Способ и система эффективной подготовки содержащих текст изображений к оптическому распознаванию символов

Иллюстрации

Показать все

Изобретение относится к средствам выпрямления искривлений текстовых строк, содержащих текст цифровых изображений, включая содержащие текст цифровые изображения, полученные из двух страниц разворота книги. Технический результат заключается в уменьшении ошибок при распознании текста. Получают введенное изображение, содержащее текст. Определяют на содержащем текст изображении подызображения страницы. Исправляют вертикальную перспективу подызображения страницы. Создают линии контуров для отображения текстовых строк подызображения страницы. Создают модели искривления текстовых строк для подызображения страницы. Выпрямляют текстовые строки полученного изображения, содержащего текст, с помощью модели искривления текстовых строк. 3 н. и 18 з.п. ф-лы, 72 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Настоящий документ относится к обработке изображений и оптическому распознаванию символов и, в частности, к способу и системе, позволяющим выпрямлять искажения, вызванные искривленной поверхностью страницы, и перспективные искажения в содержащих текст изображениях при подготовке к применению способов автоматизированного оптического распознавания символов на содержащих текст изображениях.

УРОВЕНЬ ТЕХНИКИ

Печатные документы на естественном языке до сих пор являются широко распространенным средством, используемым для коммуникации между людьми в рамках организаций, а также для распространения информации среди ее потребителей. С появлением повсеместно используемых мощных вычислительных ресурсов, включая персональные вычислительные ресурсы, реализованные в смартфонах, планшетах, ноутбуках и персональных компьютерах, а также с распространением более мощных вычислительных ресурсов облачных вычислительных сервисов, центров обработки данных и корпоративных серверов организаций и предприятий, шифрование и обмен информацией на естественном языке все чаще выполняется в виде электронных документов. В отличие от печатных документов, которые по своей сути представляют собой изображения, электронные документы содержат последовательности цифровых кодов символов и знаков естественного языка. Поскольку электронные документы имеют перед печатными документами преимущества по стоимости, возможностям передачи и рассылки, простоте редактирования и изменения, а также по надежности хранения, за последние 50 лет развилась целая отрасль, поддерживающая способы и системы преобразования печатных документов в электронные. Вычислительные способы и системы оптического распознавания символов, совместно с электронными сканерами, являются надежными и экономичными средствами получения изображений печатных документов и компьютерной обработки получаемых цифровых изображений содержащих текст документов с целью создания электронных документов, соответствующих печатным.

Раньше электронные сканеры представляли собой крупногабаритные настольные или напольные электронные устройства. Однако с появлением смартфонов, оснащенных камерами, а также других мобильных устройств получения изображения с процессорным управлением, появилась возможность получения цифровых изображений содержащих текст документов с помощью широкого диапазона различных типов широко распространенных портативных устройств, включая смартфоны, недорогие цифровые камеры, недорогие камеры видеонаблюдения, а также устройства получения изображений, встроенные в мобильные вычислительные приборы, включая планшетные компьютеры и ноутбуки. Получаемые при помощи таких портативных устройств и приборов цифровые изображения, содержащие текст документов, могут обрабатываться вычислительными системами оптического распознавания символов, в том числе приложениями оптического распознавания символов в смартфонах, для создания соответствующих электронных документов.

К сожалению, содержащие текст изображения, полученные с помощью портативных средств получения изображений документов, часто бывают искажены наличием шума, оптического размытия, искривлений линейных текстовых строк, вызванных изогнутой поверхностью страниц и перспективным искажением, а также другими дефектами и недостатками. Даже изображения, полученные с помощью специальных устройств сканирования документов, могут содержать перспективные искажения текстовых строк, когда книга при сканировании раскрывается и кладется лицевой стороной вниз на прозрачную сканирующую поверхность. Эти дефекты и недостатки могут значительно снизить производительность вычислительного оптического распознавания символов и значительно увеличить частоту ошибочного распознавания символов и неспособности способов и систем оптического распознавания символов обеспечить точное кодирование текста, содержащегося на цифровых изображениях. По этой причине проектировщики и разработчики устройств и приборов получения изображений, способов и систем оптического распознавания символов, а также пользователи данных устройств, приборов и систем оптического распознавания символов, продолжают искать способы и системы, позволяющие устранить дефекты и недостатки, присущие многим содержащим текст цифровым изображениям (включая содержащие текст цифровые изображения, полученные с помощью мобильных устройств), которые затрудняют дальнейшую вычислительную обработку содержащих текст цифровых изображений.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Настоящий документ относится к способам и системам выпрямления искривлений текстовых строк содержащих текст цифровых изображений, включая содержащие текст цифровые изображения, полученные из двух страниц раскрытой книги. При первоначальной обработке содержащего текст изображения определяется контур содержащей текст страницы. Далее создаются контуры, соответствующие каждой строке текста. Определяются центроиды и углы наклона звеньев или векторов, которые соответствуют линиям контуров. Строится модель для перспективного искажения в изображении текста. В одном из вариантов реализации модель, которая по сути является картой углов наклона, позволяет присваивать пикселям на изображении страницы значения локального смещения, которые затем используются для выпрямления строк текста в содержащем текст изображении. В другом варианте реализации модель, которая по сути является картой смещения пикселей, используется для выпрямления строк текста в содержащем текст изображении.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На Фиг. 1 показана высокоуровневая архитектурная схема вычислительной системы, в которой для исправления перспективного искажения текстовой строки применяется способ настоящего изобретения.

На Фиг. 2A-D показаны два различных типа портативных устройств получения изображений.

На Фиг. 3 показано типовое изображение с цифровым кодированием.

На Фиг. 4 показан один вариант цветовой модели RGB.

На Фиг. 5 показана другая цветовая модель, называемая цветовой моделью "оттенок-насыщенность-светлота" (HSL).

На Фиг. 6 изображено формирование полутонового или бинаризованного изображения из цветного.

На Фиг. 7 показано дискретное вычисление градиента яркости.

На Фиг. 8 показан градиент, рассчитанный для некой точки на непрерывной поверхности.

На Фиг. 9 показан ряд примеров градиента яркости.

На Фиг. 10 показано применение ядра к изображению.

На Фиг. 11 показана свертка ядра с изображением для получения преобразованного изображения.

На Фиг. 12 показан пример ядра и методик обработки изображений на основе ядра.

На Фиг. 13А-В показан один вариант реализации способа, к которому относится настоящий документ.

На Фиг. 14A-D показана первоначальная обработка изображения страницы с целью подготовки к выравниванию вертикальных границ страницы, как описано выше со ссылкой на Фиг. 13В.

На Фиг. 15А-В показан один подход к выравниванию границ страницы, который описан выше со ссылкой на Фиг. 13В.

На Фиг. 16A-D показан один из подходов к определению ориентации строк текста на изображении страницы, или, протекающего аналогичным образом, определения угловой ориентации изображения страницы, при котором строки текста будут горизонтальны.

На Фиг. 17A-D показаны морфологические операции, которые использовались в некоторых вариантах реализации для создания на бинаризованной карте однородных полос пикселей, соответствующих строкам текста.

На Фиг. 18А-С показано создание линий контура.

На Фиг. 19А-В показано формирование модели искривления текстовых строк на изображении страницы.

На Фиг. 20 показан альтернативный способ согласования данных, который преобразует извлеченные исходные данные об искривлении, сведенные в таблицу 1912 на Фиг. 19А, в полиномиальную функцию.

На Фиг. 21-24 показано формирование контуров для текстовых строк, указанное на Фиг. 18А как шаг 1809.

На Фиг. 25 показаны особенно сильно искривленные области изображений страниц и вычисление коэффициентов корректировки.

На Фиг. 26A-F показано выпрямление изогнутых текстовых строк на изображении страницы для получения прямолинейных текстовых строк с использованием карты углов наклона, в которой с каждым пикселем на изображении страницы соотнесен некий угол наклона.

На Фиг. 26G показан альтернативный способ выпрямления текстовых строк на изображении страницы.

На Фиг. 27A-U представлены блок-схемы, иллюстрирующие один из вариантов реализации способа исправления перспективного искажения текстовых строк на изображениях текста, снятых мобильными устройствами и другими видами оборудования, приборами получения содержащего текст изображения.

ПОДРОБНОЕ ОПИСАНИЕ

Настоящий документ относится к способам и системам, позволяющим выпрямлять искривленные строки текста на содержащих текст изображениях при подготовке содержащих текст изображений к точному оптическому распознаванию символов. В первом подразделе ниже со ссылкой на Фиг. 1-12 приводится краткое введение в архитектуру вычислительной системы, цифровые изображения и способы обработки цифровых изображений. Во втором подразделе со ссылкой на Фиг. 13А-26G приводится подробное описание способов и систем настоящего изобретения. В заключительном подразделе со ссылкой на Фиг. 27A-U с помощью блок-схем иллюстрируется один из вариантов реализации способа настоящего изобретения.

Обзор архитектуры вычислительной системы, цифровых изображений и способов обработки цифровых изображений

На Фиг. 1 показана высокоуровневая схема архитектуры вычислительной системы, такой как вычислительная система, в которой для исправления искривления текстовой строки, вызванного искажением перспективы, применяется способ настоящего изобретения. Мобильные устройства получения изображений, включая смартфоны и цифровые камеры, могут быть представлены схематически аналогичным образом и также могут содержать процессоры, память и внутренние шины. Тем, кто знаком с современной наукой и технологиями, будет понятно, что программы управления или подпрограмма управления, включающая команды в машинном коде, которые хранятся в физической памяти устройства с процессорным управлением, представляют собой компонент управления данным устройством и являются настолько же физическими, реальными и важными, насколько и любой другой компонент электромеханического устройства, включая устройства получения изображений. Компьютерная система содержит один или более центральных процессоров (ЦП) 102-105, один или более электронных модулей памяти 108, взаимосвязанных с ЦП через шину подсистемы ЦП/память 110 или несколько шин, первый мост 112, который соединяет шину подсистемы ЦП/память 110 с дополнительными шинами 114 и 116, либо другие виды средств высокоскоростного соединения, в том числе множественные высокоскоростные последовательные соединения. Данные шины или последовательные межсоединения в свою очередь соединяют ЦП и память со специализированными процессорами, такими как графический процессор 118, и с одним или более мостами 120, которые соединены по высокоскоростным последовательным каналам или несколькими контроллерами 122-127, такими как контроллер 127, которые предоставляют доступ к всевозможным видам съемных накопителей 128, электронных дисплеев, устройств ввода и прочих подобных компонентов, подкомпонентов и вычислительных ресурсов.

На Фиг. 2A-D показаны два различных типа портативных устройств получения изображения. На Фиг. 2А-С показана цифровая камера 202. Цифровая камера содержит объектив 204, кнопку спуска затвора 205, нажатие которой пользователем приводит к получению цифрового изображения, которое соответствует отраженному свету, поступающему в объектив 204 цифровой камеры. С задней стороны цифровой камеры, которая видна пользователю, когда он держит камеру при съемке цифровых изображений, находится видоискатель 206 и жидкокристаллический дисплей видоискателя 208. С помощью видоискателя 206 пользователь может напрямую просматривать создаваемое объективом 204 камеры изображение, а с помощью жидкокристаллического дисплея 208 - просматривать электронное отображение создаваемого в настоящей момент объективом изображения. Обычно пользователь камеры настраивает фокус камеры с помощью кольца фокусировки 210, смотря при этом через видоискатель 206 или на жидкокристаллический экран видоискателя 208, чтобы выбрать требуемое изображение перед тем, как нажать на кнопку 205 спуска затвора для получения цифрового снимка изображения и его сохранения в электронной памяти цифровой камеры.

На Фиг. 2D показан типовой смартфон с передней стороны 220 и задней стороны 222. На задней стороне 222 имеется объектив 224 цифровой камеры и датчик приближения и(или) цифровой экспонометр 226. На передней стороне смартфона 220 под управлением приложения может отображаться получаемое изображение 226, аналогично работе жидкокристаллического дисплея 208 видоискателя цифровой камеры, а также сенсорная кнопка 228 спуска затвора, при прикосновении к которой происходит получение цифрового изображения и сохранение его в памяти смартфона.

На Фиг. 3 показано типовое изображение с цифровым кодированием. Кодированное изображение включает двумерный массив пикселей 302. На Фиг. 3 каждый небольшой квадрат, например, квадрат 304, является пикселем, который обычно определяется как наименьшая часть детализации изображения, для которой предусматривается цифровая кодировка. Каждый пиксель представляет собой место, обычно представленное парой цифровых значений, соответствующих значениям на осях прямоугольной системы координат х и у, 306 и 308 соответственно. Таким образом, например, пиксель 304 имеет координаты х, у (39,0), а пиксель 312 - координаты (0,0). Оси выбираются произвольно. Оси х и у могут быть взаимозаменены, например, в соответствии с другим правилом. В цифровой кодировке пиксель представлен числовыми значениями, указывающими на то, как область изображения, соответствующая пикселю, представляется при печати, отображается на экране компьютера или ином дисплее. Обычно для черно-белых изображений для представления каждого пикселя используется единичное значение в интервале от 0 до 255 с числовым значением, соответствующем уровню серого, на котором передается пиксель. Согласно общепринятому правилу значение «0» соответствует черному цвету, а значение «255» - белому. Для цветных изображений может применяться любое из множества различных числовых значений, указывающих на цвет. В одной из стандартных цветовых моделей, показанной на Фиг. 3, каждый пиксель связан с тремя значениями или координатами (r,g,b), которые указывают на яркость красного, зеленого и синего компонента цвета, отображаемого в соответствующей пикселю области.

На Фиг. 4 показан один из вариантов цветовой модели RGB. Тремя координатами основных цветов (r,g,b) представлен весь спектр цветов, как было показано выше со ссылкой на Фиг. 3. Цветовая модель может считаться соответствующей точкам в пределах единичного куба 402, в котором трехмерное цветовое пространство определяется тремя осями координат: (1) r 404; (2) g 406; и (3) b 408. Таким образом, координаты отдельного цвета находятся в интервале от 0 до 1 по каждой из трех цветовых осей. Например, чистый синий цвет максимально возможной яркости соответствует точке 410 по оси b с координатами (0,0,1). Белый цвет соответствует точке 412 с координатами (1,1,1), а черный цвет - точке 414, началу системы координат с координатами (0,0,0).

На Фиг. 5 показана другая цветовая модель, называемая цветовой моделью «оттенок-насыщенность-светлота» (HSL). В этой цветовой модели цвета содержатся в трехмерной бипирамидальной призме 500 с шестигранным сечением. Оттенок (h) связан с доминантной длиной волны излучения света, воспринимаемого наблюдателем. Значение оттенка находится в интервале от 0° до 360°, начиная с красного цвета 502 в точке 0°, проходя через зеленый 504 в точке 120°, синий 506 в точке 240°, и заканчивая красным 502 в точке 660°. Насыщенность (s), находящаяся в интервале от 0 до 1, обратно связана с количеством белого и черного цвета, смешанного при определенной длине волны или оттенке. Например, чистый красный цвет 502 является полностью насыщенным при насыщенности s=1,0, в то же время розовый цвет имеет насыщенность менее 1,0, но более 0,0, белый цвет 508 является полностью ненасыщенным с s=0,0, а черный цвет 510 также является полностью ненасыщенным с s=0,0. Полностью насыщенные цвета находятся на периметре среднего шестигранника, содержащего точки 502, 504 и 506. Шкала оттенков серого проходит от черного 510 до белого 508 по центральной вертикальной оси 512, представляющей полностью ненасыщенные цвета без оттенка, но с различными пропорциями черного и белого. Например, черный 510 содержит 100% черного и не содержит белого, белый 508 содержит 100% белого и не содержит черного, а исходная точка 513 содержит 50% черного и 50% белого. Светлота , представленная центральной вертикальной осью 512, указывает на уровень освещенности в интервале от 0 для черного 510, при , до 1 для белого 508, при . Для произвольного цвета, представленного на Фиг. 5 точкой 514, оттенок определяется как угол θ 516, между первым вектором из исходной точки 513 к точке 502 и вторым вектором из исходной точки 513 к точке 520, в которой вертикальная линия 522, проходящая через точку 514, пересекает плоскость 524, включающую исходную точку 513 и точки 502, 504 и 506. Насыщенность представлена отношением расстояния представленной точки 514 от вертикальной оси 512 d' к длине горизонтальной линии, проходящей через точку 520 от исходной точки 513 к поверхности бипирамидальной призмы 500, d. Светлота представлена вертикальным расстоянием от контрольной точки 514 до вертикального уровня точки 510, представляющей черный цвет. Координаты конкретного цвета в цветовой модели HSL могут быть получены на основе координат цвета в цветовой модели RGB (r,g,b) следующим образом:

,

, и

,

где значения r, g и b соответствуют яркости красного, зеленого и синего первичных цветов, нормализованных на интервале [0, 1]; Cmax представляет нормализованное значение яркости, равное максимальному значению из r, g и b; Cmin представляет собой нормализованное значение яркости, равное минимальному значению из r, g и b; а Δ определяется как Cmax-Cmin.

На Фиг. 6 изображено формирование полутонового или бинаризованного изображения из цветного изображения. В цветном изображении каждый пиксель обычно связан с тремя значениями: а, b и с 602. В разных цветовых моделях для представления конкретного цвета используются разные значения а, b и с. Полутоновое изображение содержит для каждого пикселя только одно значение яркости 604. Бинаризованное изображение является частным случаем полутонового изображения, которое имеет только два значения яркости «0» и «1». Обычно полутоновые изображения могут иметь 256 или 65 536 разных значений яркости для каждого пикселя, представленного байтом или 16-битным словом соответственно. Таким образом, чтобы преобразовать цветное изображение в полутоновое, три значения а, b и с в каждом цветном пикселе необходимо преобразовать в одно значение яркости для соответствующего пикселя полутонового или бинаризованного изображения. На первом этапе три значения цвета а, b и с, преобразуются в значение яркости L, обычно в интервале [0,0, 1,0] 606. Для определенных цветовых моделей к каждому из цветовых значений 608 применяется нетривиальная функция, и результаты суммируются 610, давая значение яркости. В других цветовых моделях каждое цветовое значение умножается на коэффициент, и полученные результаты суммируются 612, давая значение яркости. В некоторых цветовых системах одно из трех цветовых значений является, фактически, значением 614 яркости. Наконец, в общем случае к трем цветовым значениям 616 применяется функция, которая дает значение яркости. Затем значение яркости квантуется 618, позволяя получить значение яркости оттенков серого в требуемом интервале, обычно [0, 255] для полутоновых изображений и одно из двух значений яркости (0,1) для бинаризованных изображений.

На Фиг. 7 показано дискретное вычисление градиента яркости. На Фиг. 7 показан небольшой квадратный участок 702 цифрового изображения. Каждая клетка, например, клетка 704, представляет пиксель, а числовое значение в клетке, например, значение «106» в клетке 704, представляет яркость серого цвета. Допустим, пиксель 706 имеет значение яркости «203». Этот пиксель и четыре смежных с ним пикселя показаны на крестообразной схеме 708 справа от участка 702 цифрового изображения. Рассматривая левый 710 и правый 712 соседние пиксели, изменение значения яркости в направлении х, Δx можно дискретно вычислить как:

.

Рассматривая нижний 714 и верхний 716 соседние пиксели, изменение значения яркости в вертикальном направлении Δy можно вычислить как:

.

Вычисленное значение Δx является оценкой частного дифференциала непрерывной функции яркости относительно оси л: в центральном пикселе 706:

.

Частный дифференциал функции F яркости относительно координаты у в центральном пикселе 706 рассчитывается по Δy:

.

Затем градиент яркости в пикселе 706 может быть рассчитан следующим образом:

где i и j представляют собой единичные векторы в направлениях x и y. Модуль вектора градиента и угол вектора градиента далее рассчитываются следующим образом:

.

Направление вектора 720 градиента яркости и угол θ 722 показаны наложенными на участок 702 цифрового изображения на Фиг. 7. Следует учесть, что вектор градиента направлен в сторону наиболее резкого увеличения яркости от пикселя 706. Модуль вектора градиента указывает на ожидаемое увеличение яркости на единицу приращения в направлении градиента. Конечно же, поскольку градиент оценивается исключительно с помощью дискретных операций, в вычислении, показанном на Фиг. 7, направление и модуль градиента представлены исключительно оценками.

На Фиг. 8 показан градиент, рассчитанный для некой точки на непрерывной поверхности. На Фиг. 8 представлена непрерывная поверхность z=F(x,y). Непрерывная поверхность 802 строится относительно трехмерной декартовой системы координат 804 и имеет похожую на шляпу форму. Для отображения непрерывного множества точек с постоянным значением z на поверхности могут быть построены контурные линии, например, контурная линия 806. В конкретной точке 808 на контуре, построенном на поверхности, вектор градиента 810, рассчитанный для точки, расположен перпендикулярно к контурной линии и точкам в направлении максимально резкого наклона вверх на поверхности от точки 808.

Обычно вектор градиента яркости расположен перпендикулярно к границе яркости, причем чем больше модуль градиента, тем данная граница более четкая. Граница имеет различия в яркости пикселей на любой из сторон границы с общими признаками, или, другими словами, яркость в соседних строках пикселей, перпендикулярных границе, меняется сходным образом. На Фиг. 9 показан ряд примеров градиента яркости. Каждый пример, такой как пример 902, содержит центральный пиксель, для которого рассчитывается градиент, и четыре прилегающих пикселя, которые используются для расчета Δx и Δy. Границы с наибольшей яркостью показаны в первой колонке 904. В этих случаях модуль градиента составляет не менее 127,5, а в третьем случае 906 - 180,3. При относительно небольшой разности по границе, показанной в примере 908, получается градиент величиной всего 3,9. Во всех случаях вектор градиента расположен перпендикулярно очевидному направлению границы яркости, проходящей через центральный пиксель.

Многие методы обработки изображений включают применение ядер к сетке пикселей, составляющей изображение. На Фиг. 10 показано применение ядра к изображению. На Фиг. 10 небольшая часть изображения I 1002 представлена в виде прямоугольной сетки пикселей. Ниже изображения I 1002 показано небольшое ядро 3×3 k 1004. Для выполнения в отношении изображения операции обработки на основе ядра ядро обычно применяется к каждому пикселю изображения. В случае ядра 3×3, такого как ядро k 1004, показанное на Фиг. 10, для пикселей на границе можно использовать модифицированное ядро, также изображение можно раздвинуть, скопировав значения яркости для пикселей границы в описывающий прямоугольник из пикселей, чтобы иметь возможность применять ядро к каждому пикселю исходного изображения. Чтобы применить ядро к пикселю изображения, ядро 1004 численно накладывается на окрестность пикселя 1006 на изображении с такими же размерами в пикселях, что и у ядра. Применение ядра к окрестности пикселя, к которому применяется ядро, позволяет получить новое значение для пикселя в преобразованном изображении, полученном при выполнении операции на основе ядра. Для некоторых типов ядер и операций на основе ядра новое значение пикселя, к которому применяется ядро, In, вычисляется как сумма произведений значения ядра и пикселя, соответствующего значению 1008 ядра. В других случаях новое значение пикселя является более сложной функцией окрестности для пикселя и ядра 1010. В некоторых других типах обработки изображений новое значение пикселя генерируется функцией, применяемой к окрестностям пикселя без использования ядра 1012.

На Фиг. 11 показана свертка ядра с изображением с получением преобразованного изображения. Как правило, ядро последовательно применяется к каждому пикселю изображения. В некоторых случаях ядро применяется только к каждому пикселю изображения, не принадлежащему границе изображения. На Фиг. 11 ядро 3×3, выделенное штриховкой 1102, было последовательно применено к первой строке пикселей, не принадлежащих границе изображения 1104. Каждое новое значение, созданное в результате применения ядра к пикселю в исходном изображении 1106, было перенесено в преобразованное изображение 1107. Другими словами, ядро последовательно применяется к исходным окрестностям каждого пикселя на исходном изображении для получения преобразованных значений пикселей, включенных в преобразованное изображение. Данный процесс называется «сверткой» и отчасти связан с математической операцией свертки, которая выполняется путем умножения изображений, к которым применено преобразование Фурье, с последующим обратным преобразованием Фурье по произведению.

На Фиг. 12 показан пример ядра и методик обработки изображений на основе ядра. В процессе, называемом «медианной фильтрацией», значения яркости некого пикселя и пикселей в окрестности данного пикселя в исходном изображении 1202 сортируются 1204 по возрастанию величины, и медианное значение 1206 выбирается в качестве значения 1208 для данного пикселя в преобразованном изображении. Гауссово сглаживание и очистка от шумов включают применение гауссова ядра 1210 ко всем окрестностям 1214 исходного изображения для создания значения для центрального пикселя окрестности 1216 в соответствующей окрестности обработанного изображения. Значения в гауссовом ядре рассчитываются по выражению, например, по выражению 1218 для создания дискретного представления гауссовой поверхности над окрестностью, образованного вращением кривой нормального распределения вокруг вертикальной оси, совпадающей с центральным пикселем. Горизонтальные и вертикальные компоненты градиента изображения для каждого пикселя оцениваются применением соответствующих ядер градиента Gx 1220 и Gy 1222. Были указаны только три из множества различных типов методик обработки изображения на основе свертки.

Способы и системы, к которым относится настоящий документ

На Фиг. 13А-В показан один вариант реализации способа, к которому относится настоящий документ. Данный вариант реализации специально направлен на исправление искривления текстовых строк на разворотах книг. Тем не менее, тот же способ либо аналогичные ему способы могут использоваться для исправления широкого диапазона искривлений текстовых строк, которые встречаются во многих видах содержащих текст цифровых изображений.

На Фиг. 13А показан разворот книги. Разворот книги 1302 содержит две страницы 1304 и 1306. Так как данные страницы соединены по корешку книги 1308, то при ее открытии и помещении на поверхность обложкой вниз поверхность страниц принимает форму дуги, направленной вверх и от корешка. Таким образом, на изображении разворота книги, полученном с помощью цифровой камеры, текстовые строки, такие как текстовая строка 1310, являются изогнутыми не только потому, что фактически изогнуты поверхности страниц, но и ввиду искривления, вызванного искажением перспективы. Тем не менее, если разгладить страницу и смотреть на нее сверху вниз, текстовые строки будут линейными, а символы и слова, содержащиеся в тексте, будут расположены в знакомой форме прямоугольника. При изгибании и искривлении текстовых строк из-за искажения перспективы и изгиба страниц раскрытой книги буквы и символы в текстовых строках искажаются и нелинейно сжимаются, что существенно усложняет задачу автоматизированного оптического распознавания символов и букв на содержащем текст изображении.

На Фиг. 13В показаны этапы, выполняемые в рамках способа настоящего изобретения при обработке изображения раскрытой книги, как описано выше со ссылкой на Фиг. 13А. На первом этапе изображение разворота книги 1320 обрабатывается с целью обособить только ту часть изображения, которая соответствует двум страницам данной книги 1322. На следующем этапе для каждой из двух страниц 1324 и 1326 подготавливаются отдельные изображения. На каждом из этих двух изображений одной страницы страница, если она не ориентирована вертикально на исходном изображении 1320, вращается до достижения вертикальной ориентации. На следующем этапе, выполняемом в отношении каждого из двух изображений 1324 и 1326, изображение одной страницы обрабатывается таким образом, чтобы граница страницы, не прилегающая к корешку, была также ориентирована вертикально либо параллельно к прилегающей к корешку границе, с получением изображений 1328 и 1330. На окончательном этапе изогнутые верхняя и нижняя границы каждого изображения выпрямляются вместе с текстовыми строками на странице с получением окончательных обработанных изображений 1332 и 1334, на каждом из которых страница представлена в виде прямоугольника, так словно ее изображение было получено из точки непосредственно над центроидом страницы при расположении оптической оси устройства получения изображения перпендикулярно к данной странице. Существует множество дополнительных операций, включая изменение масштаба, повышение контурной резкости и прочие операции обработки изображений, которые могут быть выполнены для дальнейшего улучшения изображения страницы для оптического распознавания символов.

На Фиг. 14A-D показана первоначальная обработка изображения страницы для подготовки к выравниванию границ страницы параллельно корешку, как описано выше со ссылкой на Фиг. 13В. Как показано на Фиг. 14А, исходное изображение страницы 1402 свертывается с помощью Гауссова ядра, либо в отношении изображения применяется метод медианной фильтрации с получением сглаженного изображения 1404 без шумов. Затем к сглаженному изображению без шумов применяются два ядра градиента Gx и Gy для получения двух карт компонентов градиента, из которых формируется карта градиентов 1406, как описано выше со ссылкой на Фиг. 7-9. На карте градиента каждый пиксель, такой как пиксель 1408, соотносится с направлением градиента и модулем градиента. По карте градиентов могут быть определены границы, такие как контур страницы на изображении страницы, представленные в виде строки или кривой пикселей с соотнесенными с ними векторами градиента, имеющими сходную ориентацию, и направление, перпендикулярное данной строке или кривой и имеющее относительно большое значение модуля. Например, как показано на Фиг. 14А, вертикальная граница 1410 на изображении будет соответствовать столбцу 1412 пикселей на карте градиентов с векторами с большими значениями модуля, указывающими в одном и том же направлении и перпендикулярными данной границе. Для извлечения границ из карты градиентов, соответствующих границам яркости на исходном изображении, может быть применена пороговая фильтрация значений модуля градиента и различные методики на основе анализа непрерывности. Другие хорошо известные способы, предназначенные для определения границ на изображении страницы, применяются (в альтернативных вариантах реализации) аналогичным образом.

Как показано на Фиг. 14В, для сужения границ так, чтобы из изображения страницы можно было извлечь четко очерченные границы, используется методика подавления немаксимумов, применяемая как функция k окрестностям пикселей на карте градиентов. На Фиг. 14В для принятия решения о том, нужно ли сохранять значение центральной ячейки или элемента 1422 преобразованного изображения 1424, используется окрестность 3×3 1420 вокруг центральной ячейки или элемента 1422 карты градиентов. Если центральный пиксель имеет максимальную величину по направлению градиента в данной окрестности 1426, то значение сохраняется 1428 в преобразованной карте градиентов, полученной посредством подавления немаксимумов. Таким образом, немаксимальные величины градиента, перпендикулярные границе, подавляются или устанавливаются в значение 0, чтобы утончить многопиксельную границу 1430 в исходной карте градиентов до однопиксельной границы 1432 в преобразованной карте градиентов.

На Фиг. 14С показан общий вид ядра подавления немаксимумов ("ядра NMS"), на котором может выполняться свертка изображения. Ядро NMS 1436 содержит три области: (1) центральный пиксель 1438; (2) непосредственная окрестность 1440; (3) расширенная окрестность 1442. Применение ядра NMS для пикселей подразумевает такое наложение ядра NMS, чтобы область центрального пикселя 1438 ядра NMS накладывалась на пиксель, к которому применяется ядро. При наложении ядра определяется, передается ли яркость пикселя, к которому применяется ядро, соответствующему пикселю или клетке итогового изображения или карте, или на итоговую карту или изображение передается значение низкой яркости, соответствующее изображению или карте, которое может быть любым в числовом выражении. Если яркость пикселя, находящегося под центральным пикселем ядра NMS, выше яркости пикселя, находящегося в непосредственной окрестности ядра NMS, и если яркость пикселя под областью центрального пикселя выше или равна яркости любого пикселя, лежащего в расширенной окрестности, то на итоговое изображение или карту передается значение яркости центрального пикселя. В противном случае, на итоговое изображение или карту передается значение низкой интенсивности. Процесс принятия решения формально выражен 1444 на Фиг. 14С. При свертке ядра NMS с изображением или картой выбираются пиксели или клетки изображения или карты с локальной максимальной яркостью для передачи на итоговую карту или изображение.

Разумеется, над изображением в любой из двух возможных ориентаций могут быть произведены такие операции, как подавление немаксимумов. Например, подавление немаксимумов может рассматривать значение интенсивности серого 255 как максимум, а значение интенсивности серого 0 как минимум, или значение интенсивности серого 0 как максимум, а значение интенсивности серого 255 как минимум. Обычно соответствие между числовыми значениями пикселей и минимальным и максимальным значением легко может быть выведено из контекста, например, белых символов на черном фоне или черных символов на белом фоне.

Как показано на Фиг. 14D, к карте градиентов 1406 применяются подавление немаксимумов и фильтрация длин границ с получением карты границ 1446, из которой, исполь