Способы для предотвращения детонационного сгорания

Иллюстрации

Показать все

Изобретение может быть использовано в системах управления топливоподачей двигателей внутреннего сгорания. Предложены способы для улучшения предотвращения детонационного сгорания в двигателе посредством учета падения эффективности охлаждения заряда текучей среды предотвращения детонационного сгорания при более высоких температурах. В ответ на предсказание повышенной температуры текучей среды предотвращения детонационного сгорания во время выпуска из форсунки непосредственного впрыска настраивается длительность импульса впрыска. Любая нехватка ослабления детонации компенсируется с использованием альтернативных настроек двигателя, таких как настройки наддува или момента зажигания. 3 н. и 17 з.п. ф-лы, 5 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Настоящая заявка относится к способам и системам для использования текучей среды предотвращения детонационного сгорания для предотвращения детонационного сгорания в двигателе внутреннего сгорания.

УРОВЕНЬ ТЕХНИКИ

Альтернативные виды топлива были разработаны, чтобы сдерживать растущие цены традиционных видов топлива и для снижения выбросов в отработавших газах. Например, спиртовые и спиртосодержащие топливные смеси были признаны в качестве привлекательных видов топлива, в частности, для автомобильных применений. Различные системы двигателя могут использоваться со спиртовыми видами топлива с применением различных технологий двигателей и технологий впрыска. Кроме того, различные подходы могут использоваться для управления такими двигателями на спиртовом топливе, чтобы использовать в своих интересах эффект охлаждения заряда высокооктанового спиртового топлива, в частности, для принятия мер в ответ на работу двигателя с детонацией.

Например, в двигателях, сконфигурированных форсунками непосредственного впрыска для подачи топлива или альтернативной текучей среды предотвращения детонационного сгорания в цилиндры двигателя, длительность импульса непосредственного впрыска может настраиваться, чтобы удовлетворять целям предотвращения детонационного сгорания. Один из примерных подходов показан Сурниллой и другими в US 8127745. В нем, объем текучей среды предотвращения детонационного сгорания, который должен непосредственно впрыскиваться, определяется на основании требуемой величины ослабления детонации, объема текучей среды предотвращения детонационного сгорания, который имеется в распоряжении, расхода форсунки, а также охлаждения заряда и октанового числа впрыскиваемой текучей среды предотвращения детонационного сгорания. Длительность импульса непосредственного впрыска затем настраивается на основании определенного объема.

Однако изобретатели в материалах настоящей заявки идентифицировали потенциальные проблемы у такого подхода. В качестве примера, регулировки форсунки настраиваются на основании значений (например, расхода через форсунку, охлаждения заряда и октанового числа текучей среды предотвращения детонационного сгорания, и т.д.), которые типично определяются при номинальных условиях. Однако фактические условия на форсунке непосредственного впрыска могут быть очень разными. Например, температурные условия на форсунке непосредственного впрыска, когда форсунка активизируется первый раз, могут быть сильно отличными от условий, когда форсунка была ненадолго активизирована. Более точно, температура форсунки может повышаться во время периодов, где форсунка непосредственного впрыска не является выполняющей впрыск, поскольку впрыск вещества может охлаждать форсунку. Таким образом, при эксплуатации на средних нагрузках двигателя, где текучая среда предотвращения детонационного сгорания обычно не используется, цилиндр может снабжаться топливом с использованием форсунки впрыска во впускные каналы наряду с тем, что температура наконечника форсунки у форсунки непосредственного впрыска цилиндра может становиться существенно более высокой (например, около 260°C). Если топливо впрыскивается вскоре после этого (например, на более высоких нагрузках двигателя) для ослабления детонации, топливо будет находиться при повышенной температуре. Для сравнения, во время нормальной работы двигателя температуры форсунок непосредственного впрыска могут быть существенно более низкими (например, около 100°C). По существу, при или около комнатной температуры текучие среды предотвращения детонационного сгорания, такие как этиловый спирт, имеют более высокую теплоту парообразования. Теплота парообразования, а потому, потенциал охлаждения заряда, в таком случае уменьшается с повышением температуры. Следовательно, когда использование текучей среды предотвращения детонационного сгорания возобновляется (спустя период не использования форсунки), длительность импульса, рассчитанная на основании номинальных значений, может не давать достаточного ослабления детонации вследствие потенциально пониженного массового расхода и уменьшенного охлаждения заряда.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В одном из примеров некоторые из вышеприведенных проблем могут быть по меньшей мере частично решены способом для двигателя, содержащим непосредственный впрыск текучей среды предотвращения детонационного сгорания в цилиндр двигателя, и настройку параметра впрыска непосредственного впрыска на основании температуры текучей среды предотвращения детонационного сгорания во время выпуска из форсунки непосредственного впрыска. Настроенный параметр впрыска может включать в себя длительность импульса впрыска, объем впрыска, давление в системе непосредственного впрыска или их комбинацию. Таким образом, регулировки ослабляющего детонацию непосредственного впрыска могут настраиваться на основании оценки в реальном времени потенциала охлаждения заряда впрыскиваемой текучей среды предотвращения детонационного сгорания.

В качестве примера в ответ на детонацию (или в ожидании детонации), система управления двигателя может определять начальную регулировку впрыска для непосредственного впрыска текучей среды предотвращения детонационного сгорания на основании номинальных условий эксплуатации. Это может включать в себя начальный объем текучей среды, который должен впрыскиваться, длительность импульса впрыска, момент впрыска, и т.д. Система управления затем может настраивать начальные регулировки на основании оцененной или логически выведенной температуры текучей среды предотвращения детонационного сгорания во время выпуска из форсунки непосредственного впрыска. Например, ожидаемая температура текучей среды может оцениваться или логически выводиться на основании периода бездействия форсунки после последнего впрыска, объема текучей среды предотвращения детонационного сгорания, впрыснутого при последнем впрыске, условий двигателя во время периода бездействия, тепловой массы форсунки, переноса тепла от сгорания на форсунку, переноса тепла от форсунки в охлаждающую жидкость, переноса тепла от форсунки в текучую среду предотвращения детонационного сгорания, оцененной температуры текучей среды предотвращения детонационного сгорания в общей направляющей-распределителе для топлива выше по потоку от форсунки, и т.д.

По мере того, как возрастает длительность после последнего впрыска из форсунки непосредственного впрыска, в то время как форсунка впрыска во впускные каналы продолжает впрыскивать топливо в цилиндр двигателя, температура форсунки непосредственного впрыска может повышаться. Это может вынуждать температуру текучей среды предотвращения детонационного сгорания во время выпуска из форсунки непосредственного впрыска также возрастать, а эффект охлаждения заряда текучей среды предотвращения детонационного сгорания снижаться. Поэтому, система управления может настраивать начальные регулировки впрыска текучей среды предотвращения детонационного сгорания с поправочным коэффициентом на основании оцененного повышения температуры (и/или являющегося результатом уменьшения эффекта охлаждения заряда). Поправка также может применяться к ожидаемому массовому расходу текучей среды предотвращения детонационного сгорания через раскаленную форсунку на основании оцененного давления паров текучей среды предотвращения детонационного сгорания при повышенной температуре. На основании поправки, может настраиваться длительность импульса непосредственного впрыска текучей среды предотвращения детонационного сгорания. Например, по мере того, как возрастает оцененная температура текучей среды при выпуске, длительность импульса впрыска может увеличиваться. Дополнительно, или по выбору, могут повышаться объем впрыска текучей среды предотвращения детонационного сгорания и/или давление в системе непосредственного впрыска. В дополнение, предсказанная нехватка ослабления детонации может компенсироваться посредством настройки одного или более других рабочих параметров двигателя. Например, оставшееся ослабление детонации может обеспечиваться посредством настроек момента зажигания, настроек наддува, настроек фазирования кулачков, настроек EGR (рециркуляции выхлопных газов), и т.д.

Таким образом, масса текучей среды предотвращения детонационного сгорания может настраиваться посредством настройки регулировок впрыска текучей среды предотвращения детонационного сгорания в ожидании изменений эффективности ослабления детонации, обусловленных нагреванием текучей среды предотвращения детонационного сгорания во время выпуска из форсунки. Посредством оценки ожидаемой температуры текучей среды во время выпускания на основании условий форсунки, такой как на основании того, была ли форсунка уже активирована или неработающей, падение эффекта охлаждения заряда текучей среды предотвращения детонационного сгорания может предсказываться, и настройки компенсации ослабления детонации могут производиться надлежащим образом. Посредством увеличения длительности импульса непосредственного впрыска текучей среды предотвращения детонационного сгорания при повышенных температурах форсунки, эффективность ослабления детонации текучей среды при выпуске может улучшаться. В дополнение, могут уменьшаться засорение и термическая деградация форсунки. Посредством лучшего принятия мер в ответ на детонацию в двигателе, могут улучшаться рабочие характеристики двигателя.

Более конкретно, в настоящей заявке раскрыт способ для двигателя, состоящий в том, что: осуществляют непосредственный впрыск текучей среды предотвращения детонационного сгорания в цилиндр двигателя; и настраивают параметр впрыска непосредственного впрыска на основании температуры текучей среды предотвращения детонационного сгорания во время выпуска из форсунки непосредственного впрыска.

В дополнительном аспекте параметр впрыска является длительностью импульса, и настройка включает в себя то, что, по мере того как температура текучей среды предотвращения детонационного сгорания во время выпуска из форсунки непосредственного впрыска возрастает, увеличивают длительность импульса непосредственного впрыска.

В другом дополнительном аспекте величина увеличения длительности импульса основана на составе текучей среды предотвращения детонационного сгорания, в том числе, содержании спиртов текучей среды предотвращения детонационного сгорания.

В еще одном дополнительном аспекте длительность импульса непосредственного впрыска дополнительно настраивается на основании того, была ли предварительно активирована или деактивирована форсунка непосредственного впрыска, причем длительность импульса впрыска топлива дополнительно увеличивается, если форсунка непосредственного впрыска была предварительно деактивирована.

В еще одном дополнительном аспекте температура текучей среды предотвращения детонационного сгорания во время выпуска из форсунки непосредственного впрыска оценивается на основании каждого из тепловой массы форсунки непосредственного впрыска, числа оборотов и нагрузки двигателя, переноса тепла от форсунки непосредственного впрыска в текучую среду предотвращения детонационного сгорания, переноса тепла от форсунки непосредственного впрыска в охлаждающую жидкость двигателя и температуры текучей среды предотвращения детонационного сгорания в направляющей-распределителе для топлива выше по потоку от форсунки непосредственного впрыска.

В еще одном дополнительном аспекте параметр впрыска включает в себя одно или более из длительности импульса, давления в системе непосредственного впрыска и объем впрыска; и при этом, непосредственный впрыск текучей среды предотвращения детонационного сгорания происходит в ответ на детонацию в двигателе.

Еще один дополнительный аспект дополнительно состоит в том, что компенсируют нехватку ослабления детонации, являющуюся результатом настройки длительности импульса, посредством того, что настраивают один или более альтернативных параметров эксплуатации двигателя.

В еще одном дополнительном аспекте один или более альтернативных параметров эксплуатации двигателя включают в себя уровень наддува, изменяемый момент впрыска, изменяемые фазы газораспределения, момент искрового зажигания и EGR.

Еще один дополнительный аспект дополнительно состоит в том, что, в ответ на отклик детонации, обновляют состав текучей среды предотвращения детонационного сгорания, повторно калибруют один или более альтернативных параметров эксплуатации двигателя и обновляют параметры температурной модели текучей среды предотвращения детонационного сгорания.

В еще одном дополнительном аспекте непосредственный впрыск текучей среды предотвращения детонационного сгорания происходит в ответ на температуру форсунки непосредственного впрыска, находящуюся выше пороговой температуры.

Также в настоящей заявке раскрыт способ для цилиндра двигателя, состоящий в том, что: во время первого условия, когда происходит детонация, а форсунка непосредственного впрыска уже активирована, осуществляют непосредственный впрыск текучей среды предотвращения детонационного сгорания с первой длительностью импульса; и во время второго условия, когда происходит детонация, а форсунка непосредственного впрыска была предварительно деактивирована, осуществляют непосредственный впрыск текучей среды предотвращения детонационного сгорания с второй длительностью импульса, большей, чем первая длительность импульса.

В дополнительном аспекте, во время первого условия, детонация происходит, когда цилиндр двигателя снабжается топливом каждой из форсунки впрыска во впускные каналы и форсунки непосредственного впрыска, и при этом, во время второго условия, детонация происходит, когда двигатель снабжается топливом только форсункой впрыска во впускные каналы.

В другом дополнительном аспекте, во время первого условия, форсунка непосредственного впрыска находится на первой, более низкой температуре, и, во время второго условия, форсунка непосредственного впрыска находится на второй, более высокой температуре.

В еще одном дополнительном аспекте, во время первого условия, предсказанная температура текучей среды предотвращения детонационного сгорания при выпуске из форсунки непосредственного впрыска является первой, более низкой температурой, и, во время второго условия, предсказанная температура текучей среды предотвращения детонационного сгорания при выпуске из форсунки непосредственного впрыска является второй, более высокой температурой.

Еще один дополнительный аспект дополнительно состоит в том, что, во время первого условия, поддерживают момент искрового зажигания на MBT, а во время второго условия, осуществляют запаздывание момента зажигания от MBT, причем запаздывание зажигания настраивается на основании разницы между требуемым разбавлением в двигателе и разбавлением в двигателе, обеспечиваемым непосредственным впрыском текучей среды предотвращения детонационного сгорания при второй длительности импульса.

Кроме того раскрыт способ для двигателя, состоящий в том, что: временно увеличивают длительность импульса впрыска текучей среды предотвращения детонационного сгорания из форсунки непосредственного впрыска в цилиндр двигателя на основании того, что форсунка была предварительно деактивирована.

В дополнительном аспекте величина увеличения длительности импульса впрыска основана на первом количестве циклов двигателя, в течение которых форсунка была предварительно деактивирована, и где увеличение завершается после второго количества впрысков текучей среды предотвращения детонационного сгорания из форсунки непосредственного впрыска, причем второе количество впрысков основано на первом количестве циклов двигателя.

В другом дополнительном аспекте величина увеличения дополнительно основана на содержании этанола текучей среды предотвращения детонационного сгорания, и где увеличение является большим, чем впрыскивалось бы, чтобы ослабить детонацию, если форсунка непосредственного впрыска предварительно работала.

Еще один дополнительный аспект дополнительно состоит в том, что настраивают одно или более из уровня наддува, момента зажигания и EGR во время впрыска на основании разности между требуемым разбавлением в двигателе и разбавлением в двигателе, обеспечиваемым текучей средой предотвращения детонационного сгорания.

В еще одном дополнительном аспекте впрыск текучей среды предотвращения детонационного сгорания происходит в ответ на упреждающее указание детонации, при этом упомянутый способ дополнительно состоит в том, что, в ответ на ответное указание детонации, обновляют состав текучей среды предотвращения детонационного сгорания, и дополнительно настраивают одно или более из наддува, момента зажигания и EGR.

Будет понятно, что сущность изобретения, приведенная выше, предоставлена для знакомства с упрощенной формой подборки концепций, которые дополнительно описаны в подробном описании, которое следует. Она не предполагается для идентификации ключевых или существенных признаков заявленного объекта патентования, объем которого определен формулой изобретения, которая сопровождает подробное описание. Кроме того, заявленный объект патентования не ограничен реализациями, которые кладут конец каким-нибудь недостаткам, отмеченным выше или в любой части этого раскрытия.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Объект патентования настоящего раскрытия будет лучше понятен по прочтению последующего подробного описания неограничивающих вариантов осуществления со ссылкой на прилагаемые чертежи, на которых:

фиг. 1 показывает вид с частичным разрезом камеры сгорания двигателя;

фиг. 2 показывает график, изображающий примерную зависимость между потенциалом охлаждения заряда текучей среды предотвращения детонационного сгорания и температурой текучей среды;

фиг. 3 показывает высокоуровневую блок-схему последовательности операций способа, иллюстрирующую процедуру, которая может быть реализована для настройки регулировок впрыска для непосредственного впрыска текучей среды предотвращения детонационного сгорания на основании температуры текучей среды во время выпускания.

фиг. 4 показывает высокоуровневую блок-схему последовательности операций способа, иллюстрирующую процедуру, которая может быть реализована для периодического приведения в действие форсунки непосредственного впрыска во время условий бездействующей форсунки для снижения нагрева текучей среды предотвращения детонационного сгорания;

фиг. 5 показывает примерную настройку для впрыска текучей среды предотвращения детонационного сгорания.

ПОДРОБНОЕ ОПИСАНИЕ

Предложены способы и системы для улучшения предотвращения детонационного сгорания в двигателе, таком как двигатель по фиг. 1. Регулировки впрыска для непосредственного впрыска текучей среды предотвращения детонационного сгорания могут настраиваться на основании оцененной температуры текучей среды во время выпускания, чтобы компенсировать изменения эффективности охлаждения заряда текучей среды при повышенных температурах (фиг. 2). Контроллер может быть выполнен с возможностью выполнять процедуру управления, такую как примерная процедура по фиг. 3, чтобы определять начальную регулировку для непосредственного впрыска текучей среды предотвращения детонационного сгорания на основании вероятности детонации и номинальных условий текучей среды. Контроллер в таком случае может предсказывать температуру текучей среды предотвращения детонационного сгорания во время выпуска из форсунки непосредственного впрыска на основании условий форсунки, таких как, является ли форсунка уже активированной или деактивирована, температуры форсунки, переноса тепла от форсунки в текучую среду, и т.д. В ответ на предсказание повышенной температуры текучей среды предотвращения детонационного сгорания во время выпускания, могут настраиваться регулировки впрыска, такие как длительность импульса непосредственного впрыска. В дополнение, один или более других рабочих параметров двигателя могут настраиваться для компенсации любой нехватки детонации, являющейся результатом нагретой текучей среды предотвращения детонационного сгорания. Примерная настройка впрыска показана на фиг. 5. Контроллер также может выполнять процедуру, такую как процедура по фиг. 4, чтобы время от времени эксплуатировать форсунку непосредственного впрыска во время условий, когда впрыск текучей среды от детонации не требуется, чтобы поддерживать температуру форсунки, а также температуру текучей среды предотвращения детонационного сгорания ниже соответственных пороговых значений. Таким образом, изменения эффективности охлаждения заряда текучей среды предотвращения детонационного сгорания, обусловленные переносом тепла с нагретой форсунки непосредственного впрыска, могут компенсироваться лучше.

Фиг. 1 изображает примерный вариант осуществления камеры сгорания или цилиндра двигателя 10 внутреннего сгорания. Двигатель 10 может принимать параметры управления из системы управления, включающей в себя контроллер 12, и входные данные от водителя 130 транспортного средства через устройство 132 ввода. В этом примере, устройство 132 ввода включает в себя педаль акселератора и датчик 134 положения педали для формирования пропорционального сигнала PP положения педали. Цилиндр 14 (в материалах настоящей заявки также «камера сгорания») двигателя 10 может включать в себя стенки 136 камеры сгорания с поршнем 138, расположенным в них. Поршень 138 может быть присоединен к коленчатому валу 140, так чтобы возвратно-поступательное движение поршня преобразовывалось во вращательное движение коленчатого вала. Коленчатый вал 140 может быть присоединен к по меньшей мере одному ведущему колесу пассажирского транспортного средства через систему трансмиссии. Кроме того, стартерный электродвигатель может быть присоединен к коленчатому валу 140 через маховик, чтобы давать возможность операции запуска двигателя 10.

Цилиндр 14 может принимать всасываемый воздух через последовательность впускных воздушных каналов 142, 144 и 146. Впускной воздушный канал 146 может сообщаться с другими цилиндрами двигателями 10 в дополнение к цилиндру 14. В некоторых вариантах осуществления, один или более впускных каналов могут включать в себя устройство наддува, такое как турбонагнетатель или нагнетатель. Например, фиг. 1 показывает двигатель 10, сконфигурированный турбонагнетателем, включающим в себя компрессор 174, скомпонованный между впускным каналами 142 и 144, и турбиной 176 с приводом от выхлопной системы, скомпонованной вдоль выпускного канала 148. Компрессор 174 может по меньшей мере частично приводиться в действие турбиной 176 с приводом от выхлопной системы через вал 180, где устройство наддува сконфигурировано в качестве турбонагнетателя. Однако, в других примерах, таких как где двигатель 10 снабжен нагнетателем, турбина 176 с приводом от выхлопной системы, по выбору, может быть не включена в состав, где компрессор может приводиться в действие механической подводимой мощностью от электродвигателя или двигателя. Дроссель 162, включающий в себя дроссельную заслонку 164, может быть установлен вдоль впускного канала двигателя для изменения расхода и/или давления всасываемого воздуха, подаваемого в цилиндры двигателя. Например, дроссель 162 может быть расположен ниже по потоку от компрессора 174, как показано на фиг. 1, или, в качестве альтернативы, может быть предусмотрен выше по потоку от компрессора 174.

Выпускной канал 148 может принимать отработавшие газы из других цилиндров двигателя 10 в дополнение к цилиндру 14. Датчик 128 отработавших газов показан присоединенным к выпускному каналу 148 выше по потоку от устройства 178 снижения токсичности выбросов. Датчик 128 может быть выбран из числа различных пригодных датчиков для выдачи показания топливо/воздушного соотношения в отработавших газах, например, таких как линейный кислородный датчик или UEGO (универсальный или широкодиапазонный датчик содержания кислорода в отработавших газах), двухрежимный кислородный датчик или датчик EGO (который изображен), HEGO (подогреваемый EGO), NOx, HC или CO. Устройство 178 снижения токсичности выбросов может быть трехкомпонентным каталитическим нейтрализатором (TWC), уловителем NOx, различными другими устройствами снижения токсичности выбросов или их комбинациями.

Температура отработавших газов может измеряться одним или более датчиков температуры (не показаны), расположенных в выпускном канале 148. В качестве альтернативы, температура отработавших газов может выводиться на основании условий эксплуатации двигателя, таких как число оборотов, нагрузка, топливо-воздушное соотношение (AFR), запаздывание искрового зажигания, и т.д. Кроме того, температура отработавших газов может вычисляться по одному или более датчиков 128 отработавших газов. Может быть принято во внимание, что температура отработавших газов, в качестве альтернативы, может оцениваться любой комбинацией способов оценки температуры, перечисленных в материалах настоящей заявки.

Каждый цилиндр двигателя 10 может включать в себя один или более впускных клапанов и один или более выпускных клапанов. Например, цилиндр 14 показан включающим в себя по меньшей мере один впускной тарельчатый клапан 150 и по меньшей мере один выпускной тарельчатый клапан 156, расположенные в верхней области цилиндра 14. В некоторых вариантах осуществления, каждый цилиндр двигателя 10, в том числе, цилиндр 14, может включать в себя по меньшей мере два впускных тарельчатых клапана и по меньшей мере два выпускных тарельчатых клапана, расположенных в верхней области цилиндра.

Впускной клапан 150 может управляться контроллером 12 посредством приведения в действие кулачков через систему 151 кулачкового привода. Подобным образом, выпускной клапан 156 может управляться контроллером 12 через систему 153 кулачкового привода. Каждая из систем 151 и 153 кулачкового привода может включать в себя один или более кулачков и может использовать одну или более из систем переключения профиля кулачков (CPS), изменения момента впрыска (VCT), изменения фаз газораспределения (VVT) и/или изменения подъема клапана (VVL), которые могут управляться контроллером 12 для изменения работы клапанов. Работа впускного клапана 150 и выпускного клапана 156 может определяться датчиками положения клапана (не показаны) и/или, соответственно, датчиками 155 и 157 положения распределительного вала. В альтернативных вариантах осуществления, впускной и/или выпускной клапан могут управляться посредством клапанного распределителя с электромагнитным управлением. Например, цилиндр 14, в качестве альтернативы, может включать в себя впускной клапан, управляемый посредством возбуждения клапанного распределителя с электромагнитным управлением, и выпускной клапан, управляемый через кулачковый привод, включающий в себя системы CPS и/или VCT. Кроме того, в еще других вариантах осуществления впускной и выпускной клапаны могут управляться системой привода или приводом золотникового клапана либо системой привода или приводом изменения фаз газораспределения.

Цилиндр 14 может иметь степень сжатия, которая является отношением объемов того, когда поршень 138 находится в нижней мертвой точке, к тому, когда в верхней мертвой точке. Традиционно, степень сжатия находится в диапазоне от 9:1 до 10:1. Однако, в некоторых примерах, где используется другое топливо, степень сжатия может быть увеличена. Это, например, может происходить, когда используется более высокооктановое топливо или топливо с более высоким скрытым теплосодержанием испарения. Степень сжатия также может быть повышена, если используется непосредственный впрыск, вследствие его воздействия на работу двигателя с детонацией.

В некоторых вариантах осуществления, каждый цилиндр двигателя 10 может включать в себя свечу 192 зажигания для инициирования сгорания. Система 190 зажигания может выдавать искру зажигания в камеру 14 сгорания через свечу 192 зажигания в ответ на сигнал SA опережения зажигания из контроллера 12, в выбранных рабочих режимах. Однако, в некоторых вариантах осуществления, свеча 192 зажигания может быть не включена в состав, таких как где двигатель 10 может инициировать сгорание самовоспламенением или впрыском топлива, как может иметь место у некоторых дизельных двигателей.

В некоторых вариантах осуществления, каждый цилиндр двигателя 10 может быть сконфигурирован одной или более форсунок для выдачи текучей среды предотвращения детонационного сгорания в него. В некоторых вариантах осуществления, текучая среда предотвращения детонационного сгорания может быть топливом, при этом, форсунка также указывается ссылкой как топливная форсунка. В качестве неограничивающего примера, показан цилиндр 14, включающий в себя одну топливную форсунку 166. Топливная форсунка 166 показана присоединенной непосредственно к цилиндру 14 для впрыска топлива непосредственно в него пропорционально ширине импульса сигнала FPW-1, принятого из контроллера 12 через электронный формирователь 168. Таким образом, топливная форсунка 166 обеспечивает то, что известно как непосредственный впрыск (в дальнейшем, также указываемый ссылкой как «DI») топлива в цилиндр 14 сгорания. Несмотря на то, что фиг. 1 показывает форсунку 166 в качестве боковой форсунки, она также может быть расположена выше поршня, к примеру, возле положения свечи 192 зажигания. Такое положение может улучшать смешивание и сгорание при работе двигателя на спиртосодержащем топливе вследствие низкой летучести некоторых спиртосодержащих видов топлива. В качестве альтернативы, форсунка может быть расположена выше и возле впускного клапана для улучшения смешивания. Топливо может подаваться в топливную форсунку 166 из топливной системы 8 высокого давления, включающей в себя топливные баки, топливные насосы и направляющую-распределитель для топлива. В качестве альтернативы, топливо может подаваться однокаскадным топливным насосом на низком давлении, в каком случае, момент непосредственного впрыска топлива могут ограничиваться в большей степени во время такта сжатия, чем если используется топливная система высокого давления. Кроме того, несмотря на то, что не показано, топливные баки могут иметь преобразователь давления, выдающий сигнал в контроллер 12. Будет приниматься во внимание, что, в альтернативном варианте осуществления, форсунка 166 может быть форсункой впрыска во впускные каналы, выдающей топливо во впускной канал выше по потоку от цилиндра 14.

Также будет принято во внимание, что, несмотря на то, что в одном из вариантов осуществления, двигатель может приводиться в действие посредство впрыскивания переменной смеси топлива или текучей среды предотвращения детонационного сгорания через одиночную форсунку непосредственного впрыска; в альтернативных вариантах осуществления, двигатель может приводиться в действие посредством использования двух форсунок (форсунки 166 непосредственного впрыска и форсунки впрыска во впускные каналы) и изменения относительного объема впрыска из каждой форсунки.

Топливо может подаваться форсункой в цилиндр в течение одного цикла цилиндра. Кроме того, распределение и/или относительный объем топлива или текучей среды предотвращения детонационного сгорания, подаваемых из форсунки, может меняться в зависимости от условий эксплуатации, таких как температура воздушного заряда, как описано ниже. Кроме того, для одиночного события сгорания, многочисленные впрыски подаваемого топлива могут выполняться за цикл. Многочисленные впрыски могут выполняться в течение такта сжатия, такта впуска или любой надлежащей их комбинации.

Как описано выше, фиг. 1 показывает только один цилиндр многоцилиндрового двигателя. По существу, каждый цилиндр, подобным образом, может включать в себя свой собственный набор впускных/выпускных клапанов, топливной форсунки(ок), свечи зажигания, и т.д.

Топливные баки в топливной системе 8 могут удерживать топливо или текучие среды предотвращения детонационного сгорания с разными качествами, такие как разные составы. Эти различия могут включать в себя разное содержание спиртов, разное содержание воды, разное октановое число, разную теплоту испарения, разные топливные смеси, разные содержания воды и/или их комбинации, и т.д. В одном из примеров текучие среды предотвращения детонационного сгорания с разными содержаниями спиртов могли бы включать в себя одно топливо, являющееся бензином, и другое, являющееся этиловым спиртом или метиловым спиртом. В еще одном примере, двигатель может использовать бензин в качестве первого вещества, и спиртосодержащую топливную смесь, такую как E85 (которая является приблизительно 85% этилового спирта и 15% бензина) или M85 (которая является приблизительно 85% метилового спирта и 15% бензина) в качестве второго вещества. Другие спиртосодержащие виды топлива могли бы быть смесью спирта и воды, смесью спирта, воды и бензина, и т.д. В еще одном другом примере, оба топлива могут быть спиртовыми смесями, при этом, первое топливо может быть спиртобензиновой смесью с более низким соотношением спирта, чем спиртобензиновая смесь второго топлива с более высоким соотношением спирта, к примеру, E10 (которое имеет значение приблизительно 10% этилового спирта) в качестве первого топлива и E85 (которое имеет значение приблизительно 85% этилового спирта) в качестве второго топлива. Дополнительно, первое и второе топливо также могут различаться по другим качествам топлива, таким как различие по температуре, вязкости, октановому числу, скрытому теплосодержанию парообразования, и т.д.

Более того, характеристики топлива у топлива или текучей среды предотвращения детонационного сгорания, хранимых в топливном баке, могут часто меняться. В одном из примеров водитель может пополнять топливный бак с помощью E85 в один день, а E10 в следующий, и E50 в следующий. Изменения пополнения бака изо дня в день, таким образом, могут давать в результате частое изменение составов топлива, тем самым, оказывая влияние на состав топлива, подаваемого в форсунку 166.

Несмотря на то, что не показано, будет приниматься во внимание, что двигатель 10 дополнительно может включать в себя один или более каналов рециркуляции отработавших газов для отведения по меньшей мере части отработавших газов с выпуска двигателя на впуск двигателя. По существу, посредством рециркуляции некоторого количества отработавших газов, может находиться под влиянием разбавление для двигателя, которое может улучшать рабочие характеристики двигателя, снижая детонацию в двигателе, пиковые температуры и давления сгорания в цилиндре, потери на дросселирование и выбросы NOx. Один или более каналов EGR могут включать в себя канал LP-EGR, присоединенный между впуском двигателя выше по потоку от компрессора турбонагнетателя и выпуском двигателя ниже по потоку от турбины, и сконфигурированы для обеспечения EGR низкого давления (LP). Один или более каналов EGR, кроме того, могут включать в себя канал HP-EGR, присоединенный между впуском двигателя ниже по потоку от компрессора и выпуском двигателя выше по потоку от турбины, и сконфигурирован для обеспечения EGR высокого давления (HP). В одном из примеров поток HP-EGR может выдаваться во время условий, таких как отсутствие наддува турбонагнетателя, наряду с тем, что поток LP-EGR может выдаваться во время условий, таких как при наличии наддува турбонагнетателя и/или когда температура отработавших газов находится выше порогового значения. Поток LP-EGR через канал LP-EGR может настраиваться посредством клапана LP-EGR наряду с тем, что поток HP-EGR через канал HP-EGR может настраиваться посредством клапана HP-EGR (не показан).

Контроллер 12 показан на фиг. 1 в качестве микрокомпьютера, включающего в себя микропроцессорный блок 106, порты 108 ввода/вывода, электронный запоминающий носитель для исполняемых программ и калибровочных значений, показанный в качестве микросхемы 110 постоянного запоминающе