Сегментированные гелевые композиты и жесткие панели, изготовленные из них

Иллюстрации

Показать все

Изобретение относится к способу получения сегментированного гелевого композита, содержащего стадии обеспечения листа сегментированного волокном холста или листа сегментированного пенопласта с открытыми порами, объединения листа с предшественником геля, гелеобразования предшественника геля, гелеобразования объединения с получением композитного листа, свертывания в рулон композитного листа и сушки композитного листа с получением сегментированного, армированного гелевого композита. Описан также способ получения сегментированного гелевого композита, сегментированный гелевый композит и жесткая панель, содержащая, по меньшей мере, два слоя армированного гелевого композита. Технический результат - гелевые композиты являются достаточно эластичными для наматывания и при разматывании могут быть плоско вытянуты и переработаны в жесткие панели с использованием адгезивов. 4 н. и 25 з.п. ф-лы, 2 табл., 7 ил., 5 пр.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к области армированных композитов, используемых в ряде промышленных и домашних применений.

Краткое описание изобретения

Настоящее изобретение описывает новые армированные гелевые композиты и способ получения армированного волокном или пенопластом с открытыми порами гелевого композита, содержащий стадии обеспечения листа сегментированного волокнистого холста или листа сегментированного пенопласта с открытыми порами, объединения листа с предшественником геля, гелеобразования предшественника геля в комбинации с получением композитного листа, сворачивания в рулон композитного листа и сушки композита с получением армированного волокном гелевого композита. Дополнительно, могут быть выполнены дополнительные стадии разматывания рулона высушенного композита, нанесения адгезива на, по меньшей мере, одну сторону и, предпочтительно, на главную сторону композита и присоединения его к другому плоскому материалу. Таким плоским материалом может быть другой композит, полученный аналогичным образом.

Кроме того, рассматривается способ получения гелевой композитной панели, который содержит стадии обеспечения листа высушенного сегментированного армированного волокном или пенопластом с открытыми порами гелевого композита, причем лист имеет, по меньшей мере, две главные поверхности и множественные сегментированные поверхности поперечного сечения (предпочтительно, включая поверхности частичного поперечного сечения, где сегменты совсем не заметны через толщину), нанесения адгезива на, по меньшей мере, одну главную поверхность указанного композита и присоединения указанного композита к другому высушенному сегментированному гелевому композиту.

Дополнительно описан способ получения армированного гелевого композита, который содержит стадии обеспечения листа сегментированного пенопласта с открытыми порами, объединения листа пенопласта с открытыми порами с предшественником геля, гелеобразования предшественника геля в комбинации с получением композита, свертывания в рулон композита и сушки композита с получением армированного гелевого композита. Сегментированный волокнистый холст или лист сегментированного пенопласта с открытыми порами любого из предыдущих способов могут иметь облицовочный слой или облицовочный лист, присоединенный к ним. Такие облицовочные слои могут содержать волокна. Волокнистые холсты или нетканые холсты способов настоящего изобретения могут содержать ненепрерывные волокна или непрерывные филаменты.

Кроме того, вышеописанный способ содержит стадию введения добавок в композит, выбранных из группы, состоящей из диоксида титана, оксидов железа, углеродной сажи, графита, гидроксида алюминия, фосфатов, боратов, силикатов металла, металлоценов, молибдатов, станнатов, гидроксидов, карбонатов, оксидов цинка, оксидов алюминия, оксидов сурьмы, смесей магний-цинк, смесей магний-цинк-сурьма, карбида кремния, силицида молибдена, оксидов марганца, оксида железа-титана, силиката и оксида циркония, оксидов железа(II) и железа(III), диоксида марганца, оксида железа-титана (ильменита), оксида хрома и их комбинации.

В дополнительных вариантах вышеуказанные способы содержат стадию введения, по меньшей мере, связующего в волокна или использования волокон или систем волокон, содержащих, по меньшей мере, одно связующее. Способы настоящего изобретения содержат использование сегментированных волокнистых холстов или листа сегментированного пенопласта с открытыми порами с, по меньшей мере, одним сегментом, который является жестким.

В дополнительных вариантах способы настоящего изобретения используют в качестве геля в армированном волокном гелевом композите один или более материалов или их производных, выбранных из группы, состоящей из диоксида циркония, диоксида иттрия, диоксида гафния, диоксида алюминия, диоксида титана, диоксида церия, диоксида кремния, полиакрилатов, полистиролов, полиакрилонитрилов, полиуретанов, полиимидов, полифурфурального спирта, фенолофурфурилового спирта, меламиноформальдегидов, резорциноформальдегидов, крезолоформальдегида, фенолоформальдегида, диальдегида поливинилового спирта, полициануратов, полиакриламидов, различных эпоксидов, агара и агарозы и их комбинаций. В дополнительных вариантах лист пенопласта с открытыми порами настоящего изобретения содержит один или более материалов или их производных, выбранных из полиуретанов, изоцианатсодержащих материалов, полициануратов, полиимидов, поливинилхлорида, пенополистирола, силиконов, полиолефинов, эпоксидов, мочевиноформальдегида, латексного каучука, фторополимеров и синтактических пенопластов.

Волокна в листе волокнистого холста, облицовочном слое или сегментированных армированных волокном гелевых композитах настоящего изобретения содержат один или более материалов, выбранных из группы, состоящей из минеральной ваты, стекловаты, каменной ваты, стекловолокна, сложного полиэфира, полиолефинтерефталатов, поли(этилен)нафталата, поликарбонатов и вискозного волокна, найлона, хлопоксодержащей лайкры (изготовитель - DuPont), углеродсодержащих волокон, подобных графиту, предшественников для углеродных волокон, подобных полиакрилонитрилу (ПАН), окисленному ПАН, некарбонизованному термообработанному ПАН, как изготовленному технологией SGL из углеродного, стекловолокносодержащего материала, подобного S-стеклу, 901-стеклу, 902-стеклу, 475-стеклу, Е-стеклу, (диоксид кремния)содержащие волокна, подобные кварцу, кварцелу (изготовитель - Saint-Gobain), Q-войлока (изготовитель - Johns Manville), Saffil (изготовитель - Saffil), Durablanket (изготовитель - Unifrax) и других (диоксид кремния)содержащих волокон, полиарамидных волокон, подобных Kevlar, Nomex, Sontera (изготовитель всех DuPont), Conexx (изготовитель - Taijin), полиолефинов, подобных Tyvek (изготовитель - DuPont), Dyneema (изготовитель - DSM), Spectra (изготовитель - Honeywell), другие полипропиленовые волокна, подобные Typar, Xavan (изготовитель обоих - DuPont), фторполимеров, подобных ПТФЭ с торговыми марками тефлон (изготовитель - DuPont), Goretex (изготовитель - GORE), волокон из карбида кремния, подобных Nicalon (изготовитель - COI Ceramics), керамических волокон, подобных Nextel (изготовитель - 3М), акриловых полимеров, волокон из шерсти, шелка, конопли, кожи, замши, волокон PBO-Zylon (изготовитель - Tyobo), жидкокристаллического материала, подобного Vectan (изготовитель - Hoechst), волокна Cambrelle (изготовитель - DuPont), полиуретанов, полиамидов, древесных волокон, бора, алюминия, железа, волокон из нержавеющей стали и других термопластов, подобных PEEK, PES, полиэфиримиду (PEI), PEK, полифениленсульфиду, и их комбинаций.

Кроме того, способы получения панелей, описанные в настоящем изобретении, используют один или более адгезивов, выбранных из группы, состоящей из калиевого жидкого стекла, натриевого жидкого стекла, цемента и щелочноактивированных алюмосиликатов, полиэтилена, каптона, полиуретана, сложного полиэфира, натурального каучука, синтетического каучука, хайполона, полимерных сплавов, ПТФЭ, поливинилгалогенидов, неопрена, акриловых полимеров, нитрилов, ЭПДМ, ЭП (этилен-пропиленового сополимера), витона, винилов, винилацетата, этиленвинилацетата, стирола, стирол-акрилатов, стирол-бутадиенов, поливинилового спирта, поливинилхлорида, акриламидов, фенольных смол и их комбинаций. Теплопроводность армированных гелевых композитов, полученных вышеуказанными способами, составляет менее 25 мВт/мK в условиях окружающей среды и, предпочтительно, менее 16 мВт/мK.

Рассматривается сегментированный армированный волокном или пенопластом с открытыми порами гелевый композит, в котором гель является непрерывным через волокно в, по меньшей мере, одном сегменте, и существует, по меньшей мере, один зазор между двумя смежными сегментами. Зазор, как описано здесь, означает, что имеется разрывность как в волокне, так и в геле указанных смежных сегментов. Необходимо, чтобы указанный зазор не присутствовал через всю толщину, и может присутствовать частично через толщину армированного волокном листа, листа пенопласта с открытыми порами или получаемых листов композита.

Кроме того, описывается жесткая панель, содержащая, по меньшей мере, два слоя армированного волокном или пенопластом с открытыми порами армированных композитов, где, по меньшей мере, один слой содержит сегментированный армированный гелевый композит с, по меньшей мере, зазором как в волокне или пенопласте с открытыми порами, так и геле между, по меньшей мере, двумя смежными сегментами.

В варианте гелевые композиты или панели настоящего изобретения дополнительно содержат наполнители, выбранные из группы, состоящей из диоксида титана, оксидов железа, углеродной сажи, графита, гидроксида алюминия, фосфатов, боратов, силикатов металла, металлоценов, молибдатов, станнатов, гидроксидов, карбонатов, оксидов цинка, оксидов алюминия, оксидов сурьмы, смесей магний-цинк, смесей магний-цинк-сурьма, карбида кремния, силицида молибдена, оксидов марганца, оксида железа-титана, силиката циркония, оксида циркония, оксида железа(II), оксида железа(III), диоксида марганца, оксида железа-титана (ильменита), оксида хрома и их комбинации. В другом варианте панели или композиты настоящего изобретения дополнительно содержат, по меньшей мере, связующее в волокнистой структуре.

В другом варианте сегментированный волокнистый холст или листы сегментированного пенопласта с открытыми порами панелей или композитов настоящего изобретения имеют присоединенный облицовочный слой или лист. Облицовочный лист/слой может содержать волокна. Волокнистые холсты настоящего изобретения могут содержать ненепрерывные волокна или непрерывные филаменты или их комбинацию. В варианте облицовочный лист имеет приемлемую проницаемость водяного пара для практических применений, хотя не позволяет проходить жидкой воде. В другом варианте облицовочный лист позволяет проходить как воде, так и водяному пару. В еще другом варианте облицовочный лист по существу не позволяет проходить ни жидкой воде, ни водяному пару.

Кроме того, панели или композиты настоящего изобретения могут дополнительно содержать добавки, выбранные из группы, состоящей из диоксида титана, оксидов железа, углеродной сажи, графита, гидроксида алюминия, фосфатов, боратов, силикатов металла, металлоценов, молибдатов, станнатов, гидроксидов, карбонатов, оксидов цинка, оксидов алюминия, оксидов сурьмы, смесей магний-цинк, смесей магний-цинк-сурьма, карбида кремния, силицида молибдена, оксидов марганца, оксида железа-титана, Кроме того, панели или композиты настоящего изобретения могут дополнительно содержать добавки, выбранные из группы, силиката циркония, оксида циркония, оксида железа(II), оксида железа(III), диоксида марганца, оксида железа-титана (ильменита), оксида хрома и их комбинации.

Кроме того, панели или композиты настоящего изобретения могут дополнительно содержать, по меньшей мере, связующее в волокнах или использование волокна, содержащего, по меньшей мере, одно связующее. Связующее может быть органическим или неорганическим по природе или гибридным материалом. В варианте, по меньшей мере, сегмент сегментированного волокнистого холста может быть жестким в предшествующих панели или композитах.

Кроме того, панели или композиты настоящего изобретения имеют компоненты, которые выполнены из гелевых предшественников диоксида циркония, диоксида иттрия, диоксида гафния, диоксида алюминия, диоксида титана, диоксида церия, диоксида кремния, полиакрилатов, полистиролов, полиакрилонитрилов, полиуретанов, полиимидов, полифурфурального спирта, фенолофурфурилового спирта, меламиноформальдегидов, резорциноформальдегидов, крезолоформальдегида, фенолоформальдегида, диальдегида поливинилового спирта, полициануратов, полиакриламидов, различных эпоксидов, агара, целлюлозы и агарозы и их комбинаций.

Кроме того, волокна в панелях и композитах настоящего изобретения выбраны из группы, состоящей из минеральной ваты, стеклянной ваты, стекловолокна, сложного полиэфира, полиолефинтерефталатов, поли(этилен)нафталата, поликарбонатов и вискозного волокна, найлона, хлопоксодержащей лайкры (изготовитель-DuPont), углеродсодержащих волокон, подобных графиту, предшественников для углеродных волокон, подобных полиакрилонитрилу (ПАН), окисленному ПАН, некарбонизованному термообработанному ПАН, как изготовленному технологией SGL из углеродного, стекловолокносодержащего материала, подобного S-стеклу, 901-стеклу, 902-стеклу, 475-стеклу, Е-стеклу, (диоксид кремния)содержащие волокна, подобные кварцу, кварцелу (изготовитель - Saint-Gobain), Q-войлока (изготовитель - Johns Manville), Saffil (изготовитель - Saffil), Durablanket (изготовитель - Unifrax) и других (диоксид кремния)содержащих волокон, полиарамидных волокон, подобных Kevlar, Nomex, Sontera (изготовитель - DuPont), Conex (изготовитель - Taijin), полиолефинов, подобных Tyvek (изготовитель - DuPont), Dyneema (изготовитель - DSM), Spectra (изготовитель - Honeywell), другие полипропиленовые волокна, подобные Typar, Xavan (изготовитель обоих - DuPont), фторполимеров, подобных ПТФЭ с торговыми марками тефлон (изготовитель - DuPont), Goretex (изготовитель -GORE), волокон из карбида кремния, подобных Nicalon (изготовитель - COI Ceramics), керамических волокон, подобных Nextel (изготовитель - 3М), акриловых полимеров, волокон из шерсти, шелка, конопли, кожи, замши, волокон PBO-Zylon (изготовитель - Tyobo), жидкокристаллического материала, подобного Vectan (изготовитель - Hoechst), волокна Cambrelle (изготовитель - DuPont), полиуретанов, полиамидов, древесных волокон, бора, алюминия, железа, волокон из нержавеющей стали и других термопластов, подобных PEEK, PES, полиэфиримиду, PEK, полифениленсульфиду, и их комбинаций.

Кроме того, панели настоящего изобретения содержат адгезивы, выбранные из группы, состоящей из калиевого жидкого стекла, натриевого жидкого стекла, цемента и щелочноактивированных алюмосиликатов, полиэтилена, каптона, полиуретана, сложного полиэфира, натурального каучука, синтетического каучука, хайполона, полимерных сплавов, ПТФЭ, поливинилгалогенидов, неопрена, акриловых полимеров, нитрилов, ЭПДМ, ЭП, витона, винилов, винилацетата, этиленвинилацетата, стирола, стирол-акрилатов, стирол-бутадиенов, поливинилового спирта, поливинилхлорида, акриламидов, фенольных смол и их комбинаций. Теплопроводность армированных гелевых композитов, полученных вышеуказанными способами, составляет менее 25 мВт/мК в условиях окружающей среды.

Краткое описание чертежей

На фигуре 1 показан аэрогельный композит, полученный с использованием ротационного нетканого стеклохолста как есть (без сегментации).

На фигуре 2 схематически показано получение аэрогельных композитов с использованием надрезанных нетканых продуктов с увеличенной жесткостью.

На фигуре 3 показано сравнение высушенных гелевых композитов, полученных с несегментированным листом стекловаты (выше) и с сегментированным листом стекловаты (ниже).

На фигуре 4 показаны влажный сегментированный гелевый композит и высушенный сегментированный гелевый композит.

На фигуре 5 показана переработка сегментированного композита аэрогель/волокно в плиту.

На фигуре 6 показано получение жестких панелей из листов сегментированного волокнистого армирования и предшественников геля.

На фигуре 7 показан альтернативный вариант волокнистого армирования, где имеется постепенное изменение размеров сегмента по длине волокнистого армирования.

Подробное описание изобретения

Настоящее изобретение содержит получение рулонных изоляционных продуктов на основе аэрогелей и аэрогельподобных материалов. Аэрогели, которые имеют чрезвычайно низкую плотность, высокую площадь поверхности, хорошие оптические, термические и акустические свойства, были исследованы для различных применений. Однако аэрогели имеют присущие недостатки, такие как непрочность и хрупкость. Различные типы армирований могут использоваться для увеличения прочности, эластичности и других важных свойств аэрогелей. Армированные волокном аэрогельные композиты могут быть получены при введении волокон в массе или нетканых волокнистых листов в предшественники геля, гелеобразовании в сочетании с получением листа геля, созревании листа геля и сушке формованного листа геля.

Аэрогели, которые имеют чрезвычайно низкую плотность, высокую площадь поверхности, хорошие оптические, термические и акустические свойства, были ранее использованы в попытке закрыть указанную потребность и другие потребности, для которых их свойства могли быть предпочтительными. Однако аэрогели имеют присущие недостатки, такие как непрочность и хрупкость. Особенно при получении высоко прозрачных и гидрофобных аэрогелей хрупкость становится намного более сильной, и, таким образом, они являются более трудными для обработки и требуют длительных циклов времени для сушки для того, чтобы избежать растрескивания.

Непрочность и хрупкость аэрогелей низкой плотности могут в частности иметь отрицательное воздействие на получение крупного масштаба и ограниченно крупного масштаба. Кроме того, аэрогели низкой плотности могут иметь наилучшую прозрачность, но также показывать более высокую теплопроводность и, таким образом, показывать худшие изоляционные характеристики.

Хрупкая структура аэрогеля (низкая плотность и высокая пористость) также вызывает некоторые трудности в сочетании с неровными поверхностями или в сохранении целостности в динамических условиях, таких как при расположении сэндвичеобразно между стеклом, и различные коэффициенты термического расширения между стеклом и аэрогелем дают в результате усилия сжатия. Таким образом, эластичность, сжимаемость, целостность, долговечность, прочность, стойкость к спеканию, пыление и растрескивание все являются областями потенциального улучшения аэрогелей и аэрогельных композитов.

Был сделан ряд попыток по улучшению аэрогелей и аэрогельных композитов в отношении указанных проблем и сделать более полным преимущество их замечательных свойств в качестве материалов. Некоторые патенты описывают попытки получения композитов с вспененными и дисперсными аэрогелями, например, ЕР 0489319 и патенты США №№6136216, 5691392, 6040375 и 6068882. Другие патенты, например, патенты США №№4966919, 5037859, 5972254, 5973015 и 6087407, и опубликованная заявка на патент США №2002/0094426 описывают другие аэрогели и аэрогельные композиты с и без пенопластов. Некоторые источники, такие как опубликованная заявка на патент США №2005/0192367 и заявка на патент США серийный №11/392925, описывают прозрачные аэрогели и аэрогельные композиты.

В контексте вариантов настоящего изобретения термины «аэрогели» и «аэрогельные материалы» вместе с их соответствующими единичными формами относятся к гелям, содержащим воздух в качестве дисперсионной среды в широком смысле, включая без ограничения, гели, высушенные с использованием сверхкритических жидкостей, жидкостей при нижекритических условиях, высушенные при слегка повышенных температурах, при повышенных температурах, высушенных с использованием технологии сушки вымораживанием и их комбинаций; и гели, высушенные с использованием сверхкритических жидкостей в узком смысле. Химический состав аэрогелей может быть неорганическим, органическим (включая полимеры) или гибридным органическим-неорганическим. Неорганические аэрогели могут быть на основе диоксида кремния, диоксида титана, диоксида циркония, диоксида алюминия, диоксида гафния, диоксида иттрия, диоксида церия, карбидов и нитридов. Органические аэрогели могут быть на основе соединений, включающих в себя (но не ограничиваясь этим) уретаны, резорцинформальдегиды, полиимид, полиакрилаты, хитозан, полиметилметакрилат, представители семейства акрилатов олигомеров, полидиметилсилоксан с триалкоксилильным окончанием, полиоксиалкилен, полиуретан, полибутадиен, меламиноформальдегид, фенол-фурфураль, представитель семейства простых полиэфиров материалов или их комбинации. Примеры органических-неорганических гибридных аэрогелей включают в себя (но не ограничиваясь этим): (диоксид кремния)-ПММА, (диоксид кремния)-хитозан, (диоксид кремния)-(простой полиэфир) или возможно комбинацию вышеуказанных органических и неорганических соединений. Опубликованные заявки на патент США 2005/0192367 и 2005/0192366 широко описывают такие гибридные органические-неорганические материалы и поэтому приводятся в качестве ссылки в своей полноте.

Аэрогели, применимые в настоящем изобретении, включают такие аэрогели, которые армированы волокнистой структурой. Такие армирования придают прочность и эластичность структуре аэрогеля. Патенты США 6068882, 6087407, 6770584, 5124101, 5973015, 6479416, 5789075, 5866027, 5786059, 5972254, 4363738, 4447345, РСТ заявка WO 9627726, заявки на патент США 20020094426, 2003077438, Японский патент JP 8034678, патент Великобритании GB 1205572 описывают некоторые из аэрогельных материалов, которые могут быть применены с вариантами настоящего изобретения. Указанные документы приводятся здесь в качестве ссылки для описания способов получения таких эластичных аэрогельных материалов, по меньшей мере, частично. Эластичные аэрогельные материалы могут также образовать факторы, которыми являются покрытия или тонкие ленты. Хотя много вариантов настоящего изобретения сфокусировано на аэрогельных композитах покрытия, они также могут использоваться для покрытия других форм аэрогелей.

Волокнистое армирование в случае применения, соответственно, дает в результате эластичные аэрогельные материалы. Такая эластичность аэрогельных материалов является желательной в ряде применений, где указанные аэрогельные материалы могут быть заменой для существующих материалов. Однако, эластичность может также дать некоторую опасность для аэрогельной структуры. Хотя она может не влиять на другие критические свойства аэрогельных материалов, она может представлять помеху для физического обращения. Настоящее изобретение во многих своих вариантах предусматривает способы минимизации влияния такой опасности и, кроме того, предотвращает удаление любого такого подвергшегося риску материала из материала матрицы. Отсюда в результате удается избежать любых вопросов механической обработки относительно аэрогельных дискретных материалов на поверхности такого аэрогельного материала и по существу снизить способами настоящего изобретения. В некоторых вариантах настоящее изобретение обеспечивает получение жестких композитов и панелей.

Было показано, что модернизация существующих домов, зданий и конструкций изоляцией, обладающей высокой теплостойкостью, может значительно снизить энергопотребление и соответствующие выделения СО2. Таким образом, имеется сильное желание разработать аэрогельсодержащие изоляционные материалы для рынка зданий и конструкций. Для применений, не включающих полые стены и/или изоляцию чердачных перекрытий, предпочтительным продуктом для указанного рынка являются жесткие панели. Например, многие внутренние и внешние модернизации зданий содержат установку неэластичных плитовых материалов, таких как минеральная вата или пенопласт из вспенивающегося полистирола. В последнее десятилетие существует возобновляющийся интерес к получению жестких панелей с теплоизоляционными материалами с большими R-значениями, чем в настоящее время на рынке. Аэрогельсодержащая изоляция представляет особый интерес. Армированная волокном аэрогельная изоляция является в настоящее время коммерчески доступной в высоком объеме как эластичное долговечное композитное покрытие при толщине, не превышающей 10 мм. Множественные слои указанных материалов обычно ламинируются адгезивами с получением жесткой плиты большей толщины. Поскольку эластичная аэрогельсодержащая изоляция должна получаться как свернутый в рулон продукт, она может обладать некоторой степенью дефектов наматывания в форме короблений, волнистости и/или колебаний толщины, и как таковые такой интенсивный способ и контроль качества необходимо использовать для управления указанными вопросами. Наличие указанных дефектов делает ламинирование эластичных аэрогельных материалов в жесткую плиту сложной задачей. Отдельные слои аэрогельной изоляции с дефектами поверхности дают в результате неполное скрепление поверхности благодаря неспособности достигнуть полного сопряжения поверхности каждого отдельного слоя в процессе ламинирования. Панели, полученные таким образом, могут содержать большое число пустот и дефектов, что не только ухудшает механическую прочность, но также общую термическую характеристику. Таким образом, существует сильная необходимость исключения поверхностных дефектов указанных материалов, которые обусловлены, главным образом, напряжениями, вносимыми наматыванием и разматыванием, напряжениями, обычно связанными с получением рулонных материалов. Наматывание и разматывание, связанное с получением эластичной композитной аэрогельной изоляции, также ставит сложную задачу использования жестких волокнистых материалов в качестве армирования указанных композитов. Волокнистые материалы с высоким содержанием связующего и/или материалы, которые являются жесткими, не могут выдерживать наматывание/разматывание получения рулонных материалов без выдерживания огромных количеств дефектов в форме расслоений, короблений и/или разрывов. Благодаря значительно улучшенной экономике имеется сильное желание обеспечить использование недорогостоящих волокнистых армирований с высоким содержанием связующего для получения эластичной аэрогельной изоляции. До настоящего времени указанные типы армирующих материалов являются слишком жесткими, чтобы наматываться вокруг сердечника с небольшим радиусом без придания несогласованностей в присутствии складок, разрывов и расслоений. Как таковая имеется необходимость разработки способа, который может обеспечить наматывание и последующую аэрогельную переработку такого материала без придания разрушения, связанного с наматыванием. Для целей данной заявки на патент термин «жесткая панель» означает панель с практически неустановленной площадью поверхности (от 0,1 до 10 м2) со способностью выдерживать собственный вес без изгибания в степени, которая препятствует практическому обращению и установке панели. Хотя можно получить жесткие панели скреплением нежесткого плоского материала с другим жестким материалом, жесткая панель, как определено выше, исключает такие скрепленные комбинации, и жесткие панели настоящего изобретения сфокусированы на одном или более слоев гелевого композита, скрепленных с помощью адгезива или иным способом, являясь жесткими, как описано выше.

Настоящее изобретение также описывает способ получения плоских панельных аэрогельсодержащих плит с использованием недорогостоящих волокнистых основ или основ из пенопласта с открытыми порами с увеличенной жесткостью. Такие основы обычно не подходят для стандартной переработки в цилиндрическом сосуде для различных процессов, включенных в получение гелевых композитов в форме рулона. Эффективное использование сосудов делает необходимым получение армированных волокном аэрогельных материалов в форме рулона для того, чтобы максимизировать объем цилиндрического сосуда и снизить фиксированные затраты, связанные с получением. Как таковое, волокнистое армирование, используемое для армирования аэрогелей, должно иметь достаточную эластичность, чтобы выдерживать наматывание и разматывание. Материалы с избыточной жесткостью и/или материалы с высоким содержанием связующего обычно не перерабатываются хорошо и обычно дают получение аэрогельных композитов с избыточными дефектами в форме складок, короблений, расслоений и разрывов (фигура 1). Конечный продукт, образованный с использованием таких жестких армирований, является, таким образом, не подходящим для получения плоской панельной плиты, предпочтительной формы продукта для применений в зданиях и конструкциях. Избыточное количество дефектов в таких продуктах снижает термическую характеристику, целостность материала и сильно усложняет любой способ получения.

Авторами изобретения установлено, что продольная сегментация (через ширину покрытия) жесткого нетканого волокнистого армирования или вспененного с открытыми порами армирования обеспечивает достаточную эластичность, так что продукт может быть намотан/размотан с минимальным расслоением или короблением. В другом варианте облицовочный лист интегрируется на одной стороне покрытия с обеспечением дополнительной разрывной прочности. Сегментированные нетканые покрытия могут быть получены различными способами, включая надрезание поверхности нетканого материала частично через его толщину, присоединение отдельных сегментов к облицовочному листу, таким образом создавая сегментированный лист, соединенный вместе облицовочным листом общим способом и присоединяя облицовочный лист любыми другими способами, известными в технике. Термины «сегментация» и «нанесение надрезов» используются взаимозаменяемо в данном документе для обозначения способа получения сегментированных листов, где сегменты удерживаются вместе облицовочным листом. Альтернативно нанесение надрезов (надрезание) осуществляется менее, чем на толщину листов, так что сегментированный лист находится еще в одном куске и удерживается вместе частями через толщину, не разрезанную при нанесении надрезов. Некоторые надрезанные нетканые листы являются доступными на рынке. Примером является нетканый холст из минеральной ваты Isoroll MW от Isolparma S.r.l. Сегментированный нетканый лист выполняется облицовочным листом/вуалью способом получения армированного волокном аэрогельного композита и последующим получением жесткой панели - схематически показано на фигурах 2 и 6. Нетканое волокнистое армирование может быть эффективно намотано в цилиндрическую форму, и любые листы с введенным гелем, полученные из него, могут быть размотаны в плоскую плитоподобную форму с небольшим или отсутствующим повреждением. Это обеспечивает эффективную отливку влажного композита гель/волокно с использованием плоской конвейерной ленты и наматывание конечного влажного гелевого композита с обеспечением эффективного использования в способах, содержащих использование цилиндрических сосудов. Альтернативно, сегментированный нетканый лист может быть предварительно намотан с другим непроницаемым слоем, смежным с главной поверхностью, и предшественник геля может быть введен в волокнистую матрицу вдоль оси намотки, затем размотан после гелеобразования и дополнительно переработан с получением высушенных сегментированных гелевых композитов. Что еще более важно, большинство видимых воздушных зазоров в гелевом композите, как получено в цилиндрической форме, между смежными сегментами эффективно исчезают при разматывании в плоский лист, обеспечивая, что сохраняется термическая характеристика типичного композита аэрогель/волокно. Конечный материал может быть размотан в почти осуществленную плоскую панель, обеспечивая эффективное получение жестких панелей или аэрогельсодержащих плит, подходящих в применениях для зданий и конструкций. Что было неожиданно и удивительно, что при наматывании (либо влажного, либо высушенного геля) зазоры, т.е. зазоры между смежными сегментами, разделены прозрачной линией без дробления. Аэрогели и другие высушенные гели, выполненные из предшественников геля, описанных в настоящем изобретении, являются хрупким материалом, который при воздействии любых напряжений является склонным к растрескиванию и дроблению. Однако, что установлено авторами изобретения, это способ, где высушенные гели могут быть разрушены по прозрачным линиям в зазорах, так что при последующем разматывании они дают по существу плоскую поверхность. Это обеспечивает эффективное получение плоских панелей. Кроме того, отдельные сегменты являются еще жесткими, даже если они способны наматываться и разматываться. Указанная сегментированная жесткость обеспечивает получение жестких панелей с двумя или более таких полученных листов армированных волокном гелевых композитов с использованием адгезивов различного типа, с использованием неклеевых устройств механического крепления, сшивания иглой полученных композитов или сшивки их с использованием внешних волокон.

Авторы изобретения довели данное изобретение до практического осуществления при получении маломасштабных рулонов аэрогельных композитов длиной 36 дюйм (914 мм) и шириной 8 дюйм (203 мм). В частности, авторы изобретения использовали сегментированный лист стекловаты, содержащей ротационное стекло, и другие листы минеральной ваты, доступные на рынке, для получения гелевых композитных материалов в способе рулонных материалов. Композиты нетканого материала и геля были намотаны вокруг сердечника диаметром 6 дюйм (152 мм). При использовании стандартных предшественников (диоксид кремния)содержащего аэрогеля (тетраэтоксисилан и его производные) были получены влажные гелевые композиты с использованием указанного листа стекловаты (надрезанного, или сегментированного, с интервалами 1 или 2 дюйм (25,4 мм или 50,8 мм) вдоль его длины) и затем были намотаны в рулон вокруг диаметра 6 дюйм (152 мм) после 12 мин периода синерезиса. При наматывании влажный гель чисто разрушается по надрезам (или сегментации) с обеспечением эластичности и сохранении целостности сегментов волокно/аэрогель (фигура 4). Альтернативно сегментированные волокнистые холсты или листы сегментированного пенопласта с открытыми порами могут быть свернуты в цилиндрическую форму и помещены в цилиндрический контейнер, и предшественники геля могут быть введены, или ими пропитана волокнистая или из пенопласта с открытыми порами матрица с последующим гелеобразованием в таком сочетании. Вакуум или подведение давления могут быть использованы для облегчения введения или пропитки волокнистого холста или пенопласта с открытыми порами предшественниками геля.

Намотанный влажный композит гель/волокна является теперь пригодным для обработки в цилиндрическом сосуде для созревания, споласкивания и экстракции сверхкритическим СО2 и находится в идеальной форме для максимизации объема цилиндрического сосуда. После удаления растворителя экстракцией сверхкритическим СО2 или другой технологией сушки, рассмотренной еще где-либо в данной заявке, материал сохраняет достаточную эластичность, так что он может быть размотан в плоский лист. В противоположность аэрогельным композитам, полученным с несегментированным листом стекловаты такого же типа, использование сегментированного листа стекловаты значительно снижает/исключает любые дефекты материала, связанные со стадиями наматывания и разматывания. Сегментированный гелевый композит сохраняет эластичность, так что он может быть размотан и формован в панель с получением плиты (фигуры 4, 5 и 6).

Авторами изобретения также успешно показано, что использование сегментированного композита аэрогель/волокно может быть использовано для получения плоской доски с использованием неорганических и органических адгезивов. В частности, авторами изобретения были получены прототипы, использующие калийсиликатные адгезивы и два слоя сегментированных композитов аэрогель/волокно. Первоначальной целью использования облицовочного листа в исходном волокнистом армировании было обеспечение улучшенной разрывной прочности и носителя для сегментов волокна, но авторами изобретения было также установлено, что такой облицовочный лист теперь может быть ориентирован наружу с обеспечением некоторого уровня сдерживания распространения пыли для конечной аэрогельной плиты.

Способы получения аэрогеля, включающие использование высоких давлений, должны включать цилиндрические сосуды, работающие под давлением. Даже стадии низкого давления, такие как созревание и споласкивание, эффективно выполняются с использованием цилиндрических сосудов. Обработка текучей среды является легче в цилиндрических сосудах, чем в сосудах другой формы. Для того, чтобы полностью максимизировать использование цилиндрического сосуда, необходимо перерабатывать эластичный гелевый композит, так что он принимает цилиндрическую форму и, таким образом, заполняет любой сосуд почти на 100% доступного объема