Агент, индуцирующий иммунитет
Иллюстрации
Показать всеГруппа изобретений относится к медицине, а именно к онкологии, и может быть использована для лечения или профилактики злокачественного новообразования. Для этого вводят иммунитет-индуцирующую композицию, которая экспрессирует SCD1 у млекопитающего и содержит в качестве эффективного ингредиента полипептид или рекомбинантный вектор, который содержит полинуклеотид, кодирующий указанный полипептид. При этом полипептид состоит из аминокислотной последовательности, выбранной из SEQ ID NO: 4, SEQ ID NO: 2, SEQ ID NO: 22 и SEQ ID NO: 24. Рекомбинантный вектор способен экспрессировать указанный полипептид in vivo.Также предложены способ in vitro получения антиген-презентирующей клетки и способ in vitro получения цитотоксической Т-клетки. Группа изобретений обеспечивает лечение и/или профилактику злокачественного новообразования. 3 н. и 3 з.п. ф-лы, 3 ил., 3 пр.
Реферат
ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к новому агенту, индуцирующему иммунитет, используемому в качестве терапевтического и/или профилактического средства для лечения злокачественного новообразования.
УРОВЕНЬ ТЕХНИКИ
Рак является наиболее общеизвестной причиной смерти среди всех причин смертей, и лечение, осуществляемое в настоящее время, представляет собой, главным образом, хирургическое вмешательство, которое может осуществляться в сочетании с лучевой терапией и/или химиотерапией. Несмотря на разработку новых хирургических методов и открытие новых противораковых агентов в последние годы, результаты лечения злокачественных новообразований еще не были значительно улучшены, за исключением некоторых видов злокачественных новообразований. В последние годы, благодаря достижениям молекулярной биологии и иммунологии злокачественных новообразований, были идентифицированы раковые антигены, которые распознаются цитотоксическими Т-клетками, реактивными к злокачественному новообразованию, а также гены, кодирующие раковые антигены, и возросли ожидания от антиген-специфической иммунотерапии.
В иммунотерапии, с целью уменьшения побочных эффектов, пептид или белок, признанный в качестве антигена, должен почти не присутствовать в нормальных клетках, но особенно присутствовать в раковых клетках. В 1991 году Boon et al., из института Ludwig Institute в Бельгии, выделили антиген меланомы человека MAGE 1, распознаваемый CD8-позитивными Т-клетками, путем метода клонирования кДНК-экспрессии с использованием аутологичной линии опухолевых клеток и опухолереактивных Т-клеток (непатентный документ 1). Затем сообщалось о методе SEREX (серологические идентификации антигенов путем клонирования рекомбинантной экспрессии), где опухолевые антигены, распознаваемые антителами, продуцированными в организме больного раком в ответ на собственный рак пациента, идентифицируются путем использования метода клонирования экспрессии гена (патентный документ 1, непатентный документ 2), и этим методом были выделены некоторые раковые антигены. Используя в качестве мишеней часть раковых антигенов, были начаты клинические испытания иммунотерапии злокачественных новообразований.
С другой стороны, как и у людей, ряд опухолей, таких как опухоль молочной железы и плоскоклеточная карцинома, также известны у собак и кошек, и они занимают высокое место в статистике болезней собак и кошек. Однако в настоящее время не существуют терапевтического агента, профилактического агента или диагностического агента, эффективных при злокачественных новообразованиях у собак и кошек. Поскольку большинство опухолей у собак и кошек распознается их владельцами только после того, как опухоли вырастают уже крупными из-за их прогрессирования, визит в лечебницу происходит уже слишком поздно, и даже если они подвергаются хирургической операции или им вводят лекарство для человека (например, противораковое средство или тому подобное), часто они умирают вскоре после лечения. В таких обстоятельствах, если терапевтические агенты и профилактические агенты при злокачественном новообразовании, эффективные для собак и кошек, становятся доступными, ожидается, что будет разрабатываться их применение при лечении злокачественных новообразований у собак.
Стеароил-CoA десатураза 1 (SCD1) вводит двойную связь в положение С9-С10 насыщенной жирной кислоты. Предпочтительными субстратами для фермента являются пальмитоил-СоА (16:0) и стеароил-СоА (18:0), и они преобразуются в пальмитолеоил-СоА (16:1) и олеоил-СоА (18:1), соответственно. Полученная мононенасыщенная жирная кислота затем может быть использована in vivo для получения фосфолипидов, триглицеридов и сложных эфиров холестерина. Кроме того, различные виды злокачественных новообразований, такие как рак печени, рак пищевода и рак толстой кишки, демонстрируют увеличенную экспрессию SCD1, и сообщалось, что ингибирование функции SCD1 с помощью миРНК или низкомолекулярного соединения вызывает супрессию роста клеток или индукцию апоптоза (непатентные документы 3, 4 и 5). Однако нет сообщений, подтверждающих, что белок SCD1 обладает иммунитет-индуцирующей активностью в отношении раковых клеток, и, следовательно, что указанный белок может быть использован для лечения и профилактики злокачественного новообразования.
ДОКУМЕНТЫ УРОВНЯ ТЕХНИКИ
Патентные документы
[Патентный документ 1] US 5698396 B
Непатентные документы
[Непатентный документ 1] Bruggen P. et al., Science, 254:1643-1647 (1991)
[Непатентный документ 2] Proc. Natl. Acad. Sci. USA, 92:11810-11813 (1995)
[Непатентный документ 3] Scaglia N. et al., PLoS One 4: e6812 (2009)
[Непатентный документ 4] Morgan-Lappe SE et al., Cancer Res 67: 4390-4398 (2007)
[Непатентный документ 5] Scaglia N. et al., Biochim Biophys Acta 1687: 141-151 (2005)
[Непатентный документ 6] Ariyama H. et al., J Biol Chem (2010)
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
ЗАДАЧИ, РЕШАЕМЫЕ ИЗОБРЕТЕНИЕМ
Целью настоящего изобретения является выявление нового полипептида, который может использоваться в качестве лечебного и/или профилактического агента для лечения злокачественного новообразования, и касается полипептида для использования в качестве агента, индуцирующего иммунитет.
СРЕДСТВА ДЛЯ РЕШЕНИЯ ЗАДАЧ
По методу SEREX с использованием библиотеки кДНК, полученной из семенника собаки, и сыворотки, полученной из организма собаки, пораженного опухолью, авторы настоящего изобретения провели интенсивные исследования с целью получению белка, кодирующего кДНК, который связывается с антителами, присутствующими в сыворотке, полученной из пораженного опухолью живого организма, и на основе этой кДНК был получен полипептид стеароил-СоА десатуразы 1 собаки (в дальнейшем именуемый SCD1), имеющий аминокислотную последовательность SEQ ID NO:2. Кроме того, на основе гомологичных человеческого и мышиного генов полученного гена, были получены SCD1 человека и мыши, имеющие аминокислотную последовательность SEQ ID NO:4 и 6. Далее, авторы настоящего изобретения обнаружили, что указанные полипептиды SCD1 специфически экспрессируются в тканях или клетках рака молочной железы, рака мозга, рака толстой кишки, перианальной аденокарциномы, мастоцитому, нейробластомы, рака почки, рака печени, рака легких, рака предстательной железы или лейкемии. Авторы настоящего изобретения обнаружили, кроме того, что введение SCD1 в живой организм способно индуцировать иммунные клетки против SCD1 в живом организме и вызывать регрессию опухоли, экспрессирующую SCD1 в живом организме. Кроме того, авторы настоящего изобретения обнаружили, что рекомбинантный вектор, который может экспрессировать полинуклеотид, кодирующий полипептид SCD1 или его фрагмент, индуцирует противоопухолевый эффект против злокачественного новообразования, экспрессирующего SCD1 в живом организме.
Далее, авторы настоящего изобретения обнаружили, что полипептид SCD1 обладает способностью, которая представлена антиген-презентирующими клетками, вызывать активацию и рост цитотоксических Т-клеток, специфичных к пептиду (иммунитет-индуцирующая активность), и, таким образом, полипептид может быть использован для терапии и/или профилактики злокачественного новообразования. Кроме того, авторы настоящего изобретения обнаружили, что антиген-презентирующие клетки, контактировавшие с полипептидом, и Т-клетки, контактировавшие с антиген-презентирующими клетками, могут быть использованы для терапии и/или профилактики злокачественного новообразования, и, в результате этого, создали данное изобретение.
Таким образом, настоящее изобретение характеризуется следующим.
(1) Иммунитет-индуцирующий агент, содержащий в качестве эффективного(ых) ингредиента(ов) по меньшей мере один полипептид, обладающий иммунитет-индуцирующей активностью, выбранный из полипептидов (а)-(с), указанных далее, и рекомбинантного(ых) вектора(ов), который(ые) содержит(ат) полинуклеотид(ы), кодирующий(ие) по меньшей мере один полипептид, где рекомбинантный(ые) вектор(ы) способен(ны) экспрессировать полипептид(ы) in vivo:
(a) полипептид, состоящий из не менее 7 последовательных аминокислот с любыми аминокислотными последовательностями SEQ ID NO:4, 2, 22 и 24 из ПЕРЕЧНЯ ПОСЛЕДОВАТЕЛЬНОСТЕЙ.
(b) полипептид, содержащий последовательность, идентичную не менее чем на 85% полипептиду (а), и состоящий из не менее 7 аминокислот; и
(c) полипептид, содержащий полипептид (a) или (b) в качестве своей частичной последовательности.
(2) Иммунитет-индуцирующий агент в соответствии с (1), где полипептид, обладающий иммунитет-индуцирующей активностью, представляет собой полипептид, имеющий аминокислотную последовательность SEQ ID NO:4, 2, 22 или 24 из ПЕРЕЧНЯ ПОСЛЕДОВАТЕЛЬНОСТЕЙ.
(3) Иммунитет-индуцирующий агент в соответствии с (1) или (2), который представляет собой агент для обработки антиген-презентирующих клеток.
(4) Иммунитет-индуцирующий агент в соответствии с (1) или (2), который представляет собой терапевтический и/или профилактический агент для лечения злокачественного(ых) новообразования(ий).
(5) Иммунитет-индуцирующий агент в соответствии с (4), где злокачественным(ми) новообразованием(ями) является(ются) злокачественное(ые) новообразование(я), экспрессирующее(ие) SCD1.
(6) Иммунитет-индуцирующий агент в соответствии с (4) или (5), где злокачественное(ые) новообразование(я) представляет(ют) собой рак молочной железы, рак мозга, рак толстой кишки, перианальную аденокарциному, опухоль тучных клеток, нейробластому, рак почки, рак печени, рак легких, рак предстательной железы и/или лейкоз.
(7) Иммунитет-индуцирующий агент по любому из (1)-(6), дополнительно содержащий иммуностимулятор.
(8) Иммунитет-индуцирующий агент в соответствии с (7), где иммуностимулятором является по меньшей мере один, выбранный из группы, состоящей из неполного адъюванта Фрейнда; монтанида; поли-I:C и его производных; олигонуклеотидов CpG; интерлейкина-12; интерлейкина-18; интерферона-α; интерферона-β; интерферона-ω; интерферона-γ; и лиганда Flt3.
ЭФФЕКТ ИЗОБРЕТЕНИЯ
В соответствии с настоящим изобретением, предложен новый иммунитет-индуцирующий агент, который может использоваться для терапии, профилактики и/или тому подобного в случае злокачественного новообразования. Как подробно показано в приведенных далее примерах, введение в живой организм полипептида, используемого в настоящем изобретении, способно индуцировать иммунные клетки в живом организме, и вызывать уменьшение или регрессию уже имеющегося злокачественного новообразования. Таким образом, полипептид может быть использован для терапии и/или профилактики злокачественного новообразования.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На фиг.1 показаны паттерны экспрессии идентифицированного гена SCD1 в нормальных тканях, тканях опухолей и в линиях раковых клеток собак. Ссылочный номер 1, паттерны экспрессии гена SCD1 собак в различных тканях и клеточных линиях собак; ссылочный номер 2, паттерны экспрессии гена GAPDH собак в различных тканях и клеточных линиях собак.
На фиг.2 показаны паттерны экспрессии идентифицированного гена SCD1 в нормальных тканях, тканях опухолей и в линиях раковых клеток человека. Ссылочный номер 3, паттерны экспрессии гена SCD1 человека в различных тканях и клеточных линиях человека; ссылочный номер 4, паттерны экспрессии гена GAPDH человека в различных тканях и клеточных линиях человека.
На фиг.3 показаны паттерны экспрессии идентифицированного гена SCD1 в нормальных тканях, тканях опухолей и в линиях раковых клеток мышей. Ссылочный номер 5, паттерны экспрессии гена SCD1 мышей в различных тканях и клеточных линиях мышей; ссылочный номер 6, паттерны экспрессии гена GAPDH мышей в различных тканях и клеточных линиях мышей.
ЛУЧШИЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Примеры полипептида, содержащегося в качестве активного ингредиента в иммунитет-индуцирующем агенте по настоящему изобретению, включают следующие. В настоящем изобретении термин "полипептид" обозначает молекулу, образованную множеством аминокислот, связанных пептидными связями, и включает не только полипептидные молекулы, состоящие из большого числа аминокислот, но также молекулы с небольшой молекулярной массой, содержащие небольшое число аминокислот (олигопептиды), и полноразмерные белки. Настоящее изобретение включает также полноразмерные белки SCD1, имеющие аминокислотную последовательность SEQ ID NO:4, 2, 22 или 24.
(a) Полипептид, состоящий из не менее 7 последовательных аминокислот в полипептиде, имеющий аминокислотную последовательность SEQ ID NO:4, 2, 22 или 24 из ПЕРЕЧНЯ ПОСЛЕДОВАТЕЛЬНОСТЕЙ, и обладающий иммунитет-индуцирующей активностью.
(b) Полипептид, состоящий из не менее 7 последовательных аминокислот, где полипептид имеет идентичность последовательности не менее 85% по отношению к полипептиду (а), и обладает иммунитет-индуцирующей активностью.
(c) Полипептид, который содержит полипептид (a) или (b) в качестве своей частичной последовательности и обладает иммунитет-индуцирующей активностью.
В настоящем изобретении выражение "имеющий аминокислотную последовательность" означает, что аминокислотные остатки расположены в таком порядке. Таким образом, например, "полипептид, имеющий аминокислотную последовательность SEQ ID NO:2", означает полипептид, имеющий аминокислотную последовательность Met Pro Ala His…(остаток)…Tyr Lys Ser Gly, показанную в SEQ ID NO:2, где полипептид имеет размер из 360 аминокислотных остатков. Кроме того, например, "полипептид, имеющий аминокислотную последовательность SEQ ID NO:2", может быть кратко указан как "полипептид с SEQ ID NO:2". То же самое относится к термину "имеющий последовательность оснований". В этом случае термин "содержащий" может быть заменен термином "состоящий из".
Используемый в настоящем документе термин "иммунитет-индуцирующая активность" означает способность индуцировать иммуноциты, которые в живом организме секретируют цитокины, такие как интерферон.
Обладает ли полипептид иммунитет-индуцирующей активностью или нет, может быть установлено с использованием, например, известного анализа ELISPOT. Более конкретно, например, как описано в приведенных далее примерах, клетки, такие как мононуклеарные клетки периферической крови, получают из живого организма, подвергнутого введению полипептида, иммунитет-индуцирующая активность которого должна быть оценена, и полученные клетки затем совместно культивируют с полипептидом, затем измеряют количество(а) цитокина(ов), продуцируемого(ых) клетками, с использованием специфического(их) антитела/антител, тем самым делая возможным измерение количества иммуноцитов среди клеток. Благодаря этому возможна оценка иммунитет-индуцирующей активности.
Альтернативно, как описано в приведенных далее примерах, введение рекомбинантного полипептида из числа любых, описанных выше от (а) до (с), животному, пораженному опухолью, обеспечивает регрессию опухоли благодаря его иммунитет-индуцирующей активности. Таким образом, вышеуказанная иммунитет-индуцирующая активность может быть оценена также как способность подавлять рост раковых клеток или вызывать уменьшение или исчезновение опухолевой ткани (опухоли) (далее именуемой как "противоопухолевая активность"). Противоопухолевая активность полипептида может быть подтверждена, например, как более конкретно описано в приведенных далее примерах, путем наблюдения того, уменьшается ли опухоль или нет после фактического введения полипептида в живой организм, пораженный опухолью.
Альтернативно, противоопухолевая активность полипептида может также быть оценена путем наблюдения того, показывают или не показывают Т-клетки, стимулированные полипептидом (то есть, Т-клетки приводят в контакт с антиген-презентирующими клетками, презентирующими полипептид), цитотоксическую активность в отношении опухолевых клеток in vitro. Контакт между Т-клетками и антиген-презентирующими клетками может быть осуществлен путем их совместного культивирования в жидкой среде, как описано далее. Измерение цитотоксической активности может быть осуществлено, например, известным способом, называемым анализом высвобождения 51Cr, описанным в работе Int. J. Cancer, 58: p 317, 1994. В случаях, когда полипептид предназначается для терапии и/или профилактики злокачественного новообразования, оценку иммунитет-индуцирующей активности предпочтительно осуществляют с использованием противоопухолевой активности в качестве индекса, хотя индекс этим не ограничивается.
Каждая из аминокислотных последовательностей SEQ ID NO:2, 4, 22 и 24 из СПИСКА ПОСЛЕДОВАТЕЛЬНОСТЕЙ, представленная в настоящем изобретении, является аминокислотной последовательностью SCD1, которую выделили методом SEREX с использованием библиотеки кДНК, полученной из семенников собаки, и сыворотки собаки, пораженной опухолью, в виде полипептида, который специфически связывается с антителом, присутствующим в сыворотке собаки, пораженной опухолью, или гомологичного фактора полипептида у человека, коровы или лошади (см. пример 1). SCD1 человека, который является человеческим гомологическим фактором SCD1 собаки, имеет идентичность последовательности, составляющую 89% в отношении последовательности оснований и 90% в отношении аминокислотной последовательности; SCD1 быка, который является бычьим гомологическим фактором, имеет идентичность последовательности, составляющую 88% в отношении последовательности оснований и 87% в отношении аминокислотной последовательности; и SCD1 лошади, который является гомологическим лошадиным фактором, имеет идентичность последовательности, составляющую 90% в отношении последовательности оснований и 87% в отношении аминокислотной последовательности.
Полипептид (а) представляет собой полипептид, состоящий из не менее 7-ми последовательных, предпочтительно 8, 9, или не менее 10-ти последовательных аминокислот в полипептиде, имеющем аминокислотную последовательность SEQ ID NO:2, 4, 22 или 24, и обладающий иммунитет-индуцирующей активностью. Более предпочтительно, полипептид представляет собой полипептид, состоящий из аминокислотной последовательности, имеющей идентичность последовательности не менее 85% в отношении аминокислотной последовательности SEQ ID NO:4, и, особенно предпочтительно, полипептид имеет аминокислотную последовательность SEQ ID NO:2, 4, 22 или 24. Как известно в данной области техники, полипептид, имеющий не менее 7 аминокислотных остатков, может проявлять свою антигенность и иммуногенность. Таким образом, полипептид, имеющий не менее 7 последовательных аминокислотных остатков в аминокислотной последовательности SEQ ID NO:2, 4, 22 или 24, может обладать иммунитет-индуцирующей активностью, и, соответственно, полипептид может быть использован для получения иммунитет-индуцирующего агента по настоящему изобретению.
В основе иммунной индукции посредством введения полипептида, обладающего свойствами ракового антигена, лежит следующий известный процесс: полипептид включается в антиген-презентирующую клетку, и затем в клетке с помощью пептидаз он распадается на более мелкие фрагменты, с последующим проявлением на поверхности клетки. Далее фрагменты распознаются цитотоксическими Т-клетками или тому подобными, которые избирательно убивают клетки, презентирующие антиген. Размер полипептида, представленного на поверхности антиген-презентирующей клетки, является относительно небольшим и составляет около 7-30 аминокислот. Таким образом, с точки зрения презентирования полипептида на поверхности антиген-презентирующей клетки, один предпочтительный вариант описанного выше полипептида (а) представляет собой полипептид, состоящий из приблизительно 7-30 последовательных аминокислот в аминокислотной последовательности SEQ ID NO:2, 4, 22 или 24, и, более предпочтительно, полипептид, состоящий из приблизительно 8-30 или приблизительно 9-30 аминокислот, является удовлетворительным в качестве полипептида (а). В некоторых случаях эти относительно небольшие полипептиды представлены непосредственно на поверхности антиген-презентирующих клеток, не будучи включенными в антиген-презентирующие клетки.
Кроме того, полипептид, включенный в антиген-презентирующую клетку, расщепляется в клетке с помощью пептидаз на случайные участки с образованием различных полипептидных фрагментов, которые затем презентируются на поверхности антиген-презентирующей клетки. Таким образом, введение большого полипептида, например, как полноразмерная область SEQ ID NO:2, 4, 22 или 24, неизбежно вызывает продуцирование полипептидных фрагментов путем распада в антиген-презентирующей клетке, и эти фрагменты являются эффективными для иммунной индукции посредством антиген-презентирующей клетки. Соответственно, для иммунной индукции посредством антиген-презентирующей клетки также можно предпочтительно использовать большой полипептид, и полипептид может состоять не менее чем из 30, предпочтительно не менее чем из 100, более предпочтительно не менее чем из 200, еще более предпочтительно не менее чем из 250 аминокислот. Еще более предпочтительно, полипептид может состоять из полноразмерной области SEQ ID NO:2, 4, 22 или 24.
Полипептид (b) представляет собой полипептид, аналогичный полипептиду (а), за исключением того, что небольшое количество (предпочтительно, один или несколько) аминокислотных остатков замещены, удалены и/или встроены, который имеет идентичность последовательности не менее 90%, предпочтительно не менее 95%, более предпочтительно не менее 98%, еще более предпочтительно не менее 99% или не менее 99,5%, относительно исходной последовательности, и он обладает иммунитет-индуцирующей активностью. В данной области техники хорошо известно, что обычно возможны случаи, когда белковый антиген сохраняет почти такую же антигенность, как и оригинальный белок, даже если аминокислотная последовательность белка модифицирована таким образом, что небольшое число аминокислотных остатков замещено, удалено и/или встроено. Таким образом, поскольку полипептид (b) также может демонстрировать иммунитет-индуцирующую активность, он может быть использован для приготовления иммунитет-индуцирующего агента по настоящему изобретению. Кроме того, полипептид (b) также предпочтительно представляет собой полипептид, имеющий такую же аминокислотную последовательность, как и аминокислотная последовательность SEQ ID NO:2, 4, 22 или 24, за исключением того, что один или несколько аминокислотных остатков замещены, удалены и/или встроены. Используемый в настоящем документе термин "несколько" означает целое число от 2 до 10, предпочтительно целое число от 2 до 6, более предпочтительно целое число от 2 до 4.
Используемый в настоящем документе термин "идентичность последовательностей" аминокислотных последовательностей или последовательностей оснований означает значение, рассчитанное путем выравнивания для сравнения двух аминокислотных последовательностей (или последовательностей оснований) таким образом, чтобы число равноценных аминокислотных остатков (или оснований) было максимальным между аминокислотными последовательностями (или последовательностями оснований), и затем делением числа равноценных аминокислотных остатков (или количества соответствующих оснований) на общее количество аминокислотных остатков (или общее количество оснований), и это значение выражают в виде процентов. Когда осуществляют выравнивание, то один или несколько гэпов, по мере необходимости, встраивают в одну или обе из двух сравниваемых последовательностей. Такое выравнивание последовательностей может быть осуществлено с использованием хорошо известной программы, такой как BLAST, FASTA или CLUSTAL W. В случае, когда вставлены один или несколько гэпов, описанное выше общее число аминокислотных остатков представляет собой число остатков, вычисленных путем подсчета одного гэпа в качестве одного аминокислотного остатка. Когда подсчитанное таким образом общее количество аминокислотных остатков отличается между двумя сравниваемыми последовательностями, идентичность последовательности (%) рассчитывают путем деления числа совпадающих аминокислотных остатков на общее количество аминокислотных остатков в более длинной последовательности.
20 видов аминокислот, составляющих природные белки, могут быть классифицированы на группы, в каждой из которых сходные свойства являются объединяющими, например, на нейтральные аминокислоты с боковыми цепями, имеющими низкую полярность (Gly, Ile, Val, Leu, Ala, Met, Pro), нейтральные аминокислоты, имеющие гидрофильные боковые цепи (Asn, Gln, Thr, Ser, Tyr, Cys), кислотные аминокислоты (Asp, Glu), основные аминокислоты (Arg, Lys, His) и ароматические аминокислоты (Phe, Tyr, Trp). Известно, что во многих случаях замещение аминокислоты в пределах одной группы не изменяет свойств полипептида. Таким образом, в тех случаях, когда аминокислотный остаток в полипептиде (а) по настоящему изобретению является замещенным, вероятность того, что иммунитет-индуцирующая активность может быть сохранена, возможно увеличить осуществлением замещения в пределах одной группы, что является предпочтительным.
Полипептид (с) представляет собой полипептид, содержащий полипептид (а) или (b) в качестве части последовательности, и он обладает иммунитет-индуцирующей активностью. То есть, полипептид (с) представляет собой полипептид, в котором одна или несколько аминокислот и/или один или несколько полипептидов добавлены на одном или обоих концах полипептида (а) или (b), и он обладает иммунитет-индуцирующей активностью. Такой полипептид может также быть использован при получении иммунитет-индуцирующего агента по настоящему изобретению.
Вышеописанные полипептиды могут быть синтезированы, например, методом химического синтеза, таким как Fmoc-способ (флуоренилметилоксикарбонильный способ) или tBOC-способ (трет-бутилоксикарбонильный способ). Кроме того, они могут быть синтезированы обычными способами с использованием различных видов коммерчески доступных синтезаторов пептидов. Помимо этого, представляющий интерес полипептид может быть получен с использованием известных методов генной инженерии, путем получения полинуклеотида, кодирующего полипептид, и включения полинуклеотида в вектор экспрессии, с последующим введением полученного вектора в клетку-хозяина, и давая клетке-хозяину продуцировать в ней полипептид.
Полинуклеотид, кодирующий вышеуказанный полипептид, может быть легко получен известными методами генной инженерии или обычным способом с использованием коммерчески доступного синтезатора нуклеиновых кислот. Например, ДНК, имеющая последовательность оснований SEQ ID NO:1, может быть получена путем проведения ПЦР с использованием хромосомной ДНК собаки или библиотеки кДНК в качестве матрицы, и пары праймеров, сконструированных таким образом, чтобы последовательность оснований SEQ ID NO:1 могла бы быть амплифицирована с их помощью. ДНК, имеющая последовательность оснований SEQ ID NO:3, может быть аналогичным образом получена с использованием человеческой хромосомной ДНК или библиотеки кДНК в качестве матрицы. Реакционные условия для ПЦР могут быть подобраны соответствующим образом, и примеры реакционных условий включают, но этим не ограничиваются, повторение процесса реакции при 94°С в течение 30 секунд (денатурация), при 55°С в течение от 30 секунд до 1 минуты (отжиг) и при 72°С в течение 2 минут (элонгация), путем, например, 30 циклов, с последующим взаимодействием при 72°С в течение 7 минут. Кроме того, желаемая ДНК может быть выделена путем получения соответствующего зонда или праймера на основе данных о последовательности оснований или аминокислотной последовательности SEQ ID NO:1 или 3 из СПИСКА ПОСЛЕДОВАТЕЛЬНОСТЕЙ настоящего описания, и скрининга библиотеки кДНК собаки, человека или т.п., с использованием зонда или праймера. Библиотеку кДНК предпочтительно получают из клеток, органа или ткани, экспрессирующих белок SEQ ID NO:2 или 4. Вышеописанные операции, такие как получение зонда или праймера, составление библиотеки кДНК, скрининг библиотеки кДНК и клонирование представляющего интерес гена известны специалистам в данной области и могут быть выполнены в соответствии с методами, описанными в обзоре Molecular Cloning, Second Edition; Current Protocols in Molecular Biology, и/или тому подобными методами. Из полученной таким образом ДНК может быть получена ДНК, кодирующая полипептид (a). Кроме того, поскольку кодоны, кодирующие каждую аминокислоту, являются известными, может быть легко определена последовательность оснований полинуклеотида, кодирующего специфическую аминокислотную последовательность. Таким образом, поскольку может быть также легко определена последовательность оснований полинуклеотида, кодирующего полипептид (b) или полипептид (с), такой полинуклеотид также может быть легко синтезирован обычным способом с использованием коммерчески доступного синтезатора нуклеиновых кислот.
Клетки-хозяева не ограничены в тех рамках, в которых клетки могут экспрессировать описанный выше полипептид, и примеры клеток включают, но этим не ограничиваются, прокариотические клетки, такие как E.coli; и эукариотические клетки, такие как культивируемые клетки млекопитающих, включая клетки почек обезьяны COS1 и клетки яичников китайского хомячка СНО; почкующиеся дрожжи; делящиеся дрожжи; клетки шелкопряда; и яйцеклетки Xenopus laevis.
В тех случаях, когда в качестве клеток-хозяев используются прокариотические клетки, используют вектор экспрессии, содержащий ориджин, который обеспечивает репликацию вектора в прокариотической клетке, промоторе, участке связывания рибосомы, сайте клонирования ДНК, терминаторе и/или тому подобное. Примеры вектора экспрессии для E.coli включают систему pUC, pBluescriptII, систему экспрессии pET и систему экспрессии pGEX. Путем введения ДНК, кодирующей вышеуказанный полипептид, в такой вектор экспрессии и трансформации прокариотических клеток-хозяев с этим вектором и последующим культивированием полученных трансформантов, полипептид, кодируемый ДНК, может быть экспрессирован в прокариотических клетках-хозяевах. В таком случае полипептид может быть также экспрессирован в виде слитого белка с другим белком.
В тех случаях, когда в качестве клеток-хозяев используют эукариотические клетки, в качестве вектора экспрессии используют вектор экспрессии для эукариотических клеток, состоящий из промотора, сплайсинга, поли(А)-аддитивного сайта и/или тому подобного. Примеры такого вектора экспрессии включают pKA1, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, вектор EBV, pRS, pcDNA3, pMSG и pYES2. Как и в предыдущем случае, путем введения ДНК, кодирующей вышеуказанный полипептид, в такой вектор экспрессии, и трансформации эукариотических клеток-хозяев с вектором и последующим культивированием полученных трансформантов, полипептид, кодируемый ДНК, может быть экспрессирован в эукариотических клетках-хозяевах. В случаях, когда в качестве вектора экспрессии pIND/V5-His, pFLAG-CMV-2, pEGFP-N1, pEGFP-C1 или тому подобное, указанный полипептид может быть экспрессирован в виде слитого белка, содержащего тег, такой как His-тег (гистидиновый тег), FLAG-тег, myc-тег, HA-тег (гемагглютинин-тег) или GFP (зеленый флуоресцентный белок).
Для введения вектора экспрессии в клетку-хозяина может быть использован хорошо известный метод, такой как электропорация, метод трансфекции фосфатом кальция, метод с применением липосом или метод трансфекции, опосредованной DEAE (диэтиламиноэтил)-декстраном.
Выделение и очистка представляющего интерес полипептида из клеток-хозяев могут быть выполнены посредством комбинирования известных способов выделения. Примеры известных способов выделения включают, но ими не ограничиваются, обработку денатурантом, таким как мочевина или поверхностно-активное вещество, обработку ультразвуком; ферментативное сбраживание; высаливание или фракционное осаждение растворителем; диализ; центрифугирование; ультрафильтрацию; гель-фильтрацию; SDS-PAGE; изоэлектрофокусирование; ионообменную хроматографию; гидрофобную хроматографию; аффинную хроматографию; и хроматографию с обращенными фазами.
Полипептиды, полученные вышеописанными способами, включают также, как указано выше, полипептиды в виде слитого белка с другим произвольным белком. Примеры таких полипептидов включают слитые белки с глутатион S-трансферазой (GST) и слитые белки с His-тегом. Такой полипептид в виде слитого белка также включен в объем настоящего изобретения в качестве описанного выше полипептида (с). Кроме того, в некоторых случаях полипептид, экспрессированный в трансформированной клетке, в клетке после трансляции был модифицирован различными способами. Такой пост-трансляционно модифицированный полипептид также включен в объем настоящего изобретения, поскольку он обладает иммунитет-индуцирующей активностью. Примеры такой пост-трансляционной модификации включают: удаление N-концевого метионина; N-концевое ацетилирование; гликозилирование; ограниченное расщепление с помощью внутриклеточной протеазы; миристоилирование; изопренилирование и фосфорилирование.
Как описано более конкретно в приведенных далее примерах, введение полипептида, обладающего иммунитет-индуцирующей активностью, в живой организм, пораженный опухолью, обеспечивает регрессию уже существующей опухоли. Таким образом, иммунитет-индуцирующий агент по настоящему изобретению может быть использован в качестве терапевтического и/или профилактического средства для лечения злокачественного новообразования. Кроме того, полипептид, обладающий иммунитет-индуцирующей активностью, может быть использован в способе терапии и/или профилактики злокачественного новообразования посредством индукции иммунного ответа.
Используемые в настоящем изобретении термины "опухоль" и "рак" означают злокачественные новообразования и используются взаимозаменяемо.
В этом случае, рак, подлежащий лечению, не является ограниченным в тех рамках, в каких происходит экспрессия SCD1 в злокачественном новообразовании, и злокачественное новообразование, предпочтительно, представляет собой рак молочной железы, опухоль головного мозга, рак толстой кишки, перианальную аденокарциному, мастоцитому, нейробластому, рак почки, рак печени, рак легких, рак предстательной железы или лейкоз.
Субъектом-животным предпочтительно является млекопитающее, более предпочтительно, такое млекопитающее, как примат, “ручное” животное, домашнее животное или животное для участия в спортивных соревнованиях, в частности, предпочтительно, это может быть человек, собака или кошка.
Путь введения иммунитет-индуцирующего агента по настоящему изобретению в живой организм может представлять собой пероральное введение или парентеральное введение, и, предпочтительно, парентеральное введение, такое как внутримышечное введение, подкожное введение, внутривенное введение или внутриартериальное введение. В тех случаях, когда иммунитет-индуцирующий агент используют для терапии злокачественного новообразования, он может быть введен в региональный лимфатический узел в непосредственной близости от опухоли, подлежащей лечению, как описано в приведенных ниже примерах, с тем, чтобы повысить его противоопухолевую активность. Доза может быть любой, при условии, что доза является эффективной для индукции иммунного ответа, и, например, в случаях, когда агент используют для терапии и/или профилактики злокачественного новообразования, доза может быть эффективной для терапии и/или профилактики злокачественного новообразования. Дозу, эффективную для терапии и/или профилактики злокачественного новообразования, соответствующим образом выбирают в зависимости от размера, симптомов и т.п. опухоли, и эффективная доза, как правило, составляет от 0,0001 мкг до 1000 мкг, предпочтительно, от 0,001 мкг до 1000 мкг на субъект-животное в сутки. Агент может быть введен однократно, или раздельно несколько раз. Агент, предпочтительно, вводят раздельно несколько раз, в течение от каждых нескольких дней до нескольких месяцев. Как конкретно показано в приведенных далее примерах, иммунитет-индуцирующий агент по настоящему изобретению может вызывать регрессию уже существующей опухоли. Таким образом, поскольку агент может проявлять свою противораковую активность также против небольшого количества раковых клеток на ранней стадии, развитие или рецидив злокачественного новообразования можно предотвратить с помощью агента до развития злокачественного новообразования или после терапии раковой опухоли. То есть, иммунитет-индуцирующий агент по настоящему изобретению эфф