Система управления и способ управления для двигателя внутреннего сгорания

Иллюстрации

Показать все

Использование: для создание системы управления двигателя внутреннего сгорания. Сущность изобретения заключается в том, что система управления для двигателя внутреннего сгорания содержит датчик на основе предельного тока, система управления содержит электронный блок управления, выполненный с возможностью: выполнения процесса сканирования с постепенным снижением приложенного к датчику напряжения от первого (V1) напряжения до второго (V2) напряжения; получения критического значения (Ip) выходного тока датчика во время выполнения процесса сканирования из выходных токов датчика, в то время когда к датчику приложено напряжение, входящее в определенный диапазон, причем критическое значение прогнозируется на основе выходного сигнала; и определение концентрации SOx в выхлопных газах на основе этого критического значения и базового значения, это базовое значение является значением предельного тока датчика, при этом значение предельного тока датчика соответствует концентрации кислорода, имеющей постоянное значение. Технический результат: обеспечение возможности с точностью определять концентрацию оксидов серы в выхлопных газах двигателя. 2 н. и 3 з.п. ф-лы, 11 ил.

Реферат

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

1. Область техники, к которой относится изобретение

[0001] Изобретение относится к системе управления и способу управления для двигателя внутреннего сгорания, определяющим концентрацию SOx в выхлопных газах с использованием датчика на основе предельного тока, который способен определить концентрацию кислорода в выхлопных газах из двигателя внутреннего сгорания.

2. Описание предшествующего уровня техники

[0002] В качестве датчика, который определяет концентрацию кислорода в выхлопных газах, известен датчик на основе предельного тока, включающий в себя твердый электролит, электродную пару (электродную пару, образованную измерительным электродом и опорным (сравнительным) электродом, а также слой управления диффузией (слой сопротивления диффузии). Твердый электролит способен проводить ионы кислорода. Электродная пара расположена таким образом, чтобы между электродами размещался твердый электролит. Слой управления диффузией расположен так, чтобы ограждать измерительный электрод.

[0003] Принцип определения концентрации кислорода в выхлопных газах с использованием вышеуказанного датчика состоит в следующем. Первоначально, когда напряжение подается на электродную пару таким образом, что между электродной парой образуется заданная разность потенциалов, кислород в выхлопных газах ионизируется на измерительном электроде. Ионы кислорода проходят через твердый электролит и перемещаются на опорный электрод, и затем возвращаются в кислород на опорном электроде посредством рекомбинации. Передвижение электронов вследствие серии электрохимических реакций выдается в виде тока электродной пары. Поскольку слой управления диффузией управляет перемещением кислорода на измерительный электрод, сила тока, который выдается электродной парой, однозначно соответствует концентрации кислорода в выхлопных газах. Таким образом, при измерении тока, который выдается электродной парой, оценивается (определяется) на основе измеренного тока концентрация кислорода в выхлопных газах.

[0004] В качестве одного из таких детектирующих устройств, имеется детектирующее устройство, которое определяет концентрацию компонента, отличного от кислорода (например, концентрацию H2O, то есть, влажность), используя тот факт, что молекула, которая разрушается на измерительном электроде, изменяется тогда, когда изменяется величина напряжения, которое приложено к электродной паре. В частности, в детектирующем устройстве использован датчик, имеющий два комплекта электродной пары (электродная пара со стороны впуска и электродная пара со стороны выпуска). Детектирующее устройство первоначально прикладывает напряжение, достаточное для разрушения кислорода на электродной паре со стороны выпуска, и выделяет во внешнюю среду кислород в выхлопных газах. Далее, детектирующее устройство прикладывает напряжение, достаточное для разложения H2O, на электродную пару со стороны выпуска, и измеряет ток, который выдается с электродной пары со стороны выпуска. Детектирующее устройство определяет концентрацию H2O в выхлопных газах на основе тока. Таким образом, детектирующее устройство способно измерять ток, выдаваемый из-за H2O, как отличающийся от тока, выдаваемого из-за кислорода, таким образом, можно с точностью определить концентрацию H2O (см., например, публикацию японской патентной заявки No. 2-122255 (JP 2-122255 А)).

[0005] Далее датчик на основе предельного тока, который способен определить концентрацию кислорода в выхлопных газах, именуется датчиком концентрации кислорода, напряжение, которое подается на электродную пару датчика, именуется напряжением, приложенным к датчику, и ток, который выдается с пары электродов, именуется выходным током датчика. Двигатель внутреннего сгорания именуется двигателем.

[0006] Количество серного компонента, содержащегося в топливе для двигателя, как правило, является чрезвычайно небольшим количеством. Тем не менее, в зависимости от региона, и т.п., в котором используется двигатель, может быть использовано топливо, имеющее достаточно высокую концентрацию серы. В этом случае оксиды серы (SOx) которые образуются во время горения, могут вызвать в выхлопных газах белый дым, и т.п. По этой причине желательно измерять концентрацию серы в топливе. Авторы изобретения обнаружили, что концентрация оксидов серы в выхлопных газах определяется как параметр, зависимый от концентрации серы в топливе.

[0007] В частности, авторами изобретения исследовано, можно ли определить концентрацию оксидов серы в выхлопных газах путем использования способа, примененного в вышеописанном устройстве детектирования. В результате исследования было установлено, что когда напряжение, имеющее уровень разложения оксидов серы (другими словами, восстановления SOx в серу), приложено к электродной паре датчика концентрации кислорода, не только SOx, но и компонент выхлопных газов, отличный от SOx, также разлагается, и было установлено, что непросто измерить отдельно только выходной ток, вызванный SOx. Таким образом, в способе, примененном в существующем устройстве, имеется ситуация, когда трудно с точностью определить концентрацию оксидов серы в выхлопных газах.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0008] Изобретение обеспечивает создание системы управления и способа управления, которые способны с точностью определить концентрацию оксидов серы в выхлопных газах двигателя.

[0009] Первый объект изобретения обеспечивает создание системы управления для двигателя внутреннего сгорания, содержащего датчик на основе предельного тока, выполненный с возможностью определения концентрации кислорода в выхлопных газах. Система управления содержит электронный блок управления, выполненный с возможностью: (i) определения концентрации SOx в выхлопных газах; (ii) регулирования двигателя таким образом, чтобы поддерживать постоянное значение концентрации кислорода в выхлопных газах; (iii) выполнения процесса сканирования с постепенным снижением напряжения, а именно напряжения, приложенного к датчику, от первого напряжения до второго напряжения, при этом при первом напряжении в результате восстановления SOx в датчике образуется и накапливается сера, а при втором напряжении сера в датчике окисляется в SOx; (iv) получения во время выполнения процесса сканирования критического значения выходного тока датчика из выходных токов датчика, в то время, когда к датчику прикладывается напряжение, входящее в определенный диапазон напряжения, причем, прогнозируемое критическое значение должно быть выходным сигналом на основе концентрации кислорода, имеющей постоянное значение в этом определенном диапазоне напряжения; и (v) определения концентрации SOx в выхлопных газах на основе этого критического значения и базового значения, причем это базовое значение является значением предельного тока датчика, и значение предельного тока датчика соответствует концентрации кислорода, имеющей постоянное значение.

[0010] В соответствии с экспериментом и исследованиями авторов изобретения, были получены следующие выводы. Когда выполняется процесс сканирования, выходной ток датчика включает в себя выходной составляющий компонент, вызванный повторным окислением серы, накопленной в датчике, в SOx (то есть, выходной составляющий компонент, вызванный концентрацией оксидов серы), и выходной составляющий компонент, вызванный концентрацией кислорода. Тем не менее, выходной ток, по существу, не включает в себя выходной составляющий компонент, вызванный другим компонентом. Таким образом, когда процесс сканирования выполняется с регулированием, чтобы поддерживать постоянным значение концентрации кислорода в выхлопных газах, выходной ток выдает кривую сигнала, соответствующую концентрации SOx. В частности, выходной ток при регулировании имеет критическое значение (пиковое значение выходного тока), которое изменяется с концентрацией SOx. При сравнении критического значения с выходным составляющим компонентом (то есть, базовым значением), вызванным концентрацией кислорода, имеющей постоянное значение, можно определить концентрацию SOx. Напряжение, приложенное к датчику в момент времени, когда выдается критическое значение, изменяется в зависимости от концентрации кислорода во время выполнения процесса сканирования (иными словами, концентрации кислорода, имеющей постоянное значение). Таким образом, можно определить диапазон приложенного напряжения, в котором прогнозируется получение критического значения (то есть, определенный диапазон напряжения) на основе концентрации кислорода, имеющей постоянное значение.

[0011] Таким образом, система согласно изобретению выполняет процесс сканирования с таким регулированием, которое поддерживает постоянное значение концентрации кислорода в выхлопных газах, и критическое значение получают на основе выходных токов в определенном диапазоне напряжения, причем прогнозируемое критическое значение должно быть выходным сигналом на основе концентрации кислорода, имеющей постоянное значение в определенном диапазоне напряжения. Таким образом, даже в таких условиях окружающей среды, в которой к выходному току датчика добавляется случайный шум и т.п., система согласно изобретению способна получить критическое значение, пренебрегая шумом и т.п., вне определенного диапазона напряжения. Система согласно изобретению определяет концентрацию SOx в выхлопных газах на основе критического значения и базового значения. В результате, притом, что система согласно изобретению в наиболее возможной степени предотвращает ошибочное измерение, возникающее из-за шума и т.п., система способна определять концентрацию SOx, измеряя (получая) только выходной составляющий компонент, вызванный концентрацией SOx (критическое значение), как выделенный из выходных токов.

[0012] В силу этого, сконфигурированная таким образом система согласно изобретению способна с точностью определить концентрацию SOx в выхлопных газах.

[0013] Как описано выше, система согласно изобретению в процессе определения концентрации SOx в выхлопных газах получает выходной составляющий компонент, вызванный концентрацией SOx (критическое значение выходного тока). Выходной составляющий компонент однозначно соответствует концентрации SOx, таким образом, выходной составляющий компонент, по существу, указывает на концентрацию SOx. Таким образом, концентрация SOx согласно изобретению может отражать, по меньшей мере, концентрацию SOx в выхлопных газах или величину, которая однозначно соответствует концентрации SOx.

[0014] Определенный диапазон напряжения может выражаться в диапазоне напряжения, который включает в себя определенное приложенное напряжение (определенное значение), при котором, как предполагается, выходной ток датчика достигнет критического значения. Определенный диапазон напряжения подразумевает, что ширина диапазона равна нулю (иначе говоря, напряжение, включенное в определенный диапазон напряжения, имеет только определенное значение). Когда ширина особого диапазона напряжения составляет ноль, критическая величина выходного тока соответствует величине выходного тока в момент времени, когда приложенное напряжение равно определенному значению.

[0015] Кроме того, определение концентрации SOx может быть выполнено, например, исходя из того, что концентрация SOx увеличивается при увеличении абсолютной величины разности между критическим значением и базовым значением. При данной системе можно определить концентрацию SOx в выхлопных газах без применения сложных расчетов. Корреляция между абсолютной величиной разности между критическим значением и базовым значением и концентрацией SOx в выхлопных газах может быть заранее определена экспериментально, и т.п.

[0016] Система согласно изобретению не просто измеряет выходной ток для каждого приложенного напряжения. Система способна отдельно измерять только выходной составляющий компонент тока (критическое значение), вызванный SOx в выхлопных газах, за счет использования соответствующего процесса, согласно изобретению названного процесс сканирования. В результате система согласно изобретению способна с точностью определять концентрацию оксидов серы в выхлопных газах.

[0017] Базовое значение может быть получено, когда процесс сканирования выполняется фактически, или может быть получено при обращении к карте, и т.п., определено заранее экспериментальным путем, и т.п.

[0018] В случае, когда базовое значение получают при реальном выполнении процесса сканирования, если заданное время получения базового значения и заданное время выполнения процесса сканирования чрезмерно отделены друг от друга, имеется вероятность того, что точность определения концентрации SOx уменьшается, например, если выходная характеристика датчика изменилась с течением времени. По этой причине, для того, чтобы как можно точнее определить концентрацию оксидов серы, предпочтительно, чтобы заданное время получения базового значения и заданное время выполнения процесса сканирования были как можно ближе друг к другу.

[0019] В вышеуказанной системе управления, второе напряжение может совпадать с напряжением, которое используется, когда определяется концентрация кислорода в выхлопных газах, и электронный блок управления может быть настроен для использования в качестве базового значения, величины выходного тока датчика в заданное время, когда напряжение, приложенное к датчику, снижается до второго напряжения в процессе сканирования.

[0020] Согласно эксперименту и т.п. авторов изобретения, когда выполняется процесс сканирования, обычно повторное окисление всей серы, накопленной в датчике, завершается до того, как второе напряжение достигает приложенного напряжения, которое используется в момент времени, когда определяется концентрация кислорода в выхлопных газах. По этой причине, хотя само по себе второе напряжение является напряжением, при котором может произойти окисление серы, выходной ток в момент времени, когда приложенное напряжение является вторым напряжением, как правило, включает в себя только выходной составляющий компонент, вызванный кислородом.

[0021] По этой причине, система согласно объекту изобретения, в качестве базового значения, использует выходной ток в то время, во время которого приложенное напряжение уменьшилось до второго напряжения. Система согласно объекту изобретения получает базовое значение в заданное время, когда процесс сканирования завершен, таким образом, получение базового значения и выполнение процесса сканирования, по существу, успешно осуществлено. Таким образом, система согласно объекту изобретения способна с дополнительной точностью определить концентрацию SOx в выхлопных газах по сравнению с ситуацией, когда заданное время получения базового значения и заданное время выполнения процесса сканирования отделены один от другого.

[0022] С другой стороны, в случае, когда базовое значение получают при обращении к карте, и т.п., определяют заранее экспериментальным путем, и т.п., так, например, может быть использована корреляция между концентрацией кислорода и предельным током, которая подготовлена для измерения концентрации кислорода.

[0023] В приведенной выше системе управления, электронный блок управления может быть настроен для предварительного сохранения корреляции между концентрацией кислорода в выхлопных газах и величиной предельного тока, и электронный блок управления может быть настроен для использования в качестве базового значения предельного тока, которое получают путем применения к корреляции концентрации кислорода, имеющей постоянное значение.

[0024] С вышеуказанной конфигурацией, хотя требуется получить концентрацию кислорода в выхлопных газах (постоянное значение) во время процесса сканирования, для определения базового значения не требуется отдельно выполнять измерения, и т.п. Таким образом, система согласно объекту изобретения способна просто и быстро детектировать концентрацию SOx. Поскольку корреляция сохранена заранее, система согласно объекту изобретения способна достоверно определить базовое значение, даже когда концентрация кислорода в выхлопных газах (постоянное значение) во время процесса сканирования варьируется для концентрации оксидов серы.

[0025] С точки зрения описанного выше принципа определения концентрации SOx, второе напряжение должно быть просто приложенным напряжением, которое ниже, чем приложенное напряжение, при котором критическое значение выдается датчиком.

[0026] В приведенной выше системе управления, второе напряжение может совпадать с нижним предельным значением определенного диапазона напряжения.

[0027] С приведенной выше конфигурацией, поскольку период, во время которого выполняется процесс сканирования (то есть, период, во время которого поддерживается постоянное значение концентрации кислорода в выхлопных газах), не удлиняется более необходимого, можно уменьшить влияние детекции концентрации оксидов серы на работу двигателя внутреннего сгорания.

[0028] Второй объект изобретения предлагает способ управления для двигателя внутреннего сгорания, содержащего датчик на основе предельного тока, выполненный с возможностью определения концентрации кислорода в выхлопных газах. Способ управления содержит: определение концентрации SOx в выхлопных газах; регулирование двигателя таким образом, чтобы поддерживать постоянное значение концентрации кислорода в выхлопных газах; выполнение процесса сканирования с постепенным снижением напряжения, а именно, напряжения, приложенного к датчику, от первого напряжения до второго напряжения, при этом, при первом напряжении в результате восстановления SOx в датчике образуется и накапливается сера, а при втором напряжении сера в датчике окисляется в SOx; получение критического значения выходного тока датчика во время выполнения процесса сканирования из выходных токов датчика, в то время, когда на датчик подается напряжение, входящее в определенный диапазон напряжения, причем прогнозируемое критическое значение должно быть выходным сигналом на основе концентрации кислорода, имеющей постоянное значение в определенном диапазоне напряжения; и определение концентрации SOx в выхлопных газах на основе этого критического значения и базового значения, причем это базовое значение является значением предельного тока датчика, при этом значение предельного тока датчика соответствует концентрации кислорода, имеющей постоянное значение.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0029] Особенности, преимущества, а также техническая и промышленная значимость примерных вариантов осуществления изобретения будут описаны ниже со ссылкой на прилагаемые чертежи, на которых идентичными ссылочными позициями обозначены идентичные элементы, и на которых:

Фиг. 1 представляет собой схематическое изображение, на котором показана схематическая конфигурация двигателя внутреннего сгорания, в котором применена система управления согласно варианту осуществления изобретения;

Фиг. 2 представляет собой схематическое изображение, на котором показана схематическая конфигурация датчика концентрации кислорода на основе предельного тока (одноячейного датчика) согласно варианту осуществления;

Фиг. 3A и фиг. 3B представляют собой графические зависимости, изображающие выходные характеристики датчика концентрации кислорода на основе предельного тока согласно варианту осуществления;

Фиг. 4 представляет собой схематический график, на котором показан пример изменения (кривая сигнала) выходного тока датчика, когда выполняется процесс сканирования согласно варианту осуществления;

Фиг. 5 представляет собой схематический график, на котором показана корреляция между воздушно-топливным соотношением (концентрацией кислорода) выхлопных газов во время процесса сканирования, и пиковым выходным напряжением согласно варианту осуществления;

Фиг. 6 представляет собой схематический график, на котором показана корреляция между воздушно-топливным соотношением (концентрацией кислорода) выхлопных газов во время процесса сканирования и определенным диапазоном напряжения согласно варианту осуществления;

Фиг. 7 представляет собой схематический график, на котором показана корреляция между концентрацией SOx в выхлопных газах, и выходным сигналом датчика согласно варианту осуществления;

Фиг. 8 представляет собой временную диаграмму, показывающую пример корреляции между воздушно-топливным соотношением (концентрацией кислорода) выхлопных газов, напряжением, приложенным к датчику и выходным током датчика согласно варианту осуществления;

Фиг. 9 представляет собой временную диаграмму, которая показывает другой пример корреляции между воздушно-топливным соотношением (концентрацией кислорода) выхлопных газов, напряжением, приложенным к датчику, и выходным током датчика согласно варианту осуществления;

Фиг. 10 представляет собой блок-схему, на которой показан алгоритм, выполняемый системой управления согласно варианту осуществления; и

Фиг. 11 представляет собой схематическое изображение, на котором показана схематическая конфигурация датчика концентрации кислорода на основе предельного тока (двухъячеечный датчик) согласно варианту осуществления.

ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

[0030] На фиг. 1 изображена схематическая конфигурация двигателя 10 внутреннего сгорания, в котором применена система управления согласно варианту осуществления изобретения (далее именуемая системой согласно изобретению).

[0031] Двигатель 10 является двигателем внутреннего сгорания с искровым зажиганием (так называемым бензиновым двигателем). Двигатель 10 включает в себя корпусную часть 20, впускную систему 30, выпускную систему 40, педаль 51 акселератора, совокупность датчиков 61-64, а также электронный блок 71 управления. Корпусная часть 20 включает в себя клапан 21 впрыска топлива, свечу 22 зажигания, камеру 23 сгорания, топливный насос 24, трубку 25 подачи топлива, поршень 26, шатун 27 и коленчатый вал 28. Впускная система 30 включает в себя впускной клапан 31, впускной канал 32, впускной коллектор 33, дроссельный клапан 34, впускную трубку 35 и воздухоочиститель 36. Выпускная система 40 включает в себя выпускной клапан 41, выпускной канал 42, выпускной коллектор 43, катализатор 44 очистки выхлопных газов и выхлопную трубу 45. Совокупность датчиков 61-64 включает в себя датчик 61 концентрации кислорода на основе предельного тока, датчик 65 положения коленчатого вала, анемометр 63 и датчик 64 положения педали акселератора.

[0032] Как показано на фиг. 2, датчик 35 концентрации кислорода на основе предельного тока (далее именуемый датчиком 61) включает в себя ячейку 61D датчика, слой 61Е управления диффузией, блок 61F управления датчика, первый алюмооксидный слой 61G, второй алюмооксидный слой 61Н, третий алюмооксидный слой 61I, четвертый алюмооксидный слой 61J, пятый алюмооксидный слой 61K и нагреватель 61L. Ячейка 61D датчика сформирована слоем 61A твердого электролита, измерительным электродом 61B и опорным электродом 61C. В датчике 61 сформированы канал 61M наружного воздуха и внутренняя камера 61N. Датчик 61 является одноячеечным датчиком, имеющим единственную ячейку 61D датчика.

[0033] Датчик 61 размещен в выпускном коллекторе 43 таким образом, что воздействию выхлопных газов подвергается дальний конец (дальний конец со стороны, где расположен слой 61E управления диффузией). С учетом вероятности, что концентрация SOx в выхлопных газах изменяется под действием катализатора 44 очистки выхлопных газов, датчик 61 расположен ниже по потоку от катализатора 44 очистки выхлопных газов.

[0034] Слой 61A твердого электролита выполнен из циркония, или подобного материала, способного проводить ионы кислорода. Измерительный электрод 61B и опорный электрод 61C выполнены из элементов платиновой группы, таких как платина и родий, или сплава, включающего в себя один из элементов платиновой группы. Между измерительным электродом 61B и опорным электродом 61C размещен слой 61A твердого электролита. Измерительный электрод 61B расположен с одной стороны поверхности стенки слоя 61A твердого электролита (в частности, на поверхности стенки, которая формирует внутреннюю камеру 61N). Опорный электрод 61C расположен на другой поверхности стенки слоя 61A твердого электролита (в частности, на поверхности стенки, которая формирует канал 61M наружного воздуха).

[0035] Блок 61F управления датчика соединен с ячейкой 61D датчика таким образом, что измерительный электрод 61B является катодом, а опорный электрод 61C является анодом. Блок 61F управления датчика соединен с нагревателем 61L с возможностью подачи электрической энергии на нагреватель 61L. Блок 61F управления датчика соединен с электронным блоком 71 управления.

[0036] Блок 61F управления датчика принимает управляющий сигнал от электронного блока 71 управления, подает в ячейку 61D датчика напряжение, соответствующее управляющему сигналу, и передает значение тока, который выдается ячейкой 61D датчика, на электронный блок 71 управления. Блок 61F управления датчика принимает управляющий сигнал от электронного блока 71 управления, и подает на нагреватель 61L электрическую энергию, соответствующую управляющему сигналу.

[0037] Подача напряжения в ячейку 61D датчика выполняется путем приложения напряжения к измерительному электроду 61B и опорному электроду 61C таким образом, что между измерительным электродом 61B и опорным электродом 61C (между электродной парой) образуется разница потенциалов согласно управляющему сигналу от электронного блока 71 управления.

[0038] Внутренняя камера 61N представляет собой полость, образованную слоем 61A твердого электролита, слоем 61E управления диффузией, первым алюмооксидным слоем 61G и вторым алюмооксидным слоем 61H. Внутренняя камера 61N отделена слоем 61E управления диффузией от пространства снаружи датчика (внутри выпускного коллектора 43). Слой 61E управления диффузией имеет пористую структуру. Слой 61E управления диффузией управляет скоростью проникновения выхлопных газов из выпускного коллектора 43 во внутреннюю камеру 61N (в более широком смысле, диффузией выхлопных газов в слой 61A твердого электролита). Канал 61M наружного воздуха открыт в пространство снаружи датчика 61.

[0039] Датчик 61 обычно используют для определения концентрации кислорода в выхлопных газах, протекающих внутри выпускного коллектора 43. В частности, когда напряжение для измерения концентрации кислорода (далее именуемого рабочим напряжением) приложено к ячейке 61D датчика, кислород, содержащийся в выхлопных газах внутри внутренней камеры 61N, ионизируется на измерительном электроде 61B. Ионы кислорода проходят от измерительного электрода 61B через слой 61A твердого электролита и перемещаются на опорный электрод 61C. Ионы кислорода, которые достигли опорного электрода 61C, возвращаются в кислород через рекомбинацию, и кислород выпускается в канал 61M наружного воздуха. Перемещение электронов, вызванное серией последовательных электрохимических реакций, измеряется блоком 61F управления датчика, в качестве выходного тока ячейки 61D датчика. Из-за функционирования слоя 61E управления диффузией, сила выходного тока (другими словами, количество ионов кислорода, которые перемещаются между электродной парой) однозначно соответствует концентрации кислорода в выхлопных газах. То есть, выходной ток ячейки 61D датчика имеет значение, соответствующее концентрации кислорода в выхлопных газах. Выходной ток обычно называют предельным током.

[0040] При этом концентрация кислорода в выхлопных газах в основном зависит от воздушно-топливного соотношения в воздушно-топливной смеси перед сгоранием. И наоборот, воздушно-топливное соотношение в воздушно-топливной смеси может оцениваться на основе концентрации кислорода в выхлопных газах. Таким образом, концентрация кислорода в выхлопных газах также рассматривается, как воздушно-топливное соотношение выхлопных газов. В соответствии с таким наименованием, например, концентрация кислорода в выхлопных газах, образуемых в результате сгорания воздушно-топливной смеси, имеющей стехиометрическое воздушно-топливное соотношение, равна, по существу, нулю, и воздушно-топливное соотношение выхлопных газов является стехиометрическим воздушно-топливным соотношением. Далее, напряжение, приложенное к ячейке 61D датчика, рассматривается как напряжение, приложенное к датчику 61, и выходной ток ячейки 61D датчика рассматривается как выходной ток датчика 61.

[0041] Фиг. 3A представляет собой графическую зависимость, которая показывает корреляцию между воздушно-топливным соотношением A/F выхлопных газов, напряжением Vs, приложенным к датчику 61 и выходным током Is датчика 61. Как показано на графике, воздушно-топливное соотношение A/F выхлопных газов и сила выходного тока Is (предельного тока) имеют однозначное соответствие, когда приложенное напряжение Vs попадает в определенный диапазон. По этой причине напряжение, которое попадает в этот диапазон, принимается за рабочее напряжение V0 (см. чередующиеся длинные и короткие пунктирные линии на графике). Рабочее напряжение V0 является фиксированной величиной (например, 0,4 В) которое обычно определяют на основе эксперимента, и т.п. Фиг. 3B представляет собой графическую зависимость, которая показывает корреляцию между воздушно-топливным соотношением A/F выхлопных газов и выходным током Is, когда приложенное напряжение Vs равно рабочему напряжению V0. Как показано на графике, воздушно-топливное соотношение A/F выхлопных газов определяют только на основе выходного тока Is.

[0042] В системе согласно варианту осуществления, значение выходного тока Is датчика 61 измеряется блоком 61F управления датчика, и передается на электронный блок 71 управления. Электронный блок 71 управления идентифицирует (определяет) воздушно-топливное соотношение A/F выхлопных газов путем применения полученного значения выходного тока Is датчика 61 в корреляции, изображенной на фиг. 3B.

[0043] Таким образом, датчик 61, расположенный в двигателе 10, в котором применена система согласно изобретению, представляет собой датчик, имеющий выходную характеристику тока (предельного тока), имеющую однозначное соответствие с концентрацией кислорода в выхлопных газах. Датчик содержит твердый электролит, измерительный электрод и опорный электрод (электродную пару), а также слой управления диффузией. Твердый электролит способен проводить ионы кислорода. Измерительный электрод и опорный электрод расположены так, что твердый электролит размещен между ними. Слой управления диффузией расположен так, чтобы ограждать измерительный электрод. В датчике, имеющем вышеуказанную конфигурацию, приложенное к датчику напряжение может осуществляться, как напряжение, подаваемое на электродную пару для создания разности потенциалов между электродной парой. Выходной ток датчика может осуществляться как ток, выдаваемый электродной парой.

[0044] Как видно опять же на фиг. 1, датчик 65 положения коленчатого вала выполнен с возможностью выдачи сигнала, указывающего на положение поворота коленчатого вала 28. Анемометр 63 выполнен с возможностью выдачи сигнала, указывающего на количество воздуха (количество всасываемого воздуха) в единицу времени, поступающего в двигатель 10. Электронный блок 71 управления на основе этих сигналов вычисляет количество воздуха, которое вводится в камеру сгорания 23. Датчик 64 положения педали акселератора выдает сигнал, указывающий на степень нажатия педали 51 акселератора. На основе этого сигнала электронный блок 71 управления определяет выходной сигнал, который требуется для двигателя 10.

[0045] Электронный блок 71 управления представляет собой электронную схему, образованную, главным образом, известным микропроцессором, включающим в себя ЦП, ПЗУ, ОЗУ, и т.п. ЦП электронного блока 71 управления предназначен для передачи управляющих сигналов на клапан 21 впрыска топлива, дроссельный клапан 34, датчик 61 и т.п., и приемки сигналов, которые выдаются совокупностью датчиков 61-64.

[0046] Система согласно изобретению определяет концентрацию SOx в выхлопных газах с использованием датчика 61. Способ определения концентрации SOx в системе согласно варианту осуществления будет описан со ссылкой на фиг. 4 - фиг. 7.

[0047] В соответствии с экспериментом и исследованием авторами изобретения, было обнаружено, что когда напряжение Vs, приложенное к датчику 61, постепенно уменьшается от расчетного первого напряжения V1 до расчетного второго напряжения V2, выходной ток Is датчика 61 имеет однозначно определенное критическое значение, соответствующее концентрации SOx в выхлопных газах. В последующем процесс постепенного снижения напряжения Vs, приложенного к датчику 61, от первого напряжения V1 до второго напряжения V2, именуется процессом сканирования.

[0048] Сначала процесс сканирования будет описан в общих чертах. Фиг. 4 представляет собой схематический график, показывающий пример кривой сигнала выходного тока датчика 61, когда выполняется процесс сканирования. В выходном токе Is в то время, когда приложенное напряжение Vs уменьшается с первого напряжения V1 до второго напряжения V2 (на графике, кривая сигнала, соединяющая точку A, точку B, точку C, точку D и точку E), локальный минимум (который представляет собой выходной ток в точке C на графике, и далее именуемый пиковой величиной Ip) изменяется с концентрацией SOx в выхлопных газах. Однако выходной ток Is меняется не только вместе с концентрацией SOx в выхлопных газах, но и вместе с воздушно-топливным соотношением (концентрацией кислорода) выхлопных газов во время процесса сканирования. В соответствии с вышесказанным система согласно изобретению выделяет из выходного тока Is значение, указывающее только на концентрацию SOx в выхлопных газах, и обнаруживает концентрацию SOx в выхлопных газах на основе выделенного значения. Для точного выполнения обнаружения, система согласно изобретению регулирует двигатель 10 таким образом, чтобы во время процесса сканирования поддерживалось постоянное значение воздушно-топливного соотношения выхлопных газов. Выходной ток Is, соответствующий этому постоянному значению, используется как составляющий компонент (базовое значение Iref), соответствующий воздушно-топливному соотношению выхлопных газов.

[0049] Как показано на графике, первое напряжение V1 и второе напряжение V2 выше рабочего напряжения V0 для измерения концентрации кислорода. Таким образом, в случае, когда концентрация кислорода измеряется с использованием датчика 61, при начале процесса сканирования, в системе согласно изобретению приложенное напряжение Vs изменяется от рабочего напряжения V0 до первого напряжения V1 (на графике, см. кривую сигнала, которая соединяет точку F и точку A). Когда процесс сканирования выполнен, в системе согласно изобретению приложенное напряжение Vs снижается от второго напряжения V2 до рабочего напряжения V0 (на графике, см. кривую сигнала, которая соединяет точку E и точку F). В примере, изображенном на графике, для удобства система согласно изобретению поддерживает постоянное значение воздушно-топливного соотношения выхлопных газов не только во время выполнения процесса сканирования (интервал от точки A до точки E), но и в интервалах до и после процесса сканирования (интервал от точки F до точки A, и интервал от точки E до точки F).

[0050] В частности, когда датчик 61 используется для определения воздушно-топливного соотношения выхлопных газов, напряжение Vs, приложенное к датчику 61, представляет собой рабочее напряжение V0 (см. точку F на графике). Когда система согласно изобретению выполняет процесс сканирования, в системе согласно изобретению приложенное напряжение Vs изменяется от рабочего напряжения V0 до первого напряжения V1 (см. точку A на графике). Таким образом, SOx восстанавливается в серу в датчике 61 (в частности, на поверхности измерительного электрода 61B и других элементах), и сера, образовавшаяся в результате реакции восстановления, накапливается в датчике 61 (на поверхности измерительного электрода 61B и других элементах). Количество серы, которое накапливается в датчике 61, соответствует концентрации SOx в выхлопных газах.

[0051] Поскольку сера (S) находится в твердом состоянии при температуре, при которой обычно используется датчик 61, сера (S) накапливается в датчи