Твёрдая полиалюмоксановая композиция, катализатор полимеризации олефинов, способ получения олефиновых полимеров и способ получения твёрдой полиалюмоксановой композиции

Иллюстрации

Показать все

Изобретение относится к твердой полиалюмоксановой композиции для использования в качестве сокатализатора и носителя катализатора. Композиция включает полиалкилалюмоксан и триалкилалюминий и имеет растворимость в n-гексане при 25°С менее 0,50% мол, определенную способом (i), имеет растворимость в толуоле при 25°С менее 1,0% мол, определенную способом (ii), где мольная доля алкильных групп от триалкилалюминия составляет 13% мол или более относительно общего количества молей алкильных групп от полиалкилалюмоксана и алкильных групп от триалкилалюминия, определенных по отношению к растворенным в тетрагидрофуране-d8 компонентам способом (iii). Способ (i): 2 г твердой полиалюмоксановой композиции добавляют к 50 мл n-гексана, выдерживают при 25°С; смесь перемешивают в течение 2 часов и отфильтровывают с получением фильтрата и остатка; концентрацию алюминия в фильтрате измеряют с помощью атомно-эмиссионной спектроскопии с индуктивно связанной плазмой (ICP-AES) и определяют растворимость как соотношение атомов алюминия в фильтрате по отношению к количеству атомов алюминия, соответствующих 2 г твердой полиалюмоксановой композиции. Способ (ii): растворимость измеряют так же, как в способе (i), за исключением того, что вместо n-гексана используют толуол. Способ (iii): 0,5 мл тетрагидрофурана (ТГФ)-d8 (тяжелый растворитель) добавляют к 10 мг твердой полиалюмоксановой композиции; смесь перемешивают при 25°С в течение 2 часов; мольную долю определяют исследуя растворенные в ТГФ - d8 компоненты с помощью 1Н-ЯМР при температуре измерения 24°С. Также предложены катализатор полимеризации олефинов и способ получения олефиновых полимеров. Изобретение позволяет получить твердую полиалюмоксановую композицию, пригодную для использования в качестве сокатализатора и носителя катализатора в комбинации с катализатором полимеризации олефинов без использования твердых неорганических носителей, таких как кремнезем. 3 н. и 6 з.п. ф-лы, 18 ил., 16 табл., 160 пр.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение касается твердых полиалюмоксановых композиций, используемых в реакции олигомеризации или полимеризации олефинов, катализаторов полимеризации олефинов, включающих эти композиции, и способов получения олефиновых полимеров в присутствии катализатора.

Настоящее изобретение также касается способов получения твердых полиалюмоксановых композиций и твердых полиалюмоксановых композиций, полученных этим способом.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Полиалюмоксановые композиции, которые представляют собой частичные гпдролизаты алкилалюминия, как известно, являются сокатализаторами, активизирующими комплексы переходных металлов - основных катализаторов производства олефиновых олигомеров или полимеров. В частности широко известно, что полученные из триметилалюминия полиметилалюмоксановые композиции проявляют превосходную сокаталитическую активность (патентная литература 1).

Полиметилалюмоксановые композиции получают реакцией частичного гидролиза триметилалюминия (патентная литература 2 и 3) или пиролизом соединений ал кил алюминия, имеющих алюминий-кислород-углеродную связь и полученных реакцией триметилалюминия с кислородсодержащим органическим соединением, таким как карбоновая кислота (патентная литература 4 и 5). Такие полиметилалюмоксановые композиции продаются в форме растворов в ароматических углеводородных растворителях, таких как толуол.

При получении олефинового полимера путем добавления в полимеризационную систему раствора полиметилалюмоксановой композиции в качестве сокатализатора реакции полимеризации олефина невозможно контролировать морфологию получаемого олефинового полимера. Кроме того, затрудняется стабильность производства, так как часто возникают проблемы загрязнения, связанные с отложением олефинового полимера в аппарате, таком как реактор полимеризации.

Для реализации стабильного производства олефиновых полимеров с хорошей формой макрочастиц описаны способы, включающие нанесенный сокатализатор, в которых полиметилалюмоксановая композиция нанесена на твердый неорганический носитель, такой как кремнезем, глинозем, алюмосиликат или хлорид магния (патентная литература 6-9). Преимущество использования твердого неорганического носителя состоит в том, что можно контролировать диаметр частиц носителя. При производстве олефиновых олигомеров или полимеров диаметр частиц носителя выбирают в соответствии с типом процесса, а именно, является ли процесс полимеризацией жидкофазным, типа суспезионной полимеризации, или используют аппарат для газо-фазной полимеризации.

Однако, такие нанесенные сокатализаторы, которые содержат полиметилалюмоксановую композицию, нанесенную на твердый неорганический носитель, обладают значительно более низкой сокаталитческой активностью, чем в случае использования полиметилалюмоксановой композиции самой по себе, что является экономически не выгодным. Кроме того, твердые неорганические носители имеют тенденцию оставаться в полученных полимерах как инородные примеси и ухудшать свойства полимеров.

Для решения вышеупомянутых проблем были предложены различные подходы, в которых полиалюмоксановые композиции получают в виде твердых тел так, чтобы сами полиалюмоксановые композиции могли использоваться как носители. Некоторыми из таких описанных производственных процессов являются следующие: способ, в котором полиалюмоксановая композиция в форме раствора в ароматическом углеводородном растворителе типа толуола контактирует с плохим или слабым растворителем, и таким образом твердая полиалюмоксановая композиция выпадает в осадок (патентная литература 10 и 11), способ, в котором получают твердую суспензию путем добавления к полиметилалюмоксану соли (патентная литература 12), способ, в котором получают полиметилалюмоксан, растворенный в плохом или слабом растворителе, который реагирует с органический бороксином (патентная литература 13), способ, подобный описанному выше способу, в котором кислородсодержащее соединение реагирует с содержащей твердый осадок суспензией при контакте с плохим или слабым растворителем (патентная литература 14), и способ, в котором нагревают полиметилалюмоксановую композицию в форме специального раствора с низким содержанием триметилалюминия (патентная литература 15).

Однако, способы производства, описанные в патентной литературе 10-14 проблематичны с экономической точки зрения, поскольку полиалюмоксановая композиция в виде твердого продукта извлекается с низкой степенью извлечения по отношению к полиалюмоксановой композиции, используемой в качестве исходного материала. Кроме того, эти способы конкретно не рассматривают, как регулировать диаметр частиц полиалюмоксановой композиции или однородность диаметра частиц. Кроме того, в патентной литературе 10-15 не упоминается морфология полимеров, как например удельный насыпной вес частиц олефинового полимера, полученного при использовании комбинации твердой полиалюмоксановой композиции с соединением переходного металла. В частности, способ, описанный в патентной литературе 14, не обеспечивает получение полиалюмоксановой композиции с однородным диаметром частиц из-за использования суспензии.

То есть вышеупомянутые обычные методы сосредоточены прежде всего на преодолении недостатков при использовании твердых неорганических носителей и по существу не отражают достоинства использования твердых неорганических носителей. Например, использование кварцевого носителя подавляет растворение полиалюмоксановых компонентов в растворителях посредством формирования алюминий-кислородных ковалентных связей при реакции гидроксильных групп на поверхности кремнезема с полиметилалюмоксаном. В результате, на стадиях приготовления катализатора и/или стадиях полимеризации (олигомеризации) растворение или так называемое выщелачивание сокатализатора, основного компонента катализатора и реакция между композицией, основным компонентом катализатора и сокатализатором в реакционном растворителе подавляются до минимума. Следовательно, могут быть получены олефиновые полимеры, имеющие высокий удельный насыпной вес, при обеспечении превосходной стабильности процесса.

При использовании полиалюмоксановой композиции в качестве носителя сокатализатора в процессе жидко-фазной полимеризации, такой как суспензионная полимеризация олефинов, или в процессе газо-фазной полимеризации необходимо подавлять процесс выщелачивания до минимума для предотвращения загрязнения. Кроме того, учитывая то, что стадии полимеризации (олигомеризации) в основном включают введение высоко полярных веществ, типа антистатических агентов, имеющих в молекуле высоко полярную функциональную группу, такую как ионная функциональная группа или полиэфирная функциональная группа, выщелачивание должно подавляться достаточно полно даже в присутствии таких высоко полярных веществ.

В патентной литературе 11 описано, что полученная в примерах твердая полиметилалюмоксановая композиция имеет растворимость в n-гексане 1,0% мол. или больше. В патентной литературе 15 раскрыто, что описанная в примерах твердая полиметилалюмоксановая композиция содержит 12% мол. или меньше мольных долей метальных групп от триметилалюминия по отношению к общему количеству молей метальных групп, что показывают измерения с помощью 1Н-ЯМР в тетрагидрофуране-d8, который является высоко полярным соединением. А именно описано, что растворимые в тетрагидрофуране-d8 компоненты твердой полиметилалюмоксановой композиции имеют высокое содержание полиметилалюмоксана и низкое содержание триметилалюминия.

В патентной литературе 15 описан способ получения твердой полиметилалюмоксановой композиции с высокой однородностью диаметра частиц. Однако, нет никаких определенных сведений относительно того, как регулируют диаметр частиц твердой полиметилалюмоксановой композиции. Согласно описанию чтобы получить твердую полиметилалюмоксановую композицию с высокой степенью извлечения относительно количества полиметилалюмоксановой композиции, используемой в качестве исходного материала, необходимо в качестве исходного материала использовать полиметилалюмоксановую композицию в форме специального раствора. Однако, исходный материал имеет низкое содержание триметилалюминия и этот факт вызывает проблему стабильности при хранении исходного сырья (патентная литература 8). Кроме того, производство специального раствора полиметилалюмоксановой композиции влечет за собой использование высокой концентрации вредного и опасного триметилалюминия как сырья. Таким образом, чтобы осуществить производство в коммерческом масштабе, необходимо предъявлять жесткие условия к производственному оборудованию.

В патентной литературе 15 используют раствор полиметилалюмоксановой композиции, полученный реакцией триметилалюминия с кислородсодержащим органическим соединением. При таких условиях технически невозможно регулировать желаемый диаметр частиц твердого полиалюмоксана, полученного из раствора полиалюмоксановой композиции. Обычно, твердые полиалюмоксановые композиции, используемые в процессах жидко-фазной полимеризации, такой как суспензионная полимеризации, или в процессах газо-фазной полимеризации желательно имеют такой диаметр частиц носителя, который является оптимальным для производственного процесса, особенно когда композиции применяются на существующем для таких процессах оборудовании. С другой стороны, с экономической точки зрения желательно, чтобы твердые полиалюмоксановые композиции получались с высокой степенью извлечения относительно количества полиалюмоксановой композиции, используемой в качестве исходного сырья, ввиду дороговизны используемых в качестве исходного материала полиалюмоксановых композиций. Однако, не сообщается ни о каком способе, с помощью которого можно получать твердую полиалюмоксановую композицию, имеющую однородный диаметр частиц, из коммерчески доступного раствора полиалюмоксановой композиции, позволяющем регулировать желаемый диаметр частиц при высокой степени извлечения.

СПИСОК ЛИТЕРАТУРЫ ПАТЕНТНАЯ ЛИТЕРАТУРА

Патентная литература 1: US №4960878

Патентная литература 2: JP-A-H06-329680

Патентная литература 3: JP-A-2000-509040

Патентная литература 4: JP-A-2005-263749

Патентная литература 5: JP-A-2000-505785

Патентная литература 6: JP-A-2002-179721

Патентная литература 7: JP-A-2003-327611

Патентная литература 8: JP-A-2008-069361

Патентная литература 9: JP-A-2009-001829

Патентная литература 10: JP-B-H07-42301

Патентная литература 11: JP-A-2000-95810

Патентная литература 12: JP-A-H08-319309

Патентная литература 13: JP-A-H07-70144

Патентная литература 14: JP-A-H07-300486

Патентная литература 15: WO 2010/055652

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

ОБЛАСТЬ ТЕХНИКИ

Объектом настоящего изобретения является твердая полиалюмоксановая композиция, пригодная для использования в качестве сокатализатора и носителя катализатора в комбинации с катализатором олигомеризации или полимеризации олефина без использования твердых неорганических носителей, таких как кремнезем. Другим объектом изобретения является твердая полиалюмоксановая композиция с регулируемым и однородным диаметром частиц, которая может использоваться в существующих процессах жидко-фазной полимеризации, такой как суспензионная полимеризация олефинов, или в процессах газо-фазной полимеризации. Дальнейшим объектом изобретения является твердая полиалюмоксанования композиция, при которой на стадиях приготовления катализатора и/или стадиях полимеризации (олигомеризации) выщелачивание сокатализатора, основного компонента катализатора и реакция между основным компонентом катализатора и сокатализатором в реакционном растворителе подавляются до минимума; а именно, твердая полиалюмоксановая композиция, проявляющая минимальную растворимость по отношению к растворителям.

Дальнейшим объектом изобретения является катализатор полимеризации (олигомеризации) олефинов, включающий твердую полиалюмоксановую композицию и соединение переходного металла, и способ получения олефиновых полимеров в присутствии этого катализатора.

Другим объектом изобретения является способ получения твердой полиалюмоксановой композиции при обеспечении высокой извлечения и однородности диаметра частиц. Дальнейшим объектом изобретения является способ производства, который не требует использования в качестве исходного материала специального раствора полиалюмоксановой композиции, а именно, способ, при котором можно получать твердую полиалюмоксановую композицию из коммерчески доступного раствора полиалюмоксановой композиции в качестве сырья.

РЕШЕНИЕ ЗАДАЧИ

Чтобы достигнуть вышеупомянутых целей изобретатели провели обширные исследования. В результате было найдено, что выщелачивание, которое происходит на стадиях приготовления катализаторов полимеризации (олигомеризации) олефинов, может быть подавлено путем снижения до максимально возможной степени растворимости твердых полиалюмоксановых композиций в растворителях. Настоящее изобретение было осуществлено на основании этого вывода.

Далее изобретатели нашли, что контакт специального раствора полиалюмоксановой композиции (А) со специальным органическим соединением (В), описанным ниже, сопровождаемый реакцией между соединениями с алюминий-углеродными связями, присутствующими в полиалюмоксановой композиции (А), и органическим соединением (В), при нагревании приводит к осаждению твердой полиалюмоксановой композиции с высокой степенью извлечения по отношению к полиалюмоксановой композиции, используемой в качестве исходного материала, при этом композиция имеет очень однородный диаметр частиц, который регулируется до любого желаемого диаметра частиц.

В соответствии с изобретением твердая полиалюмоксановая композиция включает полиалкилалюмоксан и триалкилалюминий,

имеет растворимость в n-гексане при 25°С менее 0,50% мол., определенную описанным ниже способом (i),

имеет растворимость в толуоле при 25°С менее 1,0% мол., определенную описанным ниже способом (ii),

мольная доля алкильных групп от триалкилалюминия составляет 13% мол. или более относительно общего количества молей алкильных групп от полиалкилалюмоксана и алкильных групп от триалкилалюминия, определенных по отношению к растворенным в тетрагидрофуране-с18 компонентам описанным ниже способом (iii).

[Способ (i)]

2 г твердой полиалюмоксановой композиции добавляют к 50 мл n-гексана, выдерживают при 25°С; смесь перемешивают в течение 2 часов и отфильтровывают с получением фильтрата и остатка; концентрацию алюминия в фильтрате измеряют с помощью атомно-эмиссионной спектроскопии с индуктивно связанной плазмой (ICP-AES) и определяют растворимость как соотношение атомов алюминия в фильтрате по отношение к количеству атомов алюминия, соответствующих 2 г твердой полиалюмоксановой композиции.

[Способ (ii)]

Растворимость измеряют так же как в способе (i), за исключением того, что вместо n-гексана используют толуол.

[Способ (iii)]

0,5 мл тетрагидрофурана (ТГФ)-d8 (тяжелый растворитель) добавляют к 10 мг твердой полиалюмоксановой композиции; смесь перемешивают при 25°С в течение 2 часов; мольную долю определяют исследуя растворенные в ТГФ компоненты с помощью 1Н-ЯМР при температуре измерения 24°С.

Твердая полиалюмоксановая композиция изобретения преимущественно имеет растворимость в тетрагидрофуране при 25°С 95% мол. или менее, как измерено описанным ниже способом (iv).

[Способ (iv)]

Растворимость определяют так же как в способе (i), за исключением того, что вместо n-гексана используют тетрагидрофуран.

В соответствии с изобретением катализатор полимеризации олефинов получают путем контактирования твердой полиалюмоксановой композиции изобретения с соединением переходного металла (Н), содержащим атом переходного металла, выбранный из 3-10 группы периодической таблицы, и представленным указанной ниже общей формулой (8):

(где М - атом переходного металла, выбранный из 3-10 группы периодической таблицы, P31, R32, R33 и R34 одинаковые или разные и каждый представляет собой циклопентадиенил, алкил, циклоалкил, арил, аралкил, алкокси, арилокси, атом галогена, алкилсилил, алкиламид, алкилимид, -SO3R или атом водорода.

Согласно настоящему изобретению способ получения олефиновых полимеров включает стадию полимеризации одного или более олефинов, выбранных из α-олефинов, имеющих 2-20 углеродных атомов, циклоолефинов, имеющих 3-20 углеродных атома и диеновых соединений, имеющих 4-20 углеродных атома, в присутствии катализатора полимеризации олефинов настоящего изобретения.

Способ получения твердой полиалюмоксановой композиции настоящего изобретения включает:

стадию контактирования раствора полиалюмоксановой композиции (А), включающего полиалкилалюмоксан, триалкилалюминий и углеводородный растворитель, с по крайней мере одним органическим соединением (В), содержащим элементы 15-17 группы периодической таблицы, и

стадию осаждения твердой полиалюмоксановой композиции реакцией соединений с алюминий-углеродной связью, присутствующих в растворе полиалюмоксановой композиции (А), с органическим соединением (В) при нагревании.

Предпочтительно, способ получения далее включает стадию термического выдерживания осадка после стадии осаждения.

ПРЕИМУЩЕСТВА ИЗОБРЕТЕНИЯ

Согласно настоящему можно получить твердые полиалюмоксановые композиции, пригодные для использования в качестве сокатализаторов и носителей катализатора в комбинации с катализатором олигомеризации или полимеризации олефинов без использования твердых неорганических носителей, таких как кремнезем, и обладающие очень низкой растворимостью в растворителях. При использовании твердой полиалюмоксановой композиции настоящего изобретения выщелачивание сокатализаторного компонента, основного катализаторного компонента и реакция между композицией, основным катализаторным компонентом и сокатализаторным компонентом подавляются до минимума в течение стадий реакции полимеризации (олигомеризации) олефинов и/или стадий получения катализатора. Применение твердой полиалюмоксановой композиции настоящего изобретения в качестве сокатализатора позволяет проводить процесс полимеризации с очень высокой активностью по сравнению с тем, когда используют нанесенный сокатализатор, содержащий полиметилалюмоксановую композицию, нанесенную кремнеземный носитель.

Далее, твердая полиалюмоксановая композиция настоящего изобретения имеет относительно однородный диаметр частиц и пригодна для использования в существующих процессах жидко-фазной полимеризации, такой суспензионная полимеризации олефинов, или газо-фазной полимеризации.

В соответствии с настоящим изобретением твердую полиалюмоксановую композицию можно получать с очень высокой степенью изслечения при том, что композиция имеет очень однородный диаметр частиц, который регулируется до любого желаемого диаметра. Кроме того, в соответствии с изобретением твердую полиалюмоксановую композицию можно получать простым способом, используя коммерчески доступный раствор полиалюмоксановой композиции в качестве исходного материала.

КРАТКОЕ ОПИСАНИЕ РИСУНКОВ

[Рис. 1] На Рис. 1 представлена электронная микрофотография (×1000) высушенной твердой полиалюмоксановой композиции, полученной в тестовом примере A1(тестовый пример D1).

[Рис. 2] На Рис. 2 представлена электронная микрофотография (×1000) высушенной твердой полиалюмоксановой композиции, полученной в тестовом примере А7 (тестовый пример D14).

[Рис. 3] На Рис. 3 представлена электронная микрофотография (×200) высушенной твердой полиалюмоксановой композиции, полученной в тестовом примере D9.

[Рис. 4] Рис. 4 иллюстрирует гранулометрический состав, оцененный с помощью Microtrack МТ3300ЕХ II, высушенной твердой полиалюмоксановой композиции, полученной в тестовом примере D9.

[Рис. 5] На Рис. 5 представлена электронная микрофотография (×200) высушенной твердой полиалюмоксановой композиции, полученной в тестовом примере D31.

[Рис. 6] Рис. 6 иллюстрирует гранулометрический состав, оцененный с помощью Microtrack МТ3300ЕХ II, высушенной твердой полиалюмоксановой композиции, полученной в тестовом примере D31.

[Рис. 7] На Рис. 7 представлена электронная микрофотография (×200) высушенной твердой полиалюмоксановой композиции, полученной в тестовом D33.

[Рис. 8] Рис. 8 иллюстрирует гранулометрический состав, оцененный с помощью Microtrack МТ3300ЕХ II, высушенной твердой полиалюмоксановой композиции, полученной в тестовом примере D33.

[Рис. 9] На Рис. 9 представлена электронная микрофотография (×1000) высушенной твердой полиалюмоксановой композиции, полученной a1.

[Рис. 10] На Рис. 10 представлена электронная микрофотография (×1000) высушенной твердой полиалюмоксановой композиции, полученной в тестовом примере а2.

[Рис. 11] На Рис. 11 представлена электронная микрофотография (×1000) высушенной твердой полиалюмоксановой композиции, полученной в тестовом примере а3.

[Рис. 12] На Рис. 12 представлена электронная микрофотография (×200) высушенной твердой полиалюмоксановой композиции, полученной в тестовом примере а5 (тестовый пример d4).

[Рис. 13] Рис. 13 иллюстрирует гранулометрический состав, оцененный с помощью Microtrack МТ3300ЕХ II, высушенной твердой полиалюмоксановой композиции, полученной в тестовом примере а5 (тестовый пример d4).

[Рис. 14] На Рис. 14 представлена электронная микрофотография (×1000) высушенного катализатора полимеризации олефинов, полученного в тестовом примере В1.

[Рис. 15] На Рис. 15 представлена электронная микрофотография (×1000) высушенного катализатора полимеризации олефина, полученного в тестовом примере В5.

[Рис. 16] На Рис. 16 представлена электронная микрофотография (×1000) высушенных частиц, полученных в тестовом примере b1.

[Рис. 17] На Рис. 17 представлена электронная микрофотография (×1000) высушенных частиц, полученных в тестовом примере b2.

[Рис. 18] На Рис. 18 представлена электронная микрофотография (×1000) высушенных частиц, полученных в тестовом примере b3.

ВОПЛОЩЕНИЕ ИЗОБРЕТЕНИЯ

[Твердые полиалюмоксановые композиции]

Твердая полиалюмоксановая композиция согласно изобретению включает полиалкилалюмоксан и триалкилалюминий. Эта композиция проявляет превосходную сокаталитическую активность при использовании в комбинации с катализатором олигомеризации или полимеризации олефинов и предпочтительно включает полиалкилалюмоксан, который содержит структурную единицу, представленную приведенной ниже общей формулой (1), (в изобретении также указывается как "полиалюмоксан, который содержит структурную единицу, представленную общей формулой (1),") и триметилалюминий, более предпочтительно включает полиметилалюмоксан и триметилалюминий. В изобретении твердая полиалюмоксановая композиция, включающая полиметилалюмоксан и триметилалюминий, также указывается как "твердая полиметилалюмоксановая композиция".

[Хим. 1]

,

где Me означает метильную группу.

Полиалкилалюмоксан обычно включает единицы, представленные общей формулой (1) и/или общей формулой (2). Структура полиалкилалюмоксана полностью не идентифицирована, но принято, что обычно он содержит приблизительно 2-50 повторяющихся единиц, представленных общей формулой (1) и/или общей формулой (2), представленной ниже. Однако, конфигурация этим не ограничивается, пока может достигаться положительный эффект. Структура, в которую соединяются эти единицы, может быть любой различной структурой, например, линейной структурой, циклической структурой или кластеры. Обычно полиалкилалюмоксан имеет одну любую из таких структур или смесь таких структур. Полиалкилалюмоксан может состоять исключительно из единиц, представленных общей формулой (1) или общей формулой (2).

[Хим. 2]

В общей формуле (2) R1 обычно представляет углеводородную группу, имеющую от 2 до 20 углеродных атомов, предпочтительно углеводородную группу, имеющую 2-15 атомов углерода, и более предпочтительно углеводородную группу, имеющую 2-10 атомов углерода. Примеры таких углеводородных групп включают этил, пропил, n-бутил, пентил, гексил, октил, децил, изопропил, изобутил, втор-бутил, трет-бутил, 2-метилбутил, 3-метилбутил, 2-метилпентил, 3-метилпентил, 4-метилпентил, 2-метилгексил, 3-метилгексил, 2-этилгексил, циклогексил, циклооктил, фенил и толил.

Примеры триалкилалюминия включают триметилалюминий, имеющий метальные группы, и триалкилалюминий и триарилалюминий, имеющие углеводородные группы с 2-20 атомами углерода.

Конкретные примеры триалкилалюминия включают

три (n-алкил) алюминий, такой как триэтилалюминий, три (n-бутил) алюминий, трипропилалюминий, трипентилалюминий, тригексилалюминий, триоктилалюминий и тридецилалюминий;

три (разветвленный-алкил) алюминий, такой как триизопропилалюминий, триизобутилалюминий, три (втор-бутил) алюминий, три (трет-бутил) алюминий, три (2-метилбутил) алюминий, три (3-метилбутил) алюминий, три (2-метилпентил) алюминий, три (3-метилпентил) алюминий, три (4-метилпентил) алюминий, три (2-метилгексил) алюминий, три (3-метилгексил) алюминий и три (2-этилгексил) алюминий;

и трициклоалкилалюминий, такой как трииклогексилалюминий и трициклооктилалюминий.

Конкретные примеры триарилалюминия включают трифенилалюминий и тритолил алюминий.

Триметилалюминий является предпочтительным.

Присутствующий в твердой полиалюмоксановой композиции полиалкилалюмоксан согласно изобретению соответственно содержит структурные единицы, представленные общей формулой (1) и/или общей формулой (2).

То есть структура полиалкилалюмоксана обычно является такой что:

(а) полиалкилалюмоксан состоит исключительно из структурных единиц, представленных общей формулой (1);

(b) полиалкилалюмоксан состоит исключительно из структурных единиц, представленных общей формулой (2), в которой R1 являются одинаковыми;

(c) полиалкилалюмоксан состоит из структурных единиц, представленных общей формулой (2), в которой R1 обозначает два или более типа заместителей; или

(d) полиалкилалюмоксан содержит как структурные единицы, представленные общей формулой (1), так и структурные единицы, представленные общей формулой (2) (в которой R1 являются одинаковыми или обозначают два или более типа заместителей).

Из этих структур полиалкилалюмоксан предпочтительно содержит структурные единицы, представленные общей формулой (1), указанные в разделе (а) или (d) с точки зрения сокаталитической активности в комбинации с катализатором олигомеризации или полимеризации олефинов. С точки зрения исходного продукта или сырья структура (а), а именно, полиметилалюмоксан, состоящий исключительно из структурных единиц, представленных общей формулой (1), является более предпочтительным.

Присутствующий в твердой полиалюмоксановой композиции триалкилалюминий настоящего изобретения может иметь любые алкильные группы независимо от типа полиалкилалюмоксана. С точки зрения сокаталитической активности и пригодности сырья в частности, предпочтительно используют триметилалюминий.

Твердая полиалюмоксановая композиция настоящего изобретения удовлетворяет следующим требованиям (i)-(iii) и предпочтительно удовлетворяет требованиям (i)-(iv).

Требование (i): растворимость в n-гексане при 25°С составляет менее 0,50% мол., как измерено описанным ниже способом (i).

Требование (ii): растворимость в толуоле при 25°С составляет менее 1,0% мол как измерено описанным ниже способом (ii).

Требование (iii): мольная доля алкильных групп от триалкилалюминия (называемая далее "мольная доля (1)", составляет 13% мол. или более относительно общего количества молей алкильных групп от полиалкилалюмоксана и алкильных групп от триалкилалюминия, определенных по отношению к растворенным в тетрагидрофуране-d8 компонентам описанным ниже способом (iii).

[Способ (i)]

2 г твердой полиалюмоксановой композиции добавляют к 50 мл n-гексана и выдерживают при 25°С. Смесь перемешивают в течение 2 часов и отфильтровывают с получением фильтрата и остатка. Концентрацию алюминия в фильтрате измеряют с помощью атомно-эмиссионной спектроскопии с индуктивно связанной плазмой (ICP-AES) и определяют растворимость как соотношение атомов алюминия в фильтрате по отношение к количеству атомов алюминия, соответствующих 2 г твердой полиалюмоксановой композиции.

[Способ (ii)]

Растворимость измеряют так же как в способе (i), за исключением того, что вместо n-гексана используют толуол. В частности, 2 г твердой полиалюмоксановой композиции добавляют к 50 мл толуола и выдерживают при 25°С; смесь перемешивают в течение 2 часов и отфильтровывают с получением фильтрата и остатка; концентрацию алюминия в фильтрате измеряют с помощью атомно-эмиссионной спектроскопии с индуктивно связанной плазмой (ICP-AES) и определяют растворимость как соотношение атомов алюминия в фильтрате по отношение к количеству атомов алюминия, соответствующих 2 г твердой полиалюмоксановой композиции.

[Способ (iii)]

0,5 мл тетрагидрофурана (ТГФ)-d8 (тяжелый растворитель) добавляют к 10 мг твердой полиалюмоксановой композиции. Смесь перемешивают при 25°С в течение 2 часов. Мольную долю определяют исследуя растворенные в ТГФ компоненты с помощью 1Н-ЯМР при температуре измерения 24°С.

Когда присутствующий в композиции полиалкилалюмоксан представляет собой полиалкилалюмоксан, содержащий структурную единицу, представленную общей формулой (1), и триалкилалюминий включает триметилалюминий, мольная доля алкильных групп от триалкилалюминия, включающего триметилалюминий (называемая далее "мольная доля (2)", составляет 13% мол. или более относительно общего количества молей алкильных групп от полиалкилалюмоксана и алкильных групп от триалкилалюминия, включающего триметилалюминий, определенных по отношению к растворенным в тетрагидрофуране-d8 компонентам способом (iii).

Мольные доли (1) и (2) алкильных групп включают количество молей метальных групп.

Когда присутствующий в композиции полиалкилалюмоксан представляет собой полиметилалюмоксан и триалкилалюминий представляет собой триметилалюминий, мольная доля метальных групп от триметилалюминия (называемая далее "мольная доля (3)", составляет 13% мол. или более относительно общего количества молей метальных групп от полиметилалюмоксана и метальных групп от триметилалюминия, определенных по отношению к растворенным в тетрагидрофуране-d8 компонентам способом (iii).

Предпочтительно, композиция включает полиалкилалюмоксан, содержащий структурную единицу, представленную общей формулой (1), и триметилалюминий или включает полиметилалюмоксан и триметилалюминий.

Твердая полиалюмоксановая композиция настоящего изобретения может использоваться как носитель для катализатора и особенно как сокатализатор и носитель катализатора в комбинации с катализатором олигомеризации или полимеризации олефинов. Однако использование композиции этим не ограничивается и композиция может применяться для других целей, которые будут улучшать положительный эффект изобретения.

Предпочтительно, композиция настоящего изобретения показывает очень низкую растворимость в n-гексане и толуоле при в 25°С. В процессе полимеризации (олигомеризации) олефинов и/или на стадии подготовки катализатора, выщелачивание сокатализатора, основного компонента катализатора или реакция композиции и реакция между основным компонентом катализатора и сокатализатором приводит к формированию аморфных олефиновых полимеров, что вызывает загрязнение аппаратуры, в частности реактора полимеризации. Таким образом, преимущества композиции заключаются в том, что она обладает насколько возможно низкой растворимостью как в алифатических углеводородных растворителях, представленных n-гексаном, так и в ароматических углеводородных растворителях, представленных толуолом, которые используются в реакции полимеризации (олигомеризации) олефинов и/или на стадии подготовки катализатора.

Исходя из выше сказанного и принимая во внимание применение композиции в реакции полимеризации (олигомеризации) олефинов, растворимость в n-гексане при 25°С как измерено методом (i) обычно составляет менее 0,50% мол., предпочтительно не более 0,30% мол. и более предпочтительно не больше 0,10% мол. и растворимость в толуоле при 25°С как измерено методом (ii) обычно составляет менее 1,0% мол., предпочтительно не более 0,50% мол. и более предпочтительно не больше 0,30% мол. Как указано выше, растворимость предпочтительно является настолько низкой, насколько возможно. Таким образом, нет никакого существенного нижнего предела растворимости в n-гексане и толуоле. Предпочтительно, наиболее низкий предел составляет 0% мол. Растворимость может быть измерена в соответствии с методом, описанным в JP-B-H07-42301. Метод измерения будет описан подробно в тестовых примерах.

Мольные доли (1) и (2) в растворенных в тетрагидрофуране-d8 компонентах твердой полиалюмоксановой композиция могут быть определены методом, подобным методу анализа ММАО (модифицированный метилалюмоксан), описанному в TOSOH Research & Technology Review, 2003, Vol 47, pp 55-60. В частности, мольные доли (1) и (2) могут быть определены на основании соотношений соответствующих областей, входящих в полиалкилалюмоксан, имеющий структуры общей формулы (1), полиалкилалюмоксан, имеющий структуры общей формулы (2), триметилалюминий и триалкилалюминий (кроме триметилалюминия) согласно данным 1Н-ЯМР.

Когда полиалкилалюмоксан в твердой полиалюмоксановой композиции представляет собой полиметилалюмоксан и триалкилалюминий представляет собой триметилалюминий, мольная доля (3) может быть определена с помощью 1Н-ЯМР анализа в соответствии с методом, описанным в WO 2010/055652, в частности, может быть определена на основании соотношений соответствующих областей, входящих в полиметилалюмоксан и триметилалюминий. Метод измерения будет подробно описан в тестовых примерах.

Измеренные в соответствии со способом (iii) мольные доли (1) и (2) составляют в композиции 13% мол. или больше. То есть растворимые в тетрагидрофуране-d8 компоненты преимущественно имеют более высокую мольную долю от триалкилалюминия. Аналогично, содержание в композиции мольной доли (3), измеренное с помощью способа (iii), составляет 13% мол. или больше, а именно, растворимые в тетрагидрофуране-d8 компоненты предпочтительно имеют более высокую мольную долю триметилалюминия.

Известно, что при снижении в растворе полиалюмоксановой композиции мольной доли триалкилалюминия, такого как триметилалюминий, увеличивается содержание не растворимых в растворителях гелевых компонентов. Поэтому можно полагать, что при снижении мольной доли триалкилалюминия твердая полиалюмоксановая композиция аналогично покажет более низкую растворимость в растворителях и следовательно в большей степени будет предотвращено выщелачивание. Таким образом, может показаться, что изобретение противоречит этим рассуждениям.

Широко известно, что в реакции полимеризации олефинов, используя катализатор с единым центром полимеризации на металле, такой как металлоценовый катализатор или пост-металлоценовый катализатор, каталитическая активность при использовании в качестве сокатализатора одного триалкилалюминия очень низка, и поэтому сокаталитическая функция раствора полиалюмоксановой композиции по существу зависит от полиалкилалюмоксанового компонента. Таким образом предотвращение загрязнения из-за выщелачивания компонентов из твердой полиалюмоксановой композиция будет заключаться в подавлении выщелачивания полиалкилалюмоксана, а не триалкилалюминия.

В реакциях суспензионной полимеризации (олигомеризации) или газофазной полимеризации часто используют антистатические агенты, которые добавляют с целью предотвращения возникновения загрязнения из-за электростатического взаимодействия между получающимися частицами полимера. Антистатические агенты содержат в молеку