Система и способ для камеры сгорания турбины

Иллюстрации

Показать все

Изобретение относится к энергетике. Предложена система для сжигания топлива, содержащая турбинную камеру сгорания, которая содержит головную часть с головной камерой. При этом головная часть содержит канал отработанного газа, канал топлива и канал окислителя. Турбинная камера сгорания также содержит часть камеры сгорания, расположенную ниже по потоку от головной камеры. Причём турбинная камера сгорания содержит перегородку, расположенную между головной камерой и камерой сгорания, выполненную таким образом, что топливо из канала топлива и окислитель из канала окислителя предназначены для сгорания внутри камеры сгорания, расположенной ниже по потоку от перегородки. Турбинная камера сгорания содержит торцевую пластину, имеющую, по меньшей мере, один порт, подсоединенный к каналу отработанных газов или каналу окислителя, при этом головная камера расположена соосно между перегородкой и торцевой пластиной. Также представлены варианты системы для сжигания топлива и способ сжигания топлива. Изобретение позволяет увеличить срок службы компонентов, а также позволяет контролировать температуру, давление, скорость потока, влажность содержимого, содержание частиц и состав отработавшего газа. 7 н. и 43 з.п. ф-лы, 20 ил., 2 табл.

Реферат

Уровень техники изобретения

[0001] Раскрытый здесь объект изобретения относится к газотурбинным двигателям, и более конкретно, к системам и способам для камер сгорания турбин в газотурбинных двигателях.

[0002] Газотурбинные двигатели находят широкое применение в таких областях, как производство электроэнергии, авиация и различное производственное оборудование. Газотурбинные двигатели обычно сжигают топливо с использованием окислителя (например, воздуха) в секции камеры сгорания для получения горячих продуктов сгорания, которые затем приводят в действие одну или более ступеней турбины в секции турбины. Секция турбины, в свою очередь, приводит в движение одну или более ступеней компрессора в секции компрессора, сжимая, тем самым, окислитель для подачи его в секцию камеры сгорания вместе с топливом. Далее, топливо смешивается с окислителем в секции камеры сгорания, и затем камера сгорания производит горячие продукты сгорания. Газотурбинные двигатели обычно выполняют предварительное смешивание топлива и окислителя в одном или более каналов до камеры сгорания секции камеры сгорания. К сожалению, определенные компоненты секции камеры сгорания подвергаются воздействию высоких температур, что может уменьшить срок службы компонентов. Более того, газотурбинные двигатели обычно потребляют огромное количество воздуха в качестве окислителя, и выделяют значительное количество отработанного газа в атмосферу. Другими словами, отработанный газ обычно уходит в отходы как побочный продукт работы газовой турбины.

Сущность изобретения

[0003] Определенные варианты осуществления, сопоставимые по объему с заявленным изобретением, кратко изложены ниже. Эти варианты осуществления не предназначены для ограничения объема заявленного изобретения, наоборот, эти варианты осуществления предназначены только для обеспечения краткого изложения возможных форм изобретения. Действительно, изобретение может содержать множество форм, которые могут быть похожи на или отличаться от изложенных ниже вариантов осуществления.

[0004] В первом варианте осуществления, система включает в себя камеру сгорания турбины, которая включает в себя головную часть, имеющую головную камеру. Головная камера включает в себя канал отработанных газов, канал топлива и канал окислителя. Камера сгорания турбины также включает в себя часть камеры сгорания, включающую в себя камеру сгорания, расположенную после головной камеры, перегородку, расположенную между головной камерой и камерой сгорания, и торцевую пластину, имеющую, по меньшей мере, один порт, подсоединенный к каналу отработанных газов или каналу окислителя. Головная камера имеет осевое расположение между перегородкой и торцевой пластиной.

[0005] Во втором варианте осуществления, система включает в себя камеру сгорания турбины, которая включает в себя головную часть, имеющую головную камеру. Головная часть включает в себя канал отработанных газов, канал топлива и канал окислителя. Камера сгорания турбины также включает в себя часть камеры сгорания, имеющую камеру сгорания, расположенную после головной камеры, перегородку между головной камерой и камерой сгорания, и торцевую пластину, имеющую первое впускное отверстие окислителя канала окислителя. Головная камера имеет осевое расположение между перегородкой и торцевой пластиной.

[0006] В третьем варианте осуществления, система включает в себя камеру сгорания турбины, которая включает в себя головную часть, имеющую головную камеру. Головная часть включает в себя канал отработанных газов, канал топлива и канал окислителя. Камера сгорания турбины также включает в себя часть камеры сгорания, включающую в себя камеру сгорания, расположенную после головной камеры, перегородку, расположенную между головной камерой и камерой сгорания, и торцевую пластину, имеющую первое выпускное отверстие отработанных газов канала отработанных газов. Головная камера имеет осевое расположение между перегородкой и торцевой пластиной.

[0007] В четвертом варианте осуществления, система включает в себя камеру сгорания турбины, которая включает в себя головную часть, имеющую головную камеру. Головная часть включает в себя канал отработанных газов, канал топлива и канал окислителя. Камера сгорания турбины также включает в себя часть камеры сгорания, включающую в себя камеру сгорания, расположенную после головной камеры, перегородку, расположенную между головной камерой и камерой сгорания, и торцевую пластину. Головная камера имеет осевое расположение между перегородкой и торцевой пластиной. Камера сгорания турбины также включает в себя топливный коллектор, расположенный между перегородкой и торцевой пластиной. Топливный коллектор включает в себя первое радиальное впускное отверстия топлива, подсоединенное к первому каналу топлива канала топлива, и первый канал топлива включает в себя первый радиальный канал и первый круговой канал, расположенный вокруг средней линии топливного коллектора.

[0008] В пятом варианте осуществления, система включает в себя топливный коллектор камеры сгорания турбины, выполненный с возможностью установки внутри головной камеры сгорания турбины. Топливный коллектор камеры сгорания турбины включает в себя первое радиальное впускное отверстие топлива, подсоединенное к первому топливному каналу, и первый топливный канал включает в себя первый радиальный канал и первый круговой канал, расположенный вокруг средней линии топливного коллектора камеры сгорания турбины.

[0009] В шестом варианте осуществления, система включает в себя торцевую пластину камеры сгорания газотурбинного двигателя со стехиометрической рециркуляцией отработанных газов (СРОГ). Торцевая пластина включает в себя, по меньшей мере, одно осевое впускное отверстие окислителя или выпускное отверстие отработанных газов.

[0010] В седьмом варианте осуществления, способ включает в себя направление топлива через головную часть камеры сгорания турбины, направление окислителя через головную часть камеры сгорания турбины, направление отработанных газов через головную часть камеры сгорания турбины, и сжигание смеси топлива, окислителя и отработанного газа в части камеры сгорания камеры сгорания турбины. По меньшей мере, один из канала окислителя или канала отработанных газов проходит через торцевую пластину головной части камеры сгорания турбины.

Краткое описание чертежей

[0011] Эти и другие признаки, аспекты и преимущества настоящего изобретения станут более понятным при прочтении следующего описания с приложенными чертежам, где одинаковые символы представляют одинаковые части на всех чертежах, в которых:

[0012] Фиг.1 является диаграммой варианта осуществления системы, имеющей систему обслуживания на основе турбины, подсоединенную к системе добычи углеводорода.

[0013] Фиг.2 является диаграммой варианта осуществления на Фиг.1, дополнительно иллюстрирующей систему управления и систему комбинированного цикла.

[0014] Фиг.3 является диаграммой варианта осуществления системы на Фиг.1 и Фиг.2, дополнительно иллюстрирующей подробности газотурбинного двигателя, систему подачи отработанных газов и систему обработки отработанных газов.

[0015] Фиг.4 является блок-схемой варианта осуществления процесса работы системы на Фиг.1-Фиг.3.

[0016] Фиг.5 является блок-схемой варианта осуществления процесса работы обслуживающей системы на основе турбины.

[0017] Фиг.6 является схематической диаграммой варианта осуществления секции камеры сгорания газотурбинного двигателя.

[0018] Фиг.7 является схематической диаграммой варианта осуществления камеры сгорания турбины с осевым отверстием для окислителя.

[0019] Фиг.8 является частичным поперечным сечением бокового вида варианта осуществления топливного коллектора и топливной форсунки камеры сгорания турбины, выполненным по линии 8-8 на Фиг.7.

[0020] Фиг.9 является поперечным сечением вида сзади варианта осуществления топливного коллектора.

[0021] Фиг.10 является видом в перспективе варианта осуществления торцевой пластины и топливного коллектора.

[0022] Фиг.11 является схематической диаграммой варианта осуществления камеры сгорания турбины с периферийным портом окислителя и периферийным портом отработанных газов.

[0023] Фиг.12 является поперечным сечением концевого вида варианта осуществления торцевой пластины камеры сгорания на Фиг.11, иллюстрирующим два периферийных порта.

[0024] Фиг.13 является поперечным сечением концевого вида варианта осуществления торцевой пластины камеры сгорания на Фиг.11, иллюстрирующим четыре периферийных порта.

[0025] Фиг.14 является схематической диаграммой варианта осуществления камеры сгорания с периферийными портами отработанных газов и центральным портом окислителя.

[0026] Фиг.15 является поперечным сечением концевого вида варианта осуществления торцевой пластины камеры сгорания на Фиг.14, иллюстрирующим два периферийных порта вокруг центрального порта.

[0027] Фиг.16 является поперечным сечением концевого вида варианта осуществления торцевой пластины камеры сгорания на Фиг.14, иллюстрирующим периферийные порты вокруг центрального порта.

[0028] Фиг.17 является частичным поперечным сечением бокового вида варианта осуществления головной части камеры сгорания турбины, выполненным по линии 17-17 на Фиг.14.

[0029] Фиг.18 является поперечным сечение концевого вида варианта осуществления топливного коллектора камеры сгорания на Фиг.14.

[0030] Фиг.19 является схематической диаграммой варианта осуществления камеры сгорания турбины с двумя радиальными портами отработанных газов и осевым портом окислителя; и

[0031] Фиг.20 является поперечным сечением бокового вида варианта осуществления головной части камеры сгорания турбины с двумя портами отработанных газов, выполненным по линии 20-20 на Фиг.19.

Подробное описание изобретения

[0032] Ниже будут описаны одно или несколько конкретных вариантов осуществления настоящего изобретения. Для обеспечения краткого описания этих вариантов осуществления, не все признаки фактической реализации могут быть описаны в спецификации. Должно быть понятно, что при разработке любой такой фактической реализации, как в любом инженерном или дизайнерском проекте, должно быть сделано множество специфических для реализации решений для достижения конкретных целей разработчика, таких как соответствие системным и бизнес ограничениям, которые могут различаться от одной реализации к другой. Более того, следует понимать, что такие усилия по разработке могут быть сложными и требовать много времени, но все-таки они будут обычными операциями дизайна, изготовления и производства для обычных специалистов в данной области техники, имеющих преимущества настоящего раскрытия.

[0033] При введении элементов различных вариантов осуществления настоящего изобретения, использование единственного числа предназначено для обозначения того, что имеется один ли более элементов. Термины "содержит", "включает в себя" и "имеет" подразумеваются включающими в себя и означают, что могут быть другие элементы, отличные от перечисленных элементов.

[0034] Как подробно описывается ниже, раскрытые варианты осуществления относятся в основном к газотурбинным системам с рециркуляцией отработанных газов (РОГ), и конкретно к стехиометрической работе газотурбинных систем с РОГ. Например, газотурбинные системы могут быть выполнены с возможностью рециркуляции отработанных газов по каналу отработанных газов, стехиометрического сжигания топлива и окислителя с, по меньшей мере, некоторым количеством рециркулированного отработанного газа, и захвата отработанного газа для использования в различных целевых системах. Рециркуляция отработанных газов вместе со стехиометрическим горением может помочь увеличить уровень концентрации углекислого газа (CO2) в отработанном газе, который может быть затем обработан для отделения и очистки CO2 и азота (N2) для использования в различных целевых системах. Газотурбинные системы могут использовать различную обработку отработанного газа (например, извлечения тепла, каталитические реакции, и так далее) в канале рециркуляции отработанных газов, увеличивая, тем самым, уровень концентрации CO2, уменьшая уровень концентрации других выбросов (например, монооксида углерода, оксидов азота, и несгоревших углеводородов), и увеличивая извлечение энергии (например, с помощью установок рекуперации тепла). Более того, газовые турбины могут быть выполнены с возможностью сжигать топливо и окислитель с помощью одного или более диффузионных факелов (например, с использованием диффузионных топливных форсунок), факелов предварительно перемешанной смеси (например, с использованием топливных форсунок с предварительным перемешиванием), или любого их сочетания. В определенных вариантах осуществления, диффузионные факелы могут помочь обеспечить поддержание стабильности и работы с определенными ограничениями для стехиометрического горения, что, в свою очередь, помогает увеличить получение CO2. Например, газотурбинные системы, работающие с диффузными факелами, могут позволить применение большего количества РОГ, в сравнении с газотурбинной системой, работающей с факелами предварительно перемешанной смеси. В свою очередь, увеличение количества РОГ помогает увеличить получение CO2. Возможные целевые системы включают в себя трубопроводы, емкости для хранения, системы удаления углерода, и системы добычи углеводородов, такие как системы улучшенной добычи нефти (УДН).

[0035] Раскрытые варианты осуществления обеспечивают системы и способы для камер сгорания турбины в газотурбинных системах с РОГ. Более конкретно, камера сгорания турбины может включать в себя головную часть, имеющую головную камеру, и часть камеры сгорания, имеющую камеру сгорания, расположенную после головной камеры. Головная часть включает в себя канал отработанных газов, канал топлива и канал окислителя. Камера сгорания турбины может также включать в себя перегородку, расположенную между головной камерой и камерой сгорания. Далее, камера сгорания турбины может включать в себя торцевую пластину, имеющую, по меньшей мере, один порт, подсоединенный к каналу отработанных газов или к каналу окислителя. Головная камера может иметь осевое расположение между перегородкой и торцевой пластиной. В определенных вариантах осуществления, камера сгорания турбины может также включать в себя топливный коллектор, расположенный между перегородкой и торцевой пластиной. Топливный коллектор может включать в себя первое радиальное топливное сходное отверстие, подсоединенное к первому каналу топлива канала топлива, первый канал топлива может включать с себя первый радиальный канал и первый круговой канал, расположенный вокруг центральной линии топливного коллектора.

[0036] Путем включения в себя, по меньшей мере, одного порта, расположенного на торцевой пластине и подсоединенного к каналу отработанных газов или каналу окислителя, камера сгорания турбины может предложить несколько преимуществ, особенно для газогенераторных систем с РОГ. Например, однородное извлечение или нагнетание отработанного газа может обеспечить низкие потери давления в газотурбинной системе. В дополнение, однородное распределение флюидов, таких как окислитель и/или отработанный газ, в камере сгорания турбины может обеспечить равномерные температурные поля в камере сгорания турбины для конкретных структурных элементов, таких как торцевая пластина и/или корпус камеры сгорания турбины. Далее, равномерное распределение флюидов в камере сгорания турбины может улучшить общую износоустойчивость камеры сгорания турбины. Более того, путем обеспечения топливного коллектора в камере сгорания турбины, может быть уменьшен объем и количество внешних коллекторов камеры сгорания турбины, улучшая, тем самым, удобство обслуживания.

[0037] Фиг.1 является диаграммой варианта осуществления системы 10, имеющей систему 12 добычи углеводорода, связанную с обслуживающей системой 14 на основе турбины. Как описано более подробно ниже, различные варианты осуществления обслуживающей системы 14 на основе турбины выполнены с возможностью обеспечивать различные сервисы, такие как электроэнергия, механическая энергия, и флюиды (например, отработанный газ) для системы 12 добычи углеводорода для облегчения добычи или извлечения нефти и/или газа. В проиллюстрированном варианте осуществления, система 12 добычи углеводорода включает в себя систему 16 извлечения нефти/газа и систему 18 улучшенной добычи нефти (УДН), которые подсоединены к подземному резервуару 20 (например, к нефтяному, газовому или углеводородному резервуару). Система 16 извлечения нефти/газа включает в себя различное наземное оборудование 22, такое как фонтанная или эксплуатационная арматура 24, подсоединенная к нефтяной/газовой скважине 26. Боле того, скважина 26 может включать в себя один или более трубопроводов 28, проходящих через пробуренную скважину 30 в земле 32 к подземному резервуару 20. Арматура 24 включает в себя один или более клапанов, дросселей, предохранительных втулок, противовыбросовых превенторов, и различные устройства управления потоком, которые регулируют давления и управляют потоком в и из подземного резервуара 20. В то время как арматура 24 обычно используется для управления потоком добываемого флюида (например, нефти или газа) из подземного резервуара 20, система 18 УДН может увеличить добычу нефти или газа путем нагнетания одного или более флюидов в подземный резервуар 20.

[0038] Соответственно, система 18 УДН может включать в себя систему 34 нагнетания флюида, которая имеет один или более трубопроводов 36, проходящих через скважину 38 в земле 32 к подземному резервуару 20. Например, система 18 УДН может направлять один или более флюидов 40, таких как газ, пар, вода, химикаты, или любое их сочетания, в систему 34 нагнетания флюида. Например, как обсуждается подробно ниже, система 18 УДН может быть подсоединена к обслуживающей системе 14 на основе турбины, так что система 14 направляет отработанный газ 42 (например, практически или полностью свободный от кислорода) в систему 18 УДН для использования в качестве нагнетаемого флюида 40. Система 34 нагнетания флюида направляет флюид 40 (например, отработанный газ 42) через один или более трубопроводов 36 в подземный резервуар 20, как это показано стрелками 44. Нагнетаемый флюид 40 поступает в подземный резервуар 20 через трубопровод 36, расположенный на расстоянии 46 от трубопровода 28 нефтяной/газовой скважины 26. Соответственно, нагнетаемый флюид 40 замещает нефть/газ 48, расположенные в подземном резервуаре 20, и заставляет нефть/газ 48 перемещаться вверх по одному или более трубопроводам 28 системы 12 добычи углеводородов, как это показано стрелками 50. Как это будет подробно обсуждаться ниже, нагнетаемый флюид 40 может включать в себя углекислый газ 42, получаемый из обслуживающей системы 14 на основании турбины, которая может генерировать отработанный газ 42 на месте по мере необходимости для системы 12 добычи углеводородов. Другими словами, система 14 на основе турбины может одновременно обеспечивать один или более сервисов (например, электроэнергию, механическую энергию, пар, воду (например, опресненную воду), и отработанный газ (например, практически свободный от кислорода)) для использования в системе 12 добычи углеводорода, уменьшая, тем самым, или удаляя зависимость от внешних источников таких сервисов.

[0039] В проиллюстрированном варианте осуществления, обслуживающая система 14 на основе турбины включает в себя газотурбинную систему 52 со стехиометрической рециркуляцией отработанных газов (СРОГ). Газотурбинная система 52 может быть выполнена с возможностью работать в режиме стехиометрического горения (например, стехиометрический режим управления) и в режиме не стехиометрического сгорания (например, не стехиометрический режим управления), таких как обедненный топливом режим управления и обогащенный топливом режим управления. В стехиометрическом режиме управления сжигание обычно происходит в практически стехиометрическом соотношении топлива и окислителя, получая, тем самым, практически стехиометрическое горение. В частности, стехиометрическое горение обычно включает в себя потребление практически всего топлива и окислителя в реакции горения, так что продукты сгорания практически или полностью свободны от несгоревшего топлива и окислителя. Одной из мер стехиометрического горения является соотношение компонентов, или фи (Ф), которое является отношением реального отношения топливо/окислитель и стехиометрического отношения топливо/окислитель. Соотношение компонентов более чем 1,0 приводит к обогащенному топливом горению топлива и окислителя, а соотношение компонентов меньше чем 1,0 приводит к обедненному топливом горению топлива и окислителя. В отличие от этого, соотношение компонентов равное 1,0 приводит ни к обедненному топливом горению, ни к обогащенному топливом горению, потребляя, вследствие этого, практически все топливо и окислитель в реакции горения. В контексте раскрытых вариантов осуществления, термин стехиометрический или практически стехиометрический может означать соотношение компонентов от приблизительно 0.95 до приблизительно 1,05. Однако, раскрытые варианты осуществления могут также включать в себя соотношение компонентов в 1,0 плюс или минус 0,01, 0,02, 0,03, 0,04, 0,05 или более. Опять, стехиометрическое горение топлива и окислителя в обслуживающей системе 14 на основе турбины может приводить к продуктам сгорания или отработанным газам (например, 42) практически без несгоревшего топлива или без остаточного окислителя. Например, отработанный газ 42 может иметь менее чем 1, 2, 3, 4 или 5 процентов по объему окислителя (например, кислород), несгоревшего топлива или углеводородов (например, HCs), оксидов азота (например, NOx), монооксида углерода (CO), оксидов серы (например, SOx), водорода и других продуктов неполного сгорания. В следующем примере, отработанный газ 42 может иметь менее чем приблизительно 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 1000, 2000, 3000, 4000, или 5000 частей на миллион по объему окислителя (например, кислорода), несгоревшего топлива или углеводородов (например, HCs), оксидов азота (например, NOx), монооксида углерода (CO), оксидов серы (например, SOx), водорода и других продуктов неполного сгорания. Однако, раскрытые варианты осуществления также могут производить другие диапазоны остаточного топлива, окислителя и другие уровни выбросов в отработанном газе 42. Используемый здесь термин выбросы, уровень выбросов и нормы по выбросам может относиться к уровням концентрации определенных продуктов сгорания (например, NOx, CO, SOx, O2, N2, H2, HCs, и так далее), которые могут быть представлены в потоках рециркулированного газа, потоках отходящего газа (например, выбрасываемого в атмосферу), и потоках газа, используемого для различных целевых систем (например, система 12 добычи углеводородов).

[0040] Несмотря на то, что газотурбинная система 52 с СРОГ и система 54 обработки отработанных газов (ОГ) могут включать в себя множество компонентов в различных вариантах осуществления, проиллюстрированная система 54 обработки ОГ включает в себя парогенератор-рекуператор (ПГР) 56 и систему 58 рециркуляции отработанных газов (РОГ), которые принимают и обрабатывают отработанный газ 60, исходящий из газотурбинной системы 52 с СРОГ. ПГР 56 может включать в себя один или более теплообменников, конденсаторов, и различное теплообменное оборудование, которые вместе работают для передачи тепла от отработанного газа 60 к потоку воды для генерации пара 62. Пар 62 может быть использован в одной или нескольких паровых турбинах, системе 18 УДН, или в любой другой части системы 12 добычи углеводородов. Например, ПГР 56 может генерировать пар 62 низкого давления, среднего давления и/или высокого давления, который может быть избирательно применен в ступенях паровой турбины низкого, среднего и высокого давления, или в различных приложениях системы 18 УДН. В дополнение к пару 62, обработанная вода 64, такая как опресненная вода, может генерироваться ПГР 56, РОГ 58, и/или другой частью системы 54 обработки ОГ или газотурбинной системы 52 с СРОГ. Обработанная вода 64 (например, опресненная вода) может быть особенно полезной в областях с нехваткой воды, таких как внутренние или пустынные регионы. Обработанная вода 64 может генерироваться, по меньшей мере частично, вследствие большого объема воздуха, обеспечивающего горение топлива в газотурбинной системе 52 с СРОГ. В то время, как локальная генерация пара 62 и воды 64 может быть выгодной для многих применений (включающих в себя систему 12 добычи углеводородов), локально генерируемый отработанный газ 42б60 может быть особенно полезен в системе 18 УДН, вследствие низкого содержания кислорода, высокого давления и тепла, получаемого из газотурбинной системы 52 с СРОГ. Соответственно, ПГР 56, РОГ 58, и/или другая частью системы 54 обработки ОГ может выдавать и рециркулировать отработанный газ 66 в газотурбинную систему 52 с СРОГ, и в то же время направляя отработанный газ 42 в систему 18 УДН для использования с системой 12 добычи углеводородов. Аналогично, отработанный газ 42 может извлекаться напрямую из газотурбинной системы 52 с СРОГ (то есть, без прохождения через систему 54 обработки ОГ) для использования в системе 18 УДН системы 12 добычи углеводородов.

[0041] Рециркуляция отработанного газа поддерживается системой 58 РОГ системы 54 обработки ОГ. Например, система 58 РОГ включает в себя один или более трубопроводов, клапанов, вентиляторов, систем очистки отработанного газа (например, фильтры, установки удаления частиц, установки разделения газов, установки очистки газов, теплообменники, установки рекуперации тепла, установки удаления влаги, катализаторные установки, установки введения химикатов, или любое их сочетание), и управляет рециркуляцией отработанного газа в канале рециркуляции отработанного газа, от выхода (например, выходящего отработанного газа 60, до входа (например, забора отработанного газа 66) газотурбинной системы 52 с СРОГ. В проиллюстрированном варианте осуществления, газотурбинная система 52 с СРОГ принимает отработанный газ 66 в секцию компрессора, имеющую один или более компрессоров, сжимая тем самым отработанный газ 66 для использования в секции камеры сгорания вместе с принятым окислителем 68 и одним или более топливом 70. Окислитель может включать в себя атмосферный воздух, чистый кислород, обогащенный кислородом воздух, обедненный кислородом воздух, кислородно-азотные смеси, или любой подходящий окислитель, который обеспечивает сгорание топлива 70. Топливо 70 может включать в себя одно или более газообразных топлив, жидких топлив, или любое их сочетание. Например, топливо 70 может включать в себя природных газ, сжиженный природный газ, синтетический газ, метан, этан, пропан, бутан, нафту, керосин, дизельное топливо, этанол, метанол, биотопливо, или любое их сочетание.

[0042] Газотурбинная система 52 с СРОГ смешивает и сжигает отработанный газ 66, окислитель 68 и топливо 70 в секции камеры сгорания, получая, тем самым, горячие газообразные продукты сгорания или отработанные газы 60 для приведения в действие одной или более ступеней турбины в секции турбины. В определенных вариантах осуществления, каждая камера сгорания в секции камеры сгорания включает в себя одну или более топливных форсунок предварительного смешивания, или одну или более диффузионных топливных форсунок, или любое их сочетание. Например, каждая топливная форсунка предварительного смешивания может быть выполнена с возможностью смешивать окислитель 68 и топливо 70 внутри топливной форсунки и/или частично до топливной форсунки, нагнетая, тем самым смесь окислителя и топлива из топливной форсунки в зону горения для сжигания заранее перемешанной смеси (например, в пламени заранее перемешанной смеси). В следующем примере, каждая диффузионная топливная форсунка может быть выполнена с возможностью изоляции потоков окислителя 68 и топлива 70 внутри форсунки, раздельно нагнетая, тем самым, окислитель 68 и топливо 70 из топливной форсунки в зону горения для диффузионного сжигания (например, в диффузионном пламени). В частности, диффузионное сжигание, обеспечиваемое диффузионными топливными форсунками, задерживает смешивание окислителя 68 и топлива 70 до точки начала горения, то есть до зоны пламени. В вариантах осуществления, применяющих диффузионные топливные форсунки, диффузионное пламя может обеспечивать увеличенную стабильность пламени, потому что диффузионное пламя обычно образуется в точке стехиометрии между разделенными потоками окислителя 68 и топлива 70 (например, по мере смешивания окислителя 68 и топлива 70). В определенных вариантах осуществления, один или более разбавителей (например, отработанный газ 60, пар, азот, или другой инертный газ) могут быть заранее смешаны с окислителем 68, топливом 70 или обоими, как в диффузионных топливных форсунках, так и в топливной форсунке предварительного смешивания. В дополнение, один или более разбавителей (например, отработанный газ 60, пар, азот, или другой инертный газ) могут нагнетаться в камеру сгорания или после точки горения в каждой камере сгорания. Использование этих разбавителей может помочь уменьшить пламя (например, пламя предварительного смешивания или диффузное пламя), помогая, тем самым, уменьшить выбросы NOx, таких как монооксид азота (NO) и диоксид азота (NO2). Независимо от типа пламени, сгорание производит горячие газообразные продукты сгорания или отработанный газ 60 для приведения в действие одной или нескольких ступеней турбины. При приведении в действие каждой ступени турбины отработанным газом 60, газотурбинная система 52 с СРОГ генерирует механическую энергию 72 и/или электрическую энергию 74 (например, при помощи электрического генератора). Система 52 также производит отработанный газ 60 и может также производить воду 64. Опять же, вода 64 может быть обработанной водой, такой как опресненная вода, которая может быть полезной для различных применений локально и удаленно.

[0043] Извлечение отработанных газов также обеспечивается газотурбинной системой 52 с СРОГ с использованием одной или более точек 76 извлечения. Например, проиллюстрированный вариант осуществления включает в себя систему 78 обеспечения отработанных газов (ОГ), имеющую систему 80 извлечения отработанного газа (ОГ) и систему 82 очистки отработанного газа (ОГ), которые получают отработанный газ 42 из точек 76 извлечения, обрабатывают отработанный газ 42 и затем направляют или распределяют отработанный газ 42 между различными целевыми системами. Целевые системы могут включать в себя систему 18 УДН и/или другие системы, такие как трубопровод 86, резервуар 88 хранения, или система 90 удаления углерода. Система 80 извлечения ОГ может включать в себя один или более трубопроводов, клапанов, управляющих элементов и разделений потоков, которые облегчают изоляцию отработанного газа 42 от окислителя 68 и топлива 70, и других примесей, и, в то же время, также управляют температурой, давлением и скоростью потока извлеченного отработанного газа 42. Система 82 очистки ОГ может включать в себя один или более теплообменников (например, установки рекуперации тепла, такие как парогенераторы-рекуператоры, конденсаторы, охладители, или нагреватели), каталитические системы (например, окислительные каталитические системы), системы удаления частиц и/или воды (например, установки осушения газов, инерционные сепараторы, коалесцирующие фильтры, водонепроницаемые фильтры, и другие фильтры), системы впрыска химических реагентов, системы обработки на основе растворителя (например, абсорберы, испарительные резервуары, и так далее), системы улавливания углерода, системы разделения газов, системы очистки газов, и/или системы обработки на основе растворителя, компрессоры отработанных газов, а также любое их сочетание. Эти подсистемы системы 82 очистки ОГ позволяют контролировать температуру, давление, скорость потока, влажность содержимого (например, количество удаляемой воды), содержание частиц (например, количество удаляемых частиц), и состав газа (например, процент CO2, N2, и так далее).

[0044] Извлеченный отработанный газ 42 обрабатывается одной или более подсистемами системы 82 очистки ОГ, в зависимости от целевой системы. Например, система 82 очистки ОГ может направлять весь или часть отработанного газа 42 через систему улавливания углекислого газа, систему разделения газов, систему очистки газов, и/или систему обработки на основе растворителей, которые управляются для разделения и очистки углеродсодержащих газов 92 (например, диоксида углерода) и/или азота (N2) 94 для использования в различных целевых системах. Например, варианты осуществления системы 82 очистки ОГ могут выполнять разделение газа и очистку для получения множества различных потоков 95 отработанного газа 42, таких как первый поток 96, второй поток 97 и третий поток 98. Первый поток 96 может иметь первый состав, который является обогащенным диоксидом углерода и обедненным азотом (например, поток, обогащенный CO2 и обедненный N2). Второй поток 97 может иметь второй состав, который имеет средние уровни концентрации диоксида углерода и/или азота (например, поток со средней концентрацией CO2, N2). Третий поток 98 может иметь третий состав, который является обедненным диоксидом углерода и/или обогащенным азотом (например, поток, обедненный CO2 и обогащенный N2). Каждый поток 95 (например, 96, 97 и 98) может включать в себя установку осушения газа, фильтр, газовый компрессор или любое их сочетание, для облегчения доставки потока 95 к целевой системе. В определенных вариантах осуществления, богатый CO2 и бедный N2 поток 96 может иметь уровень чистоты или концентрации CO2 больший, чем приблизительно 70, 75, 80, 85, 90, 95, 96, 97, 98, или 99 объемных процентов, и уровень чистоты или концентрации N2, меньший, чем приблизительно 1, 2, 3, 4, 5, 10, 15, 20, 25, или 30 объемных процентов. В противоположность этому, бедный CO2 и богатый N2 поток 98 может иметь уровень чистоты или концентрации CO2 меньший, чем приблизительно 1, 2, 3, 4, 5, 10, 15, 20, 25, или 30 объемных процентов, и уровень чистоты или концентрации N2, больший, чем приблизительно 70, 75, 80, 85, 90, 95, 96, 97, 98, или 99 объемных процентов. Поток 97 со средней концентрацией CO2 и N2 может иметь уровень чистоты или концентрации CO2 и/или уровень чистоты или концентрации N2 между приблизительно 30 и 70, 35 и 65, 40 и 60, или 45 и 55 процентов по объему. Несмотря на то, что указанные выше диапазоны являются просто неограничивающими примерами, богатый CO2 и бедный N2 поток 96 и бедный CO2 и богатый N2 поток 98 могут особенного хорошо подойти для использования с системой 18 УДН и другими системами 84. Однако, любой из этих потоков 95 с богатой, бедной или средней концентрацией CO2 может быть использован, отдельно или в различных сочетаниях, с системой 18 УДН и другими системами 84. Например, каждая система из системы 18 УДН и других систем 84 (например, трубопровод 86, резервуар 88 для хранения, и система 90 удаления углерода), может принимать один или более богатых CO2 и бедных N2 потоков 96, один или более бедных CO2 и богатых N2 потоков 98, один или более потоков 97 со средней концентрацией CO2 и N2, и один или более неочищенных потоков отработанного газа 42 (то есть, пропустившего систему 82 очистки ОГ).

[0045] Система 80 извлечения ОГ извлекает отработанный газ 42 в одной или более точках 76 извлечения в секции компрессора, секции камеры сгорания, и/или секции турбины, так что отработанный газ 42 может быть использован в системе 18 УДН или других системах 84 при подходящих температурах и давлениях. Система 80 извлечения ОГ и/или система 82 очистки ОГ могут также осуществлять циркуляцию потоков флюида (например, отработанного газа 42) в и из системы 54 обработки ОГ. Например, часть отработанных газов 42, проходящих через систему 54 обработки ОГ, извлекается системой 80 извлечения ОГ для использования в системе 18 УДН и других системах 84. В определенных вариантах осуществления, система 78 подачи отработанного газа и система 54 обработки ОГ могут быть независимыми или интегрированными одна в другую,