варианту осуществления мышь принадлежит линии 129, выбранной из группы, состоящей из линий, представляющих собой 129Р1, 129Р2, 129РЗ, 129Х1, 129S1 (например, 129S1/SV, 12981/SvIm), 129S2, 129S4, 129S5, 129S9/SvEvH, 129S6 (129/SvEvTac), 129S7, 129S8, 129Т1, 129Т2 (см., например, Festing et al. (1999) Revised nomenclature for strain 129 mice. Mammalian Genome 10:836, также см., Auerbach et al (2000) Establishment and Chimera Analysis of 129/SvEv- and C57BL/6-Derived Mouse Embryonic Stem Cell Lines). В конкретном варианте осуществления генетически модифицированная мышь представляет собой метиса указанной выше линии 129 и указанной выше линии C57BL/6. В другом конкретном варианте осуществления мышь представляет собой метиса указанных выше линий 129 или метиса указанных выше линий BL/6. В конкретном варианте осуществления линия 129 для метиса представляет собой линию 129S6 (129/SvEvTac). Согласно другому варианту осуществления мышь принадлежит линии BALB, например, линии BALB/c. В еще одном варианте осуществления мышь представляет собой метиса линии BALB и другой указанной выше линии. Согласно одному из вариантов осуществления мышь представляет собой мышь Swiss или Swiss Webster.

Каждый из аспектов и вариантов осуществления, описываемых в настоящем документе, можно использовать вместе, если недвусмысленно или явно не исключено из контекста варианта осуществления или аспекта.

Краткое описание чертежей

На фиг. 1 предоставлена иллюстрация без соблюдения масштаба геномных локусов IL-6 человека (вверху) и мыши (внизу). Экзоны I, II, III, IV и V (у человека и мышь) указаны закрытыми рамками в правой части фигуры. Выбранные предполагаемые регуляторные области указаны открытыми рамками в левой части фигуры.

На фиг. 2 представлен ответ острой фазы (уровень mSAA) в присутствии или отсутствие скипидара у мышей дикого типа, мышей с гуманизированным внеклеточным доменом IL-6R и мышей с гуманизированными генами IL-6 и IL-6R.

На фиг. 3 представлен зависимый от скипидара ответ острой фазы (SAA) у мышей дикого типа в отсутствии или присутствии антитела к IL-6R мыши (слева); и зависимый от скипидара ответ острой фазы у мышей с гуманизированными IL-6/IL-6R в отсутствие или присутствии антитела к IL-6R человека (справа).

На фиг. 4 представлен анализ FACS для В-клеток селезенки мышей с IL-6 дикого типа и гуманизированным IL-6; общий маркер В-клеток.

На фиг. 5 представлен анализ FACS для Т-клеток селезенки мышей с IL-6 дикого типа и гуманизированным IL-6; Т-клетки хелперы и цитотоксические Т-клетки.

На фиг. 6 представлен анализ FACS для клеток селезенки мышей с IL-6 дикого типа и гуманизированным IL-6; Ly6G/C(Gr1).

На фиг. 7 представлен анализ FACS для клеток селезенки мышей с IL-6 дикого типа и гуманизированным IL-6; NK клетки и грану лоциты (Ly6Ghi+/CD116hi+).

На фиг. 8 представлен анализ FACS В-клеток крови мышей с IL-6 дикого типа и гуманизированным IL-6; общий маркер В-клеток.

На фиг. 9 представлен анализ FACS Т-клеток крови мышей с IL-6 дикого типа и гуманизированным IL-6; Т-клетки хелперы и цитотоксические Т-клетки.

На фиг. 10 представлен анализ FACS для миелоидных клеток крови мышей с IL-6 дикого типа и гуманизированным IL-6; клетки Gr1+.

На фиг. 11 представлен анализ FACS для миелоидных клеток крови мышей с IL-6 дикого типа и гуманизированным IL-6; CD11b в сравнении с.Ly6G/C(Gr1).

На фиг. 12 представлен анализ FACS для миелоидных клеток крови мышей с IL-6 дикого типа и гуманизированным IL-6; клетки, несущие DX5, в сравнении с клетками, несущими CD11b.

На фиг. 13 представлен анализ FACS костного мозга IgM/CD24/B220 для мышей с IL-6 дикого типа и гуманизированным IL-6. Вверху: нормальное развитие в костном мозге. Внизу: анализ FACS для дикого типа, гетерозигот hIL-6 и гомозигот hIL-6 (окрашивание IgM).

На фиг. 14 представлен анализ FACS костного мозга IgM/CD24/B220 для мышей с IL-6 дикого типа и гуманизированным IL-6. Вверху: нормальное развитие в костном мозге. Внизу: анализ FACS для дикого типа, гетерозигот hIL-6 и гомозигот hIL-6 (окрашивание CD24).

На фиг. 15 представлен анализ FACS костного мозга CD43 и В220 для мышей с IL-6 дикого типа и гуманизированным IL-6. Вверху: нормальное развитие в костном мозге. Внизу: анализ FACS для дикого типа, гетерозигот hIL-6 и гомозигот hIL-6 (окрашивание CD43).

Подробное раскрытие настоящего изобретения

IL-6 и IL-6R

Рецептор IL-6 (IL-6R) давно охарактеризован, как рецептор для стимулирующего В-клетки фактора (BSF-2 или фактор стимуляции В-клеток 2; также, BCDF или фактор дифференцировки В-клеток), ответственного за индукцию синтеза иммуноглобулина В-клетками (Yamasaki et al. (1988) Cloning and Expression of the Human Interleukin-6(BSF-2/IFNβ 2) Receptor, Science 241: 825-828). IL-6 впервые описан как интерферон-β2 как результат его открытия при поиске индуцируемого вирусами белка, названного интерферон-β, при обработке фибробластов человека дцРНК поли(I)поли(С) с индукцией противовирусного ответа (Weissenbach et al. (1980) Two interferon mRNAs in human fibroblasts: In vitro translation and Escherichia coli cloning studies, Proc. Natl Acad. Sci. USA 77(12): 7152-7156; Keller et al. (1996) Molecular and Cellular Biology of Interleukin-6 and Its Receptor, Frontiers in Bioscience 1: d340-357).

кДНК человека кодирует белок из 468 аминокислот, содержащий 19-членную сигнальную последовательность и цитоплазматический домен приблизительно из 82 аминокислот, в котором отсутствует тирозинкиназный домен (см. там же). N-концевой (внеклеточный) домен белка содержит домен Ig суперсемейства приблизительно из 90 аминокислот, домен из 250 аминокислот между доменом Ig суперсемейства и мембраной, трансмембранный участок приблизительно из 28 аминокислот (см. там же). Внеклеточный домен рецептора связывается с его лигандом IL-6, который инициирует ассоциацию с gp130 в мембране, и образуется комплекс, который передает сигнал; цитоплазматический домен по опубликованным данным не передает сигнал (Taga et al. (1989) Interleukin-6 Triggers the Association of Its Receptor with a Possible Signal Transducer, gp130, Cell 58: 573-581)). Фактически, растворимая форма IL-6R с отсутствием цитоплазматического домена может ассоциировать с IL-6 и связывать gp130 на поверхности клетки и эффективно передавать сигнал (там же).

Гомология hIL-6R и mIL-6R на уровне белка составляет приблизительно только 54%; гомология трансмембранных доменов составляет приблизительно 79%, тогда как гомология цитоплазматических доменов составляет приблизительно 54% (Sugito et al. (1990)).

Природный лиганд IL-6R, IL-6, впервые выделен из культур трансформированных HTLV-1 Т-клеток (см., Hirano et al. (1985) Purification to homogeneity and characterization of human В cell differentiation factor (BCDF or BSFβ-2), Proc. Natl. Acad. Sci. USA 82: 5490-5494). кДНК для гена IL-6 человека клонировали по меньшей мере дважды, один раз как BSF-2 (см., Hirano et al. (1086) Complementary DNA fro a novel human interleukin (BSF-2) that induces В lymphocytes to produce immunoglobulin. Nature 324: 73-76) и один раз как IFNβ 2 (см., Zilberstein et al. (1986) Structure and expression of cDNA and genes for human interferon-beta-2, a distinct species inducible by growth-stimulatory cytokines, EMBO 5: 2529-2537), хотя с тех пор показано, что у рекомбинантного IL-6 человека не выявляют детектируемой активности IFN.

IL-6 человека представляет собой белок из 184 аминокислот, у которого выявлено только приблизительно 42% гомологии с IL-6 мыши, хотя геномная организация генов человека и мыши в основном является сходной, и промоторные области генов человека и мыши содержат участок в 400 п.н., который является высококонсервативным (см., Tanabe et al. (1988) Genomic Structure of the Murine IL-6 Gene: High Degree Conservation of Potential Regulatory Sequences between Mouse and Human, J. Immunol. 141(11): 3875-3881).

Ген IL-6 человека приблизительно состоит из 5 т.п.н. (Yasukawa et al. (1987) Structure and expression of human В cell stimulatory factor-2 (BSC-2/IL-6) gene, EMBO J. 6(10): 2939-2945), тогда как ген IL-6 мыши состоит приблизительно из 7 т.п.н. (Tanabe et al. (1988) Genomic Structure of the Murine IL-6 Gene: High Degree Conservation of Potential Regulatory Sequences between Mouse and Human, J. Immunol. 141(11): 3875-3881). Гены IL-6 мыши и человека по опубликованным данным содержат высококонсервативную 5'-фланкирующую последовательность, важную для регуляции. На фиг. 1 представлена схематическая диаграмма геномные локусы IL-6 человека и мыши (без соблюдения масштаба). Экзоны I, II, III, IV и V (у человека и мыши) указаны закрытыми рамками в правой части фигуры. Выбранные предполагаемые регуляторные области указаны открытыми рамки в левой части фигуры. Предполагаемые регуляторные области у людей представляют собой, слева направо, глюкокортикоидный элемент от -557 до -552; короную последовательность IFN-энхансера от -472 до -468; глюкокортикоидный элемент от -466 до -461; АТ-богатую область от -395 до -334, консенсусный участок связывания АР-1 от -383 до -277; коровую последовательность IFN-энхансера от -253 до -248; содержащий GGAAA мотив от -205 до -192; последовательность, гомологичную SRE c-fos от -169 до -82, содержащую коровую последовательность IFN-энхансера, элемент ответа на цАМФ, мотив GGAAA, участок ССААТ и GC-богатую область; и участок связывания АР-1 от -61 до -55; и участок ССААТ от -34 до -30. Предполагаемые регуляторные области у мыши представляют собой, слева направо, GC-богатую область от -553 до -536, глюкокортикоидный элемент от -521 до -516 и от -500 до -495; участок Z-ДНК от -447 до -396; участок связывания АР-1, перекрывающий коровую последовательность IFN-энхансера от -277 до -288, мотив GGAAA, перекрывающий коровую последовательность IFN-энхансера от -210 до -195; область гомологии с SRE c-fos от -171 до -82, содержащий элемент ответа на цАМФ, мотив GGAAA, перекрывающий коровую последовательность IFN-энхансера, и GC-богатую область; и, участок связывания АР-1 от -61 до -55. Длина кодонов мыши I-V составляют 19, 185, 114, 150 и 165, соответственно. Длины интронов мыши составляют: I-II, 162 п.н.; II-III, 1253 п.н.; III-IV, 2981 п.н.; IV-V, 1281 п.н. Длина кодонов человека I-V составляет 19, 191, 114, 147 и 165. Длины интронов человека составляют I-II, 154; II-III, 1047; III-IV, 706; IV-V, 1737. Данные по организации генома взяты из Tanabe et al. (1988) и Yasukawa et al. (1987) Structure and expression of human В cell stimulatory factor-2 (BSF-2/IL-6) gene, EMBO J. 9(10): 2939-2945.

На основе сходства 5'-фланкирующей последовательности генов IL-6 мыши и человека можно обоснованно полагать, что гены IL-6 мыши и человека, по-видимому, регулируются сходным образом. У множества типов клеток в ответ на IL-1, TNF, PDGF, IFNJ3, сыворотку, поли(1)поли(С) и циклогексимид увеличивается экспрессия IL-6 (см. Tanabe et al. (1988). IL-6 у людей опосредует ответ острой фазы, гемопоэз, В-клеточную дифференцировку, активацию Т-клеток, рост, и/или дифференцировку, и/или активацию множества типов клеток (например, гепатоцитов, фибробластов, эндотелиальных клеток, нейронов, клеток гипофиза, лимфом, миелом, карцином молочной железы, NK клеток, макрофагов, остеокластов и т.д.) (рассмотрено, например, в Heinrich et al. (1990), Kishimoto et al. (1989) и Keller et al. (1996); Sugita et al. (1990) Functional Murine Interleukin Receptor with Intracisternal A Particle Gene Product at its Cytoplasmic Domain, J. Exp. Med. 171: 2001-2009).

Однако на практике у мышей, трансгенных по IL-6 человека, выявляют множество существенных и инвалидизирующих патологий, отражающих значительную плейотропию гена IL-6. Трансгенные мыши, несущие фрагмент 6,6 т.п.н., содержащий ген IL-6 человека и энхансер μ (Eμ), продуцируют высокие концентрации hIL-6 и экстремально высокие уровни IgGI (в 120-400 раз выше, чем у мышей дикого типа), отражая нарушение регуляции IL-6, которое сопровождается плазмацитозом, мезангиальным пролиферативным гломерулонефритом и высокими уровнями мегакариоцитов в костном мозге (Suematsu et al. (1989) IgGI plasmacytosis in interleukin 6 transgenic mice, Proc. Nati Acad. Sci. USA 86: 7547-7551). Нарушенная регуляция IL-6 и/или IL-6R ассоциирована с миеломами, плазмацитомами, ревматоидным артритом, болезнью Кастлемана, мезангиальным пролиферативным гломерулонефритом, миксомой сердца, неоплазиями плазматических клеток, псориазом и другими нарушениями (см., Kishimoto, Т. (1989) The Biology of Interleukin-6, Blood 74(1): 1-10; Sugita et al. (1990); also, Hirano et al. (1990) Biological and clinical aspects of interleukin 6, Immunology Today 11(12): 443-449)). IL-6 также участвует в поддержание уровней внутрипростатических андрогенов при лечении пациентов с раком предстательной железы посредством депривации андрогенов по паракринному и/или аутокринному механизмам, потенциально приводя к устойчивому к кастрации росту опухолей предстательной железы (Chun et al. (2009) Interleukin-6 Regulates Androgen Synthesis in Prostate Cancer Cells, Clin. Cancer Res. 15: 4815-4822).

Белок человека закодирован как белок из 212 аминокислот, в зрелой форме, после отщепления сигнальной последовательности из 28 аминокислот, белок из 184 аминокислот. Он содержит два участка N-гликозилирования и два участка O-гликозилирования, и IL-6 человека в некоторых клетках фосфорилирован. Белок мыши закодирован как белок из 211 аминокислот, в зрелой форме, после отщепления сигнальной последовательности из 23 аминокислот, белок из 187 аминокислот. O-участки гликозилирования присутствуют, а участки N-гликозилирования - нет. (См. обзоры об IL-6, например, Heinrich et al. (1990) Interleukin-6 and the acute phase response, Biochem. J. 265: 621-636).

IL-6 обладает плейотропным действием. Рецептор IL-6 выявлен на активированных В-клетках, но по опубликованным данным не на покоящихся В-клетках. В отличие от этого, IL-6R выявлен на покоящихся Т-клетках и по опубликованным данным может стимулировать дифференцировку, активацию и пролиферацию Т-клеток, включая дифференцировку Т-клеток в цитотоксические Т-лимфоциты в присутствии IL-2.

Мыши с гуманизированными IL-6/внеклеточным доменом IL-6R и опосредуемый IL-6 ответ острой фазы

У людей IL-6 индуцирует ответ острой фазы. Ранние исследования с гепатоцитами человека установили, что IL-6 индуцирует белки острой фазы, например, такие как С-реактивный белок (CRP) и сывороточный амилоид A (SAA) зависимым от дозы и времени образом (рассмотрено в Heinrich et al. (1990) Interleukin-6 and the acute phase response, Biochem. J. 265: 621-636). Таким образом, отличные от человека животные, например, мыши или крысы, содержащие гуманизированные гены IL-6 и IL-6R, являются подходящими системами для измерения ответа острой фазы, опосредуемого IL-6 человека. Такие животные также подходят для определения индукции веществом опосредуемого IL-6 ответа острой фазы, посредством воздействия веществом на животное с гуманизированными IL-6/IL-6R, как описано в настоящем документе, и измерения уровня одного или более белков (или РНК) ответа острой фазы. Согласно одному из вариантов осуществления на гуманизированное животное воздействуют веществом в присутствии антагониста IL-6R человека и измеряют уровень одного или более белков (или РНК) ответа острой фазы, где снижение уровня белка (или РНК) ответа острой фазы в присутствии антагониста IL-6R человека указывает на опосредуемый IL-6R человека ответ острой фазы.

IL-6 человека может связывать IL-6R человека и IL-6R мыши; IL-6 мыши связывается с IL-6R мыши, но не с IL-6R человека (отсутствие связывания mIL-6 с hIL-6R можно выявлять, тогда как hIL-6 может конкурировать с mIL-6 за связывание с mIL-6R; Coulie et al. (1989) High- and low-affinity receptors for murine interleukin 6. Distinct distribution on В and Т cells, Eur. J. Immunol. 19: 2107-211); также см., например, Peters et al. (1996) The Function of the Soluble Interleukin 6 (IL-6) Receptor In Vivo: Sensitization of Human Soluble IL-6 Receptor Transgenic Mice Towards IL-6 and Prolongation of the Plasma Half-life of IL-6, J. Exp. Med. 183: 1399-1406). Таким образом, клетки человека, несущие hIL-6R, у мыши (например, в ксеногенном трансплантате), не могут зависеть от эндогенного mIL-6 для осуществления опосредуемых IL-6 функций, включая в качестве неограничивающих примеров роль IL-6 в развитии клеток крови или лимфоцитов (например, гемопоэз, активация В-клеток, активация Т-клеток и т.д.).

В смешанной системе in vivo, содержащей ген IL-6 мыши дикого типа и ген IL-6R человека (но не ген IL-6R мыши), не ожидается, что индуктор ответа острой фазы будет индуцировать детектируемые уровни белков острой фазы, которые будут указывать на ответ острой фазы. Однако гуманизированная мышь, как описано в настоящем документе, несущая гуманизированный ген IL-6 и ген IL-6R, содержащий гуманизированную