Способ деактивации взрывчатых составов на основе энергонасыщенных аминных комплексов кобальта iii

Иллюстрации

Показать все

Изобретение относится к способам лазерной нейтрализации взрывоопасных объектов и может быть использовано для бездетонационного обезвреживания взрывоопасных объектов, содержащих энергонасыщенные аминные комплексы кобальта(III), а также деактивации инициируемых лазером запалов. В основу изобретения положена задача создания дистанционного способа деактивации взрывчатых составов на основе энергонасыщенных аминных комплексов кобальта(III), например таких известных и применяемых соединений, как перхлорат {(5-нитротетразолато-N2) пентаамин кобальта(III)} (NCP) и {бис-(5-нитротетразолато-N) пентаамин кобальта(III)} (BNCP), лазерным излучением, который обеспечивает фотолитическое разложение ВВ без существенных термических эффектов, образование неопасных продуктов распада в результате воздействия лазерного излучения на указанной длине волны, позволяет дистанционно на безопасном расстоянии осуществить деактивацию вышеуказанных взрывчатых веществ, и при этом вероятность подрыва вещества минимальна за счет отсутствия термического нагрева вещества и механического воздействия. 3 ил.

Реферат

Изобретение относится к лазерной технике, конкретно к способам лазерной нейтрализации взрывоопасных объектов, и может быть использовано для бездетонационного обезвреживания взрывоопасных объектов, содержащих энергонасыщенные аминные комплексы кобальта(III), а также деактивации инициируемых лазером запалов.

Известны способы деактивации перхлоратных соединений, широко используемых в ракетном топливе и взрывчатых веществах (RU 2339906, F42B 33/06, опубл. 27.11.2008, RU 2174502, С06В 21/00, F42D 5/04, опубл. 10.10.2001, RU 2122536, С06В 21/00, F42B 33/00, С06В 47/14, опубл. 27.11.1998, RU 2064659, F42D 5/04, F42B 33/06, опубл. 27.07.1996). Ни в одном из аналогов для деактивации взрывчатых и горючих веществ не используется лазерное излучение, что приводит к тому, что не может быть обеспечена дистанционная деактивация.

Известен способ лазерной нейтрализации взрывоопасных объектов, включающий обнаружение объекта в видимом или инфракрасном диапазоне электромагнитных волн, дистанционное выполнение в корпусе объекта сквозного отверстия и дефлаграцию взрывчатого вещества объекта лазерным излучением через отверстие в его корпусе, в котором выполнение сквозного отверстия в корпусе объекта производят тепловой энергией непрерывного лазерного излучения повышенной мощности путем прожига, а дефлаграцию взрывчатого вещества объекта через отверстие в его корпусе ведут в непрерывном режиме при пониженной мощности лазерного излучения, причем в процессе дистанционного пробивания в корпусе объекта сквозного отверстия и в процессе дефлаграции взрывчатого вещества через образованное отверстие в корпусе взрывоопасного объекта измеряют соответственно дальность до объекта и дальность до отверстия для соответствующей фокусировки лазерного излучения на объекте обезвреживания (RU 2489677, F42B 33/06, B23K 26/36, B23K 26/02, опубл. 10.08.2013).

В патенте не указано, каким излучением проводится дефлаграция, как определяется мощность, кроме того, предлагаемый способ деактивации взрывчатки - выжигание неприемлем к целому ряду классов взрывчатых веществ, в том числе к энергонасыщенным аминным комплексам кобальта(III), из-за их детонации при повышении температуры выше 200°С.

В основу изобретения положена задача создания дистанционного способа деактивации взрывчатых составов на основе энергонасыщенных аминных комплексов кобальта(III), например таких известных и применяемых соединений как перхлорат {(5-нитротетразолато-N2) пентаамин кобальта(III)} (NCP) и {бис-(5-нитротетразолато-N2) пентаамин кобальта(III)} (BNCP), лазерным излучением, который обеспечивает фотолитическое разложение ВВ без существенных термических эффектов, образование неопасных продуктов распада в результате воздействия лазерного излучения на указанной длине волны, позволяет дистанционно на безопасном расстоянии осуществить деактивацию вышеуказанных взрывчатых веществ, и при этом вероятность подрыва вещества минимальна за счет отсутствия термического нагрева вещества и механического воздействия.

Решение поставленной технической задачи обеспечивается тем, что в способе деактивации взрывчатых составов на основе энергонасыщенных аминных комплексов кобальта(III) лазерным излучением на состав воздействуют импульсным лазерным излучением с длиной волны 320-380 нм и средней плотностью мощности от 2⋅10-3 до 5 мВт/см2.

Воздействие лазерного излучения данной длины волны на энергонасыщенные аминные комплексы кобальта(III) приводит к разложению комплекса с образованием оксида кобальта и продуктов лигандов, а не к термическому нагреву, который должен приводить к взрыву, так как температура повышается не более чем на 30°C, в то время как температура инициирования взрыва для данного класса веществ составляет около 200°C.

Изобретение поясняется фиг. 1 и 2.

На фиг. 1 приведена часть спектра оптического поглощения перхлората {(5-нитротетразолато-N2) пентаамина кобальта(III)} (а) с полосой поглощения вблизи 330 нм, которая соответствует возбуждению d-d переходов в катионе Со3+в октаэдрическом окружении. Возбуждение этих переходов и ведет к фоторазложению комплекса, о чем свидетельствуют приведенные на фиг. 2 спектры комбинационного рассеяния исходного перхлората {(5-нитротетразолато-N2) пентаамина кобальта(III)} (а) и комплекса после облучения лазером с длиной волны 355 нм (б). Кардинальное различие спектров, возникшее в результате воздействия облучения, свидетельствует о фоторазложении комплекса.

Для разложения используется импульсный Nd-YAG лазер с длиной волны 355 нм, частотой импульсов 14 кГц, длительностью импульса 25 нс и мощностью в импульсе 0,7 Вт. Средняя мощность составляет 0,2 мВт.

Интервал допустимой плотности мощности определяется, с одной стороны, порогом реакции фоторазложения, с другой стороны, повышением температуры до инициирования взрывного характера разложения и он составляет от 2⋅10-3 до 5 Вт/см2.

Для проведения дезактивации объект облучают импульсным лазером с длиной волны излучения от 320 до 380 нм и средней плотностью мощности от 2⋅10-3 до 5 мВт/см2. Расстояние от лазера до объекта и степень расфокусировки луча выбирают таким образом, чтобы значение результирующей плотности мощности излучения на поверхности объекта находилось в вышеприведенных пределах. Разложение происходит в пределах светового пятна. Увеличение площади обрабатываемой поверхности производится за счет сканирования луча по поверхности. Характеристическое время облучения в пределах светового пятна составляет около 60 с. Указанное время зависит от толщины облучаемого слоя и плотности мощности излучения.

В качестве примера реализации путем высушивания концентрированного раствора перхлората {бис-[цис-(5-нитротетразолато-N2)]} тетраамминкобальта(III) на поверхности стеклянной пластинки были изготовлены две мишени в виде дисков диаметром 3 мм и толщиной 0,5 мм. Одну (экспериментальную) мишень расположили вертикально и подвергли действию излучения описанного выше лазера в течение 5 мин. Диаметр пучка соответствовал диаметру мишени. После этого обе мишени последовательно подвергли нагреву. На контрольной мишени после достижения критической температуры наблюдалась микродетонация, в то время как опытная мишень не показала существенных кратковременных выделений энергии.

Способ деактивации взрывчатых составов на основе энергонасыщенных аминных комплексов кобальта(III) лазерным излучением, отличающийся тем, что на состав воздействуют импульсным лазерным излучением с длиной волны 320-380 нм и средней плотностью мощности от 2·10-3 до 5 мВт/см2.