Сфокусированный ультразвук высокой интенсивности для нагрева целевой зоны, большей, чем электронная зона фокусировки

Иллюстрации

Показать все

Группа изобретений относится к медицинской технике, а именно к медицинским диагностическим магнитно-резонансным системам. Медицинский инструмент содержит систему магнитно-резонансной визуализации для получения данных магнитно-резонансной термометрии от субъекта, систему сфокусированного ультразвука высокой интенсивности, содержащую преобразователь ультразвука с электронно-управляемым фокусом, которая содержит механическую систему позиционирования преобразователя ультразвука, при этом электронно-управляемый фокус реализован с возможностью настройки фокуса в пределах зоны фокусировки, а местоположение зоны фокусировки зависит от положения преобразователя ультразвука, память для хранения исполнимых машиной инструкций, процессор для управления медицинским инструментом, побуждающий выполнять получение целевой зоны, описывающей объем в пределах субъекта, при этом целевая зона больше зоны фокусировки, разделение целевой зоны на множество подзон, при этом каждая из множества подзон имеет положение преобразователя, при этом, когда преобразователь находится в положении преобразователя, зона фокусировки содержит подзону, определение последовательности для перемещения положения преобразователя в каждую из множества подзон, определение выбранной подзоны, выбираемой из множества подзон с использованием последовательности, при этом каждая из подзон делится на области, причем выполнение инструкций побуждает процессор поддерживать в целевой зоне целевую температуру в течение предварительно заданного периода времени посредством многократного управления механической системой позиционирования с целью перемещения преобразователя в положение преобразователя выбранной подзоны; получения данных магнитно-резонансной термометрии, при этом данные магнитно-резонансной термометрии описывают температуру вокселов в подзоне, определения карты температурных свойств, описывающей температуру в каждом из вокселов с использованием данных магнитно-резонансной термометрии, нагревания области подзоны независимо до целевой температуры посредством управления электронно-управляемым фокусом с помощью алгоритма температурной обратной связи, который использует карту температурных свойств, изменения выбранной подзоны с использованием последовательности. Машиночитаемый носитель обеспечивает выполнение процессором инструкций для управления медицинским инструментом. Использование изобретений обеспечивает увеличение объема области непрерывной гипертермической обработки в течение длительного периода времени. 2 н. и 12 з.п. ф-лы, 8 ил., 1 табл.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Изобретение относится к сфокусированному ультразвуку высокой интенсивности, в частности к сфокусированному ультразвуку высокой интенсивности под контролем магнитного резонанса.

УРОВЕНЬ ТЕХНИКИ

Изобретение относится к системе терапии сфокусированным ультразвуком высокой интенсивности под контролем магнитно-резонансной визуализации (HIFU). Модуль HIFU содержит преобразователь ультразвука (решетку преобразователей) с элементами преобразователя, которые испускают пучки HIFU. Фокус может регулироваться по локальному диапазону посредством электронного контроля фазы каждого элемента (электронное управление).

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Изобретение предоставляет медицинский инструмент и компьютерный программный продукт в независимых пунктах формулы изобретения. Варианты осуществления даются в зависимых пунктах формулы изобретения.

Согласно одному из вариантов осуществления изобретения большая целевая область, в которую должна быть внесена ультразвуковая (US) энергия, сегментируется на несколько локальных областей. В пределах индивидуальных локальных областей US энергия вносится посредством сканирования фокуса в локальной области посредством электронного регулирования. Далее преобразователь (решетка преобразователей) переустанавливается для каждой из локальных областей.

Изобретение может обеспечить возможность применения обработки HIFU (посредством внесения ультразвуковой энергии) в большой целевой области произвольной формы.

'Машиночитаемый носитель информации' при использовании в настоящем описании охватывает любой материальный носитель информации, на котором могут храниться инструкции, которые являются исполнимыми процессором вычислительного устройства. Машиночитаемый носитель информации может также называться постоянным машиночитаемым носителем информации. Машиночитаемый носитель информации может также называться материальным машиночитаемым носителем информации. В некоторых вариантах осуществления машиночитаемый носитель информации может также быть в состоянии хранить данные, к которым может осуществлять доступ процессор вычислительного устройства. Примеры машиночитаемых носителей информации включают, но не ограничиваются указанным: гибкий диск, магнитный жесткий диск, твердотельный жесткий диск, флэш-память, карту флэш-памяти USB, оперативную память (RAM), постоянную память (ROM), оптический диск, магнитооптический диск и регистровый файл процессора. Примеры оптических дисков включают компакт-диски (CD) и цифровые универсальные диски (DVD), например CD-ROM, CD-RW, CD-R, DVD-ROM, DVD-RW или диски DVD-R. Термин "машиночитаемый носитель информации" также относится к различным типам сред записи, к которым может осуществлять доступ компьютерное устройство через сеть или линию связи. Например, данные могут быть получены по модему, через Интернет или по локальной сети.

'Память компьютера', или 'память', является примером читаемого компьютером носителя информации. Память компьютера представляет собой любую память, которая непосредственно доступна процессору. Примеры памяти компьютера включают, но не ограничиваются указанным: оперативную память, регистры и регистровые файлы.

'Компьютерное запоминающее устройство', или 'запоминающее устройство', является примером читаемого компьютером носителя информации. Компьютерное запоминающее устройство представляет собой любой долговременный читаемый компьютером носитель информации. Примеры компьютерного запоминающего устройства включают, но не ограничиваются указанным: жесткий диск, карту флэш-памяти USB, дисковод для гибких дисков, смарт-карту, DVD, CD-ROM и твердотельный жесткий диск. В некоторых вариантах осуществления компьютерное запоминающее устройство может также являться памятью компьютера или наоборот.

'Процессор' при использовании в настоящем описании охватывает электронный блок, который в состоянии выполнить программу или исполнимую машиной инструкцию. Ссылки на вычислительное устройство, содержащее "процессор", должны интерпретироваться как, возможно, охватывающие более одного процессора или ядра процессора. Процессор может, например, являться многоядерным процессором. Процессор может также относиться к множеству процессоров в пределах одной вычислительной системы или распределенному по множеству вычислительных систем. Термин "вычислительное устройство" должен также интерпретироваться, как, возможно, относящийся к множеству или сети вычислительных устройств, каждое из которых содержит процессор или процессоры. Инструкции многих программ выполняются на множестве процессоров, которые могут находиться в пределах одного и того же вычислительного устройства, или которые могут даже быть распределены по множеству вычислительных устройств.

'Пользовательский интерфейс' при использовании в настоящем описании представляет собой интерфейс, который позволяет пользователю или оператору взаимодействовать с компьютером или вычислительной системой. 'Пользовательский интерфейс' может также называться 'устройством интерфейса пользователя'. Пользовательский интерфейс может предоставлять информацию или данные оператору и/или принимать информацию или данные от оператора. Пользовательский интерфейс может обеспечивать возможность получения входных данных от пользователя компьютером и может выдавать выходные данные компьютера пользователю. Другими словами, пользовательский интерфейс может позволить оператору управлять или манипулировать компьютером, и интерфейс может позволить компьютеру показывать влияние управления или манипулирования оператора. Отображение данных или информации на дисплее или графическом интерфейсе пользователя является примером предоставления информации оператору. Получение данных через клавиатуру, "мышь", шаровой манипулятор, сенсорную панель, джойстик, графический планшет, ручку управления, игровой планшет, веб-камеру, гарнитуру, рычаг переключения передач, рулевое колесо, педали, проводную перчатку, танцевальный коврик, пульт дистанционного управления и акселерометр являются примерами компонентов пользовательского интерфейса, которые обеспечивают возможность приема информации или данных от оператора.

'Аппаратный интерфейс' при использовании в настоящем описании охватывает интерфейс, который позволяет процессору вычислительной системы взаимодействовать и/или управлять внешним вычислительным устройством и/или аппаратурой. Аппаратный интерфейс может позволить процессору отправлять управляющие сигналы или инструкции внешнему вычислительному устройству и/или аппаратуре. Аппаратный интерфейс может также позволить процессору обмениваться данными с внешним вычислительным устройством и/или аппаратурой. Примеры аппаратных интерфейсов включают, но не ограничиваются указанным: универсальная последовательная шина, порт IEEE 1394, параллельный порт, порт IEEE 1284, последовательный порт, порт RS-232, порт IEEE 488, соединение Bluetooth, беспроводное соединение локальной сети, соединение TCP/IP, соединение Ethernet, интерфейс управляющего напряжения, MIDI-интерфейс, интерфейс аналогового ввода, и интерфейс цифрового ввода.

'Дисплей', или 'устройство отображения', при использовании в настоящем описании охватывают устройство вывода или интерфейс пользователя, настроенный для отображения изображений или данных. Дисплей может выводить визуальные, аудио, и/или тактильные данные. Примеры дисплея включают, но не ограничиваются указанным: компьютерный монитор, телевизионный экран, сенсорный экран, тактильный электронный дисплей, экран Брайля, электронно-лучевую трубку (CRT), запоминающую трубку, бистабильный дисплей, электронную бумагу, векторный дисплей, плоский экран, вакуумный флуоресцентный дисплей (VF), дисплеи на светоизлучающих диодах (LED), электролюминесцентный дисплей (ELD), плазменные панели (PDP), жидкокристаллический дисплей (LCD), дисплеи на органических светоизлучающих диодах (OLED), проектор и шлем-дисплей.

Данные магнитного резонанса (MR) определяются в настоящем описании как записанные измерения радиочастотных сигналов, испускаемые спинами атомов, посредством антенны устройства магнитного резонанса во время сканирования магнитно-резонансной визуализации. Изображение магнитно-резонансной визуализации (MRI) определяется в настоящем описании как реконструированная двух- или трехмерная визуализация анатомических и/или функциональных данных, содержавшихся в данных магнитно-резонансной визуализации. Данная визуализация может быть выполнена с применением компьютера.

Данные медицинских изображений при использовании в настоящем описании охватывают данные, которые описывают анатомические структуры субъекта. Магнитно-резонансное изображение представляет собой один из типов данных медицинских изображений.

Данные магнитно-резонансной (MR) термометрии определяются в настоящем описании как записанные измерения радиочастотных сигналов, испускаемые спинами атомов, посредством антенны устройства магнитного резонанса во время сканирования магнитно-резонансной визуализации, которые содержат информацию, которая может использоваться для магнитно-резонансной термометрии. Магнитно-резонансная термометрия функционирует посредством измерения изменений чувствительных к температуре параметров. Примеры параметров, которые могут быть измерены во время магнитно-резонансной термометрии: сдвиг частоты протонного резонанса, коэффициент рассеяния или изменения во времени релаксации T1 и/или T2 могут использоваться для измерения температуры с использованием магнитного резонанса. Сдвиг частоты протонного резонанса является зависимым от температуры, поскольку магнитное поле, которое действует на отдельные протоны, атомы водорода, зависит от окружающего молекулярного строения. Увеличение температуры понижает молекулярный скрининг вследствие влияния температуры на водородные связи. Это приводит к зависимости протонной резонансной частоты от температуры.

'Ультразвуковое окно' при использовании в настоящем описании охватывает окно, которое имеет возможность передачи ультразвуковых волн или энергии. Обычно тонкая пленка или мембрана используются в качестве ультразвукового окна. Ультразвуковое окно может, например, быть сделано из тонкой мембраны BoPET (двухосно ориентированный полиэтилентерефталат).

В одном аспекте изобретение предоставляет медицинский инструмент, содержащий систему магнитно-резонансной визуализации для получения данных магнитного резонанса от субъекта в зоне визуализации. Медицинский инструмент также содержит систему сфокусированного ультразвука высокой интенсивности, содержащую преобразователь ультразвука с электронно-управляемым фокусом. Электронно-управляемый фокус может быть реализован посредством применения преобразователя ультразвука, который имеет множество элементов преобразователя. Фазой и/или амплитудой ультразвука можно управлять таким образом, что аддитивные и деструктивные эффекты множества сигналов ультразвука вызывают смещение положение фокуса. Система сфокусированного ультразвука высокой интенсивности дополнительно содержит механическую систему позиционирования для позиционирования преобразователя ультразвука. Механическая система позиционирования может физически перемещать преобразователь ультразвука в различные местоположения.

Как правило, механическая система позиционирования используется для грубого контроля фокуса, и электронное управление используется для точной регулировки фокуса. Электронно-управляемый фокус реализован с возможностью настройки фокуса в пределах зоны фокусировки. Зона фокусировки при использовании в настоящем описании охватывает область, выше которой интенсивность фокуса выше заранее заданной интенсивности. При электронном перемещении фокуса интенсивность ультразвука может уменьшиться. Оператор или производитель системы сфокусированного ультразвука высокой интенсивности может выбрать предел интенсивности, который определяет зону фокусировки. Местоположение зоны фокусировки зависит от положения преобразователя ультразвука. Когда преобразователь ультразвука физически перемещается механической системой позиционирования, местоположение зоны фокусировки изменяется с изменением местоположения преобразователя ультразвука.

Медицинский инструмент дополнительно содержит память для хранения исполнимых машиной инструкций. Медицинский инструмент также содержит процессор для управления медицинским инструментом. Выполнение инструкций вызывает получение процессором целевой зоны, описывающей объем в пределах субъекта. Целевая зона может также упоминаться как целевой объем. Целевая зона может, например, быть определена на графическом интерфейсе пользователя, или она может быть получена как часть схемы лечения. В любом случае целевая зона может описывать объем в пределах субъекта и может также содержать такие элементы, как анатомические ссылки, которые позволяют целевой зоне быть зарегистрированной в местоположении субъекта. Объем при использовании в настоящем описании может представлять двухмерную или трехмерную указанную целевую зону. Обычно при планировании и визуализации используются двумерные изображения. Однако эти двумерные изображения обязательно представляют объемы. В магнитно-резонансной визуализации данные обычно отображаются как "срезы" или двумерные области субъекта. Каждый воксел в двумерном изображении представляет вклад главным образом от небольшого объема. Изображения MRI реконструируются с применением преобразования Фурье, таким образом, области за пределами конкретного объема могут также вносить вклад в изображение в конкретном вокселе. Аналогично, когда область разрушается, планирование также может быть выполнено с использованием двумерных изображений. Когда цель фактически разрушается ультразвуком, ультразвук нагревает небольшой объем субъекта.

Целевая зона больше зоны фокусировки. Это может означать, что для того, чтобы разрушить ультразвуком или нагреть всю целевую зону, механическая система позиционирования должна быть перемещена более чем в одно местоположение. Выполнение исполнимых машиной инструкций также вызывает выполнение процессором разделения целевой зоны на множество подзон. Подзона может также упоминаться как подзона, подобъем или под-объем. Каждая из множества подзон имеет положение преобразователя. Когда преобразователь находится в положении преобразователя, зона фокусировки содержит подзону.

Выполнение инструкций также вызывает выполнение процессором определения последовательности для перемещения положения преобразователя в каждую из множества подзон. "Последовательность" при использовании в настоящем описании может быть широко определена как список или последовательность положений, в которые преобразователь ультразвука перемещается, с тем чтобы была выбрана каждая из множества подзон. В некоторых случаях последовательность может быть определена в процессе работы, например, через использование дерева решений. В других вариантах осуществления последовательность задается предварительно, но может быть изменена позднее посредством соответствующего алгоритма. В некоторых случаях последовательность определяет только первую подзону, которая будет нагрета, и затем алгоритм отбора, такой как дерево решений, применяется для выбора каждой из последующих подзон, которые будут нагреты.

Выполнение инструкций также вызывает выполнение процессором определения выбранной подзоны, выбираемой из множества подзон, с использованием последовательности. Каждая из подзон делится на области. Выполнение инструкций также вызывает выполнение процессором поддержания в целевой зоне целевой температуры в течение предварительно заданного периода времени посредством многократного управления механической системой позиционирования с целью перемещения преобразователя в положение преобразователя выбранной подзоны. Целевая температура может быть интерпретирована как диапазон температур. Предварительно заданный период времени может также быть настроен или изменен в процессе работы во время функционирования.

Выбранная подзона имеет положение механического преобразователя, ассоциированное с ней, и механическая система позиционирования перемещает преобразователь ультразвука в это положение таким образом, чтобы зона фокусировки охватывала выбранные подзоны, с тем чтобы они могли быть нагреты. Выполнение инструкций также вызывает выполнение процессором поддержания в целевой зоне целевой температуры в течение предварительно заданного периода времени посредством многократного получения данных магнитно-резонансной термометрии.

Данные магнитно-резонансной термометрии описывают температуру вокселов в подзоне. Важно отметить, что данные описывают только температуру вокселов в подзоне. Могут иметься определенные свойства, такие как значение T1, значение T2 или упругость ткани в конкретном вокселе, которые могут быть показательными относительно температуры. Могут применяться алгоритмы управления, которые используют эти данные зависящего от температуры магнитного резонанса вместо непосредственного использования температурных данных. Однако данные магнитного резонанса могут также быть обработаны таким образом, чтобы температура была отображена в каждом из вокселов и это могло использоваться для управления процессом.

Выполнение инструкций также вызывает выполнение процессором поддержания в целевой зоне целевой температуры в течение предварительно заданного периода времени посредством многократного определения карты температурных свойств, описывающей температуру в каждом из вокселов с использованием, по меньшей мере, данных магнитно-резонансной термометрии. Карта температурных свойств может являться температурой, может являться некоторым средним значением или другой величиной, вычисленной статистически по значениям температуры, или она может являться свойством, которое является зависящим от температуры, таким как значение T1, фаза вращения, T2 или другие свойства. Выполнение инструкций также вызывает выполнение процессором поддержания в целевой зоне целевой температуры в течение предварительно заданного периода времени посредством многократного независимого нагревания областей до целевой температуры посредством управления каждым из электронно контролируемых фокусов с помощью алгоритма температурной обратной связи, который использует карту температурных свойств.

В одном из вариантов осуществления каждая из областей соответствует вокселу. В других вариантах осуществления каждая из областей соответствует части воксела или множеству вокселов.

Алгоритм управления является основанным на областях. Каждая из областей оценивается независимо и обрабатывается алгоритмом управления, который управляет электронным управлением фокуса с целью обеспечения соответствующего нагрева каждой области. Выполнение инструкций также вызывает выполнение процессором поддержания в целевой зоне целевой температуры в течение предварительно заданного периода времени посредством многократного изменения выбранной подзоны с использованием последовательности. Это может включать просто следование списку подзон, которые должны быть нагреты, или это может включать использование более сложного алгоритма, который изменяет последовательность в процессе работы или даже может выбрать следующую подзону в процессе работы.

Этот вариант осуществления может быть полезным, потому что он предоставляет средство для эффективного нагрева больших областей субъекта до конкретной температуры. Это может использоваться для ампутации ткани, но может быть особенно полезным для поддержания температуры целевой зоны ниже значения, при котором происходит некроз ткани.

В другом варианте осуществления выполнение инструкций также вызывает выполнение процессором определения температурного свойства для каждой из множества подзон с использованием данных магнитно-резонансной термометрии. Температурное свойство может, например, являться статистическим свойством карты температурного свойства для каждой из множества подзон. В качестве примера, минимальная температура, максимальная температура или средняя температура могут быть выбраны и использованы в качестве температурного свойства. В других случаях другие величины, такие как T1, T2 или другие параметры, которые показывают зависимость от температуры, также могут использоваться. Выполнение инструкций также вызывает выполнение процессором выбора следующей подзоны с использованием температурного свойства для каждой из множества подзон.

Например, алгоритм или алгоритм дерева решений может использоваться для выбора следующей подзоны. Например, если бы была выбрана средняя температура, то подзона с самой низкой средней температурой могла бы быть выбрана в некоторых вариантах осуществления. Выполнение инструкций также вызывает выполнение процессором изменения последовательности таким образом, чтобы следующая подзона была следующей в последовательности.

Этот вариант осуществления может быть полезным, поскольку он позволяет осуществлять навигацию в процессе работы к следующей подзоне, которая должна быть нагрета. Этапы в этом варианте осуществления могут быть выполнены многократно для поддержания температуры всей целевой зоны в течение предварительно заданного периода времени.

В другом варианте осуществления выполнение инструкций также вызывает выполнение процессором управления механической системой позиционирования с целью перемещения преобразователя ультразвука в положение преобразователя для каждой из множества подзон до начала нагрева целевой зоны до целевой температуры. Этот вариант осуществления может быть полезным, поскольку различные свойства магнитного поля могут изменяться, когда механическая система позиционирования перемещается в различные местоположения. Перемещение системы механического позиционирования в каждое из положений до начала процесса нагревания может позволить осуществить измерения свойств, которые оказывают влияние на измерения MR, и также могут позволить выполнить испытательные воздействия ультразвука или испытательные пуски до начала процесса нагревания.

В другом варианте осуществления выполнение инструкций также вызывает выполнение процессором получения калибровочных данных магнитно-резонансной термометрии в положении преобразователя для каждой из множества подзон до нагревания целевой зоны до целевой температуры. Карта температурного свойства определяется с использованием, по меньшей мере, калибровочных данных магнитного резонанса. Для выполнения точных измерений температуры может быть необходимым использование некоторых методик, таких как методика фазы вращения, чтобы выполнить начальное градуировочное измерение.

В другом варианте осуществления выполнение инструкций также вызывает выполнение процессором тестового ультразвукового воздействия с применением системы сфокусированного ультразвука высокой интенсивности при нахождении преобразователя по меньшей мере в двух или в каждой из множества подзон до нагревания целевой зоны до целевой температуры. Выполнение инструкций также вызывает выполнение процессором определения электронной коррекции фокуса для каждой из множества подзон и/или настройки положения зоны фокусировки для каждой из множества подзон и/или вычисления скорости повышения температуры для каждой из множества подзон. Этот вариант осуществления может быть полезным, поскольку он может предоставить различные средства коррекции применения медицинского инструмента до начала процесса нагревания.

В другом варианте осуществления выполнение инструкций также вызывает выполнение процессором многократного вычисления коэффициентов перфузии и/или коэффициентов рассеяния для каждого из вокселов с использованием данных магнитного резонанса. Дополнительные данные магнитного резонанса могут быть получены во время получения данных магнитно-резонансной термометрии, или также могут быть выведены из некоторых таких же последовательностей импульсов. Это данные могут использоваться для коррекции коэффициентов перфузии и/или рассеяния в каждом из вокселов.

В другом варианте осуществления алгоритм управления температурой с обратной связью имеет параметры алгоритма управления температурой. Параметр алгоритма управления температурой представляет собой постоянное значение, которое используется в математической формуле, которая используется алгоритмом управления температурой с обратной связью. Изменение параметров алгоритма управления температурой изменяет поведение алгоритма управления температурой с обратной связью. Выполнение инструкций также вызывает выполнение процессором многократного повторного вычисления параметров алгоритма управления температурой с использованием коэффициентов перфузии и/или коэффициентов рассеяния. Например, когда система сфокусированного ультразвука высокой интенсивности начинает нагревать целевую зону, может иметься некоторое множество предполагаемых параметров алгоритма управления температурой. В процессе выполнения системой нагрева целевой зоны коэффициенты перфузии и/или коэффициенты рассеяния могут быть вычислены во время процесса, и эти значения могут использоваться для повторного вычисления параметров алгоритма управления температурой, в результате чего улучшается функционирование алгоритма управления температурой с обратной связью.

В другом варианте осуществления алгоритм управления температурой с обратной связью представляет собой один из следующих алгоритмов: бинарный алгоритм управления температурой, пропорциональный алгоритм управления температурой, пропорционально-интегральный алгоритм управления температурой и пропорционально-интегрально-производный алгоритм управления температурой.

В другом варианте осуществления целевая зона разделяется на множество подзон с применением преобразования к средним осям.

В другом варианте осуществления медицинский инструмент содержит жидкостную систему охлаждения, которая обеспечивает циркуляцию жидкости для охлаждения субъекта. Жидкостная система охлаждения функционирует для поддержания рабочей температуры жидкости. Она, например, может представлять собой трубку или охлаждающую подставку, которая размещается на поверхности субъекта и используется для отведения избыточного тепла. Холодильник или другая система охлаждения могут поддерживать постоянную температуру жидкости. Выполнение инструкций также вызывает выполнение процессором многократного получения данных магнитного резонанса, описывающих фазы вращения жидкости, с целью определения изменений в фазе вращения. Например, если используется способ фазы вращения для измерения температуры, целесообразно многократное проведение фазовых измерений для градуировки измерение. Например, могут иметься изменения в магнитном поле, которые приводят к медленному перемещению фазы вращения во время применения медицинского инструмента.

Если температура жидкости в жидкостной системе охлаждения поддерживается постоянной, в результате чего достигается стационарное состояние, то жидкость в пределах жидкостной системы охлаждения может использоваться в качестве контроля. Фаза вращения может перемещаться вследствие изменений в магнитном поле, но температура будет той же самой, и она может использоваться в качестве контрольного измерения. Выполнение инструкций также вызывает выполнение процессором коррекции карты температурного свойства с использованием изменений в фазе вращения жидкости. В некоторых вариантах осуществления может присутствовать температурный датчик для измерения температуры жидкости, чтобы сделать коррекцию более точной. Это может учесть отклонения и в магнитном поле системы магнитно-резонансной томографии и также отклонения в температуре жидкости жидкостной системы охлаждения.

В другом варианте осуществления выполнение инструкций также вызывает выполнение процессором настройки размера и/или местоположения подзон и/или положения преобразователя после начала поддержания целевой зоны при целевой температуре. Этот вариант осуществления может быть полезным, поскольку подзоны, которые были созданы, возможно, не были оптимальны для конкретного нагревания целевой зоны. Настройка объема и местоположения подзон может обеспечить возможность более эффективного или точного нагревания целевой зоны.

В другом варианте осуществления выполнение инструкций также вызывает выполнение процессором нагревания целевой зоны при изменении выбранной подзоны. В этом варианте осуществления преобразователь ультразвука перемещается от одного местоположения к другому при изменении подзоны. Может быть эффективным применение преобразователя ультразвука для нагревания целевой зоны при перемещении преобразователя ультразвука от одного местоположения к другому местоположению.

В другом варианте осуществления алгоритм дерева решений применяется для запуска изменения выбранной подзоны. Это может быть эффективным и простым способом обеспечения определения того, когда подзона должна быть изменена, или даже выбора того, какая подзона будет нагреваться следующей.

В другом варианте осуществления целевая температура имеет одно из следующих значений: между 38°C и 40°C, между 39°C и 40°C, между 40°C и 45°C, между 40°C и 44°C, между 40°C и 43°C, между 40°C и 42°C, между 40°C и 41°C, между 41°C и 45°C, между 41°C и 44°C, между 41°C и 43°C, между 41°C и 42°C, между 42°C и 45°C, между 42°C и 44°C, между 42°C и 43°C, между 43°C и 45°C, между 43°C и 44°C, между 44°C и 45°C, между 38°C и 39°C, между 52°C и 55°C, больше либо равна 55°C и между 50°C и 55°C.

В другом аспекте изобретение предоставляет компьютерный программный продукт, содержащий исполнимые машиной инструкции для выполнения процессором, управляющим медицинским инструментом, который содержит систему магнитно-резонансной визуализации, с целью получения данных магнитно-резонансной термометрии от субъекта в зоне визуализации. Медицинский инструмент также содержит систему сфокусированного ультразвука высокой интенсивности, содержащую преобразователь ультразвука с электронно-управляемым фокусом. Система сфокусированного ультразвука высокой интенсивности дополнительно содержит механическую систему позиционирования для позиционирования преобразователя ультразвука. Электронно-управляемый фокус реализован с возможностью настройки фокуса в пределах зоны фокусировки. Местоположение зоны фокусировки зависит от положения преобразователя ультразвука. Выполнение инструкций вызывает получение процессором целевой зоны, описывающей объем в пределах субъекта. Целевая зона больше зоны фокусировки. Выполнение инструкций также вызывает выполнение процессором разделения целевой зоны на множество подзон. Подзоны делятся на области.

Каждая из множества подзон имеет положение преобразователя. Когда преобразователь находится в положении преобразователя, зона фокусировки содержит подзону. Выполнение инструкций также вызывает выполнение процессором определения последовательности для перемещения положения преобразователя в каждую из множества подзон.

Выполнение инструкций также вызывает выполнение процессором определения выбранной подзоны, выбираемой из множества подзон, с использованием последовательности. Выполнение инструкций также вызывает выполнение процессором поддержания в целевой зоне целевой температуры в течение предварительно заданного периода времени посредством многократного управления механической системой позиционирования с целью перемещения преобразователя в положение преобразователя выбранной подзоны. Выполнение инструкций также вызывает выполнение процессором поддержания в целевой зоне целевой температуры в течение предварительно заданного периода времени посредством многократного получения данных магнитно-резонансной термометрии с применением системы магнитно-резонансной визуализации. Данные магнитно-резонансной термометрии описывают температуру вокселов в подзоне.

Выполнение инструкций также вызывает выполнение процессором поддержания в целевой зоне целевой температуры в течение предварительно заданного периода времени посредством многократного определения карты температурных свойств, описывающую температуру в каждом из вокселов с использованием, по меньшей мере, данных магнитно-резонансной термометрии. Выполнение инструкций также вызывает выполнение процессором поддержания в целевой зоне целевой температуры в течение предварительно заданного периода времени посредством многократного независимого нагревания областей до целевой температуре посредством управления каждым из электронно контролируемых фокусов с помощью алгоритма температурной обратной связи, который использует карту температурных свойств. Выполнение инструкций также вызывает выполнение процессором поддержания в целевой зоне целевой температуры в течение предварительно заданного периода времени посредством многократного изменения выбранной подзоны с использованием последовательности.

Следует понимать, что один или больше вышеупомянутых вариантов осуществления изобретения могут быть скомбинированы, если комбинированные варианты осуществления не являются взаимно исключающими.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Ниже будут описаны предпочтительные варианты осуществления, только в качестве примера, и со ссылками на чертежи, на которых:

На фиг. 1 показана блок-схема, которая иллюстрирует пример способа для управления медицинским инструментом;

На фиг. 2 показан пример медицинского инструмента;

На фиг. 3 показана блок-схема, которая иллюстрирует способ для согласованного нагревания большого объема для гипертермии;

Фиг. 4 иллюстрирует способ разделения целевой зоны на подзоны;

На фиг. 5 показана блок-схема, которая иллюстрирует пример дерева решений, используемого для решения, какая подзона или подобъем должны нагреваться;

На фиг. 6 показан пример временной шкалы, которая показывает перемещение и разрушение ультразвуком во время применения медицинского инструмента;

Фиг. 7 демонстрирует применение способа согласованного нагревания большой площади в естественных условиях; и

Фиг. 8 иллюстрирует интенсивность сигнала магнитного резонанса и флуоресценцию доксорубицина после инъекции визуализируемой чувствительной к низкой температуре липосомы (iLTSL) и нагрева с помощью магнитно-резонансного сфокусированного ультразвука высокой эффективности.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

Аналогично пронумерованные элементы на этих фигурах являются или эквивалентными элементами, или выполняют одну и ту же функцию. Элементы, которые были обсуждены ранее, не обязательно будут обсуждаться на последующих фигурах, если функция будет эквивалентна.

На фиг. 1 показана блок-схема, которая иллюстрирует пример способа для управления медицинским инструментом. На этапе 100 осуществляется получение целевой зоны, которая описывает объем в пределах субъекта. Затем на этапе 102 целевая зона делится на множество подзон. Каждая из множества подзон имеет положение преобразователя, ассоциированное с ней. Целевая зона имеет больший размер, чем зона фокусировки. Когда преобразователь находится в положении преобразователя, конкретная зона фокусировки содержит соответствующую подзону. Затем на этапе 104 определяется последовательность перемещения положения преобразователя в каждую из множества подзон. Затем на этапе 106 выбранная подзона выбирается из множества подзон с использованием последовательность.

Следующий этап 108 заключается в управлении механической системой позиционирования с целью перемещения преобразователя в положение выбранной подзоны. Затем на этапе 110 получают данные магнитно-резонансной термометрии. Данные магнитно-резонансной термометрии описывают температуру вокселов в подзоне. Затем на этапе 112 определяется или вычисля