Способ получения дизельного топлива с помощью олигомеризации бензина

Иллюстрации

Показать все

Изобретение относится к способу получения дистиллята, включающему в себя: подачу потока сырья для олигомеризации, содержащего С4 олефины, в зону олигомеризации; рециркуляцию потока бензина, содержащего C8 олефины, в указанную зону олигомеризации; олигомеризацию С4 олефинов с С4 олефинами и С8 олефинами в указанной зоне олигомеризации; причем указанный способ включает в себя олигомеризацию большей доли нормальных бутенов, чем изобутенов. При этом олигомеризацию указанных С4 олефинов с другими указанными С4 олефинами и указанными С8 олефинами осуществляют над цеолитным катализатором, имеющим одномерную пористую структуру из 10-членных колец, причем указанный цеолитный катализатор представляет собой МТТ; разделение потока олигомеризата из указанной зоны олигомеризации в зоне извлечения с получением потока дистиллята, содержащего углеводороды дистиллятной фракции, и указанного потока бензинового рециркулята. Использование предлагаемого изобретения позволяет получать большее количество дизельного топлива. 6 з.п. ф-лы, 9 пр., 17 табл., 13 ил.

Реферат

Данная заявка испрашивает приоритет на основании заявки США №61/725286, поданной 12 ноября 2012 года.

Уровень техники

Когда олигомеризация легких олефинов проводится на нефтеперерабатывающем заводе, часто существует желание иметь возможность производить бензин с высоким октановым числом, дизельное топливо с высоким цетановым числом, или и то и другое. Однако катализаторы, которые используются в производстве высокооктанового бензина, как правило, дают продукт, который является сильно разветвленным и находится в пределах диапазона точек кипения бензина. Этот продукт очень нежелателен для дизельного топлива. В дополнение к этому, катализаторы, которые используются в производстве высокоцетанового дизельного топлива, как правило, дают продукт, который является более линейным и находится в пределах диапазона точек кипения дистиллята. Это приводит к уменьшению количества и ухудшению качества бензина в связи с более линейным характером продукта, который имеет более низкое октановое число.

Олигомеризация бутенов часто связана с желанием получить высокий выход высококачественного бензинового продукта. Как правило, существует предел того, что можно достичь при олигомеризации бутенов. При олигомеризации бутенов желательна димеризация для получения материала бензиновой фракции. Однако, может происходить тримеризация и олигомеризация большего числа компонентов, что приведет к образованию более тяжелого материала, чем бензин, такого как дизельное топливо. Попытки получения дизельного топлива с помощью олигомеризации не обеспечивают высокого выхода, за исключением использования нескольких проходов.

При олигомеризации олефинов из установки каталитического крекинга с псевдоожиженным катализатором (FCC) часто существует желание сохранить жидкую фазу в реакторах олигомеризации. Жидкая фаза способствует стабильности катализатора, действуя в качестве растворителя для промывки катализатора от образованных более тяжелых соединений. Кроме того, жидкая фаза обеспечивает более высокую концентрацию олефинов на поверхности катализатора для достижения более высокой активности катализатора. Как правило, данная жидкая фаза в реакторе поддерживается гидрированием некоторого количества тяжелого олефинового продукта и рециркуляцией данного парафинового продукта к входу в реактор.

Для максимального увеличения получения пропилена в установке FCC нефтепереработчики могут предусмотреть олигомеризацию олефинов FCC с получением более тяжелых олигомеров и рециркуляцию более тяжелых олигомеров в установку FCC. Однако некоторые тяжелые олигомеры могут быть устойчивы к крекингу до пропилена.

Продукты олигомеризации олефинов обычно представляют собой смеси, например, олефиновых димеров, тримеров и высших олигомеров. Кроме того, каждый олефиновый олигомер сам по себе обычно является смесью изомеров, как скелетных, так и изомеров положения двойной связи. Сильно разветвленные изомеры являются менее реакционноспособными, чем линейные или слегка разветвленные вещества, во многих последующих реакциях, для которых олигомеры используются в качестве сырья. Это также справедливо для изомеров, в которых доступ к двойной связи пространственно затруднен. Олефиновые типы олигомеров могут определяться в соответствии со степенью замещения двойной связи, как изложено ниже:

где R представляет собой алкильную группу, причем каждый R является одинаковым или различным. Соединения типа I иногда описываются как α- или винилолефины, a типа III - как винилиденолефины. Тип IV иногда подразделяется на тип IVA, в котором доступ к двойной связи менее затруднен, и тип IVB, в котором он более затруднен.

Раскрытие изобретения

Авторы настоящего изобретения обнаружили, что с помощью рециркулирования потока, содержащего C8 олигомеры, в зону олигомеризации для олигомеризации с С4 олефинами, могут быть получены олигомеры дизельной фракции. Поток дизельного топлива может быть отделен от потока бензина, который может быть рециркулирован в зону олигомеризации на олигомеризацию, для получения большего количества дизельного топлива.

Целью изобретения является получение дополнительного дизельного топлива из бензина.

Краткое описание чертежей

На фиг. 1 представлено схематическое изображение настоящего изобретения.

На фиг. 2 представлено альтернативное схематическое изображение настоящего изобретения.

На фиг. 3 представлен график селективности в отношении С811 олефинов в зависимости от конверсии нормального бутена.

На фиг. 4 представлен график селективности в отношении С12+ олефинов в зависимости от конверсии нормального бутена.

На фиг. 5 представлен график конверсии реагента в зависимости от конверсии всего количества бутенов.

На фиг. 6 представлен график конверсии нормального бутена в зависимости от температуры реактора.

На фиг. 7 и фиг. 8 представлены графики конверсии бутена в зависимости от конверсии всего количества бутенов.

На фиг. 9 представлен график селективности в зависимости от максимальной температуры слоя реактора.

На фиг. 10-12 представлены столбчатые диаграммы конверсии и выхода для трех различных катализаторов.

На фиг. 13 представлен график выхода С3 олефинов в зависимости от конверсии VGO.

Определения

Используемое в настоящем документе выражение «поток» может включать в себя различные углеводородные молекулы и другие вещества. Кроме того, выражение «поток, содержащий Сх углеводороды» или «поток, содержащий Сх олефины» может включать поток, содержащий молекулы углеводорода или олефина, соответственно, с числом «x» атомов углерода, в подходящем случае поток с большей частью углеводородов или олефинов, соответственно, с числом «x» атомов углерода и, предпочтительно, поток с по меньшей мере 75% масс, углеводородных или олефиновых молекул, соответственно, с числом «x» атомов углерода. Кроме того, выражение «поток, содержащий Сx+ углеводороды» или «поток, содержащий Сx+ олефины» может включать поток, содержащий большую часть углеводородных или олефиновых молекул, соответственно, с числом атомов углерода, превышающим или равным «x», и в подходящем случае с менее 10% масс, и предпочтительно менее 1% масс, углеводородных или олефиновых молекул, соответственно, с числом атомов углерода «х-1». Наконец, выражение «Сх- поток» может включать поток, содержащий большую часть углеводородных или олефиновых молекул, соответственно, с числом атомов углерода, меньшим или равным «x», и в подходящем случае с менее 10% масс, и предпочтительно менее 1% масс, углеводородных или олефиновых молекул, соответственно, с числом атомов углерода «х+1».

Термин «зона», используемый в изобретении, может относиться к области, которая включает одну или несколько единиц оборудования и/или одну или несколько подзон. Единицы оборудования могут включать один или несколько реакторов или реакторных емкостей, нагревателей, теплообменников, трубопроводов, насосов, компрессоров, регуляторов и колонн. Кроме того, единица оборудования, такая как реактор, осушитель или емкость, может дополнительно включать в себя одну или более зону или подзону.

Используемое в настоящем документе выражение «по существу» может означать количество по меньшей мере обычно 70%, предпочтительно 80% и оптимально 90%, по массе, соединения или класса соединений в потоке.

Используемое в настоящем документе выражение «бензин» может включать углеводороды, имеющие точку кипения в диапазоне от 25°С до 200°С при атмосферном давлении.

Используемое в настоящем документе выражение «дизельное топливо» или «дистиллят» может включать углеводороды, имеющие точку кипения в диапазоне от 150°С до 400°С и предпочтительно от 200°С до 400°С.

Используемое в настоящем документе выражение «вакуумный газойль» (VGO) может включать углеводороды, имеющие температуру кипения в диапазоне от 343°С до 552°С.

Используемое в настоящем документе выражение «пар» может означать газ или дисперсную систему, которая может включать в себя или состоять из одного или более углеводородов.

Используемое в настоящем документе выражение «головной поток» может означать поток, отводимый по месту или вблизи верхней части емкости, такой как колонна.

Используемое в настоящем документе выражение «нижний поток» может означать поток, отводимый по месту или вблизи дна емкости, такой как колонна.

Изображенные на фигурах линии технологического потока могут называться взаимозаменяемо, например, трубопроводами, трубами, подачами, газами, продуктами, отводами, частями, порциями или потоками.

Используемое в настоящем документе выражение «обходное пропускание» применительно к емкости или зоне означает, что поток не проходит через обходимую зону или емкость, хотя он может проходить через емкость или зону, которые не определяются как обходимые.

Выражение «сообщение» означает, что при функционировании между перечисленными компонентами осуществляется течение вещества.

Выражение «в сообщении ниже по потоку» означает, что по меньшей мере часть вещества, текущая к объекту, с которым осуществляется сообщение ниже по потоку, может при функционировании вытекать из объекта, с которым она сообщается.

Выражение «в сообщении выше по потоку» означает, что по меньшей мере часть вещества, вытекающая из объекта, находящегося в сообщении выше по потоку, может при функционировании протекать к объекту, с которым она сообщается.

Выражение «прямое сообщение» означает, что поток из компонента, расположенного выше по потоку, входит в компонент ниже по потоку без изменения состава из-за физического разделения или химического превращения.

Выражение «колонна» означает ректификационную колонну или колонны для разделения одного или более компонентов с различными летучестями. Если не указано иное, каждая колонна включает в себя конденсатор в верхней части колонны, чтобы конденсировать и подавать в качестве орошения часть головного потока обратно в верхнюю часть колонны, и ребойлер в нижней части колонны, чтобы выпаривать и направлять часть нижнего потока обратно в нижнюю часть колонны. Исходное сырье, поступающее в колонны, может быть предварительно нагрето. Верхнее давление представляет собой давление отводимых с верха колонны паров на выходе колонны. Температура нижней части равна температуре жидкости на выходе из нижней части. Трубопроводы для головного погона и трубопроводы для нижнего продукта относятся к сетевым трубопроводам, выходящим из колонны ниже по потоку относительно мест отвода на орошение или повторное кипячение.

Используемое в настоящем документе выражение «температура кипения» означает эквивалентную точку кипения при атмосферном давлении (АЕВР), которую рассчитывают из наблюдаемой температуры кипения и давления дистилляции с использованием уравнений, представленных в стандарте ASTM D1160, приложение А7, озаглавленное «Практика приведения наблюдаемой температуры паров к эквивалентной температуре при атмосферном давлении» ("Practice for Converting Observed Vapor Temperatures to Atmospheric Equivalent Temperatures").

Используемое в настоящем документе выражение «отбор потока из» означает, что исходный поток частично или полностью отбирается.

Осуществление изобретения

Настоящее изобретение представляет собой установку и способ, которые могут использоваться в первом режиме работы преимущественно для получения бензина, во втором режиме работы преимущественно для получения дизельного топлива, и в третьем режиме работы преимущественно для получения пропилена. Бензин, дизельное топливо и пропилен получают во всех трех режимах работы, но каждый режим максимально увеличивает основной целевой продукт. Установка и способ могут быть описаны со ссылкой на четыре компонента, показанные на фиг. 1: зону 20 каталитического крекинга с псевдоожиженным катализатором (FCC), зону 100 извлечения FCC, зону 110 очистки, зону 130 олигомеризации и зону 200 извлечения олигомеризата. Возможно множество конфигураций настоящего изобретения, но конкретные варианты осуществления представлены в настоящем описании в качестве примера. Все другие возможные варианты осуществления, предназначенные для реализации настоящего изобретения, считаются попадающими в объем настоящего изобретения.

Зона 20 каталитического крекинга с псевдоожиженным катализатором может содержать первый реактор 22 FCC, емкость 30 регенератора и необязательный второй реактор 70 FCC.

Традиционное исходное сырье FCC и более высококипящее углеводородное сырье являются подходящим углеводородным сырьем 24 FCC, подаваемым в первый реактор FCC. Наиболее распространенным из такого традиционного сырья является VGO. Более высококипящее углеводородное сырье, для которого может быть применено настоящее изобретение, включает тяжелые остатки сырой нефти, тяжелую битуминозную сырую нефть, сланцевую нефть, экстракт нефтеносных песков, деасфальтированный остаток, продукты сжижения угля, отбензиненную нефть атмосферной и вакуумной перегонки и их смеси. Подаваемое сырье 24 FCC может включать в себя рециркуляционный поток 280, который будет описан позже.

Первый реактор 22 FCC может включать в себя первый лифт-реактор 26 и емкость 28 первого реактора. Труба 32 регенератора катализатора доставляет регенерированный катализатор из емкости 30 регенератора в лифт-реактор 26. Среда псевдоожижения, такая как водяной пар из распределителя 34, стимулирует прохождение потока регенерированного катализатора снизу вверх через первый лифт-реактор 26. По меньшей мере один распределитель подаваемого сырья нагнетает первое подаваемое углеводородное сырье, находящееся в трубопроводе 24 для первого подаваемого углеводородного сырья, предпочтительно совместно с инертным газом распыления, таким как водяной пар, сквозь текущий поток частиц катализатора, распределяя подаваемое углеводородное сырье в первом лифт-реакторе 26. При контактировании подаваемого углеводородного сырья с катализатором в первом лифт-реакторе 26 более тяжелое углеводородное сырье подвергается крекингу с образованием более легких газообразных продуктов крекинга, при этом кокс осаждается на частицах катализатора с образованием отработанного катализатора.

Получающаяся в результате смесь из газообразных углеводородных продуктов и отработанного катализатора продолжает движение снизу вверх через первый лифт-реактор 26 и принимается в емкости 28 первого реактора, в которой отработанный катализатор и газообразный продукт разделяются. Выводящие рукава отводят смесь газа и катализатора из верха первого лифт-реактора 26 через выпускные отверстия 36 в емкость 38 отделения, которая осуществляет частичное отделение газов от катализатора. По транспортировочному каналу переносятся пары углеводородов, отпаривающая среда и захваченный катализатор к одному или нескольким циклонам 42 в емкости 28 первого реактора, которые отделяют отработанный катализатор от потока углеводородных газообразных продуктов. Каналы для газа доставляют отделенные газообразные потоки крекированных углеводородов из циклонов 42 в сборную камеру 44 для прохождения потока продукта крекинга в трубопровод 46 первого продукта крекинга через выпускное сопло и, в конечном счете, в зону 100 извлечения FCC для извлечения продукта.

Катализатор по опускным трубам выгружается из циклонов 42 в нижний слой в емкости 28 первого реактора. Катализатор с адсорбированными или захваченными углеводородами, в конечном счете, может проходить из нижнего слоя в отпарную секцию 48 через отверстия, выполненные в стенке емкости 38 отделения. Катализатор, отделенный в емкости 38 отделения, может пройти непосредственно в отпарную секцию 48 через слой. Распределитель псевдоожижения доставляет инертный газ псевдоожижения, обычно водяной пар, в отпарную секцию 48. Отпарная секция 48 содержит перегородки или другое оборудование, способствующее контактированию отпаривающего газа с катализатором. Подвергнутый отпариванию отработанный катализатор покидает отпарную секцию 48 емкости 38 отделения в емкости 28 первого реактора лишенным углеводородов. Первая часть отработанного катализатора, предпочтительно подвергнутая отпариванию, покидает емкость 38 отделения в емкости 28 первого реактора через канал 50 для отработанного катализатора и поступает в емкость 30 регенератора. Вторая часть отработанного катализатора может быть рециркулирована по рециркуляционному трубопроводу 52 из емкости 38 отделения обратно в нижнюю часть первого лифт-реактора 26 с расходом, регулируемым с помощью вентиля-задвижки, для повторного контактирования с подаваемым сырьем без прохождения регенерации.

Первый лифт-реактор 26 может работать при любой подходящей температуре и, как правило, работает при температуре от 150°С до 580°С на выходе 36 из лифт-реактора. Давление в первом лифт-реакторе составляет от 69 до 517 кПа (изб.) (от 10 до 75 фунт/кв. дюйм изб.), но обычно менее 275 кПа (изб.) (40 фунт/кв. дюйм изб.). Отношение катализатор/масло, полученное в расчете на массу катализатора и подаваемого углеводородного сырья, поступающего в лифт-реактор, может достигать 30:1, но обычно находится в диапазоне от 4:1 до 10:1. Водяной пар может подаваться в первый лифт-реактор 26 и емкость 28 первого реактора в количестве от 2 до 7% масс, для максимального получения бензина, и от 10 до 15% масс.- для максимального получения легких олефинов. Среднее время пребывания катализатора в лифт-реакторе может составлять менее 5 с.

Катализатор в первом реакторе 22 может быть представлен одним катализатором или смесью разных катализаторов. Обычно катализатор включает два катализатора, а именно первый катализатор FCC и второй катализатор FCC. Такая смесь катализаторов описана, например, в US 7312370 В2. Обычно первый катализатор может содержать любой из хорошо известных катализаторов, которые используются в области FCC. Предпочтительно первый катализатор FCC содержит крупнопористый цеолит, такой как цеолит Y-типа, активное вещество оксида алюминия, связующее вещество, включающее диоксид кремния или оксид алюминия, и инертный наполнитель, такой как каолин.

Как правило, цеолиты, подходящие для первого катализатора FCC, имеют крупный средний размер пор, обычно с отверстиями, эффективный диаметр которых превышает 0,7 нм, образованными более чем 10- или, как правило, 12-членными кольцами. Подходящие крупнопористые цеолитные компоненты могут включать синтетические цеолиты, такие как Х- и Y-цеолиты, морденит и фожазит. Часть первого катализатора FCC, такого как цеолит, может содержать любое подходящее количество редкоземельного металла или оксида редкоземельного металла.

Второй катализатор FCC может включать в себя средне- или мелкопористый цеолитный катализатор, примером которого является по меньшей мере один из ZSM-5, ZSM-11, ZSM-12, ZSM-23, ZSM-35, ZSM-38, ZSM-48 и других аналогичных материалов. Другие подходящие цеолиты со средними или более мелкими порами включают ферриерит и эрионит. Предпочтительно второй компонент содержит цеолит со средними или более мелкими порами, диспергированный в матрице, включающей материал связующего, такой как диоксид кремния или оксид алюминия, и материал инертного наполнителя, такой как каолин. Данные катализаторы могут иметь содержание кристаллического цеолита от 10 до 50% масс, или более, и содержание матричного материала от 50 до 90% масс. Катализаторы, содержащие по меньшей мере 40% масс, кристаллического цеолитного материала, являются типичными, и могут использоваться катализаторы с более высоким содержанием кристаллического цеолита. Обычно средне- и более мелкопористые цеолиты характеризуются наличием эффективного диаметра отверстий не более 0,7 нм, и колец, содержащих 10 или менее членов. Предпочтительно, компонентом второго катализатора FCC является цеолит MFI, имеющий отношение кремния к алюминию более 15. В одном иллюстративном варианте осуществления отношение кремния к алюминию может составлять от 15 до 35.

Совокупная смесь катализаторов в первом реакторе 22 может содержать от 1 до 25% масс, второго катализатора FCC, включающего кристаллический цеолит с размером пор от среднего до мелкого, при этом предпочтительным является содержание второго катализатора FCC не менее 7% масс. Когда второй катализатор FCC содержит 40% масс, кристаллического цеолита, а остальную часть составляет материал связующего, инертный наполнитель, такой как каолин, и необязательно активный компонент оксида алюминия, смесь катализаторов может содержать от 0,4 до 10% масс, кристаллического цеолита с размером пор от среднего до мелкого, при этом предпочтительное содержание составляет, по меньшей мере, 2,8% масс. Первый катализатор FCC может составлять остальную часть каталитической композиции. Высокая концентрация средне- и более мелкопористого цеолита в качестве второго катализатора FCC катализаторной смеси может повышать селективность в отношении легких олефинов. В одном иллюстративном варианте осуществления второй катализатор FCC может быть цеолитом ZSM-5, и катализаторная смесь может включать в себя от 0,4 до 10% масс, цеолита ZSM-5, исключая любые другие компоненты, такие как связующее и/или наполнитель.

Емкость 30 регенератора находится ниже по потоку в сообщении с емкостью 28 первого реактора. В емкости 30 регенератора выжигается кокс из части отработанного катализатора, доставленного в емкость 30 регенератора, в контакте с кислородсодержащим газом, таким как воздух, для регенерации катализатора. По каналу 50 для отработанного катализатора отработанный катализатор поступает в емкость 30 регенератора. Отработанный катализатор из емкости 28 первого реактора обычно содержит углерод в количестве от 0,2 до 2% масс, присутствующий в виде кокса. Кислородсодержащий газ для сжигания, обычно воздух, поступает в нижнюю камеру 54 емкости 30 регенератора через канал и распределяется распределителем 56. При поступлении газа для сжигания в нижнюю камеру 54, он вступает в контакт с отработанным катализатором, поступающим из канала 50 для отработанного катализатора, и поднимает катализатор при поверхностной скорости газа для сжигания в нижней камере 54, составляющей, возможно, по меньшей мере 1,1 м/с (3,5 фут/с), в условиях течения при быстром псевдоожижении. В варианте осуществления плотность катализатора в нижней камере 54 может составлять от 48 до 320 кг/м3 (от 3 до 20 фунт/фут3), и поверхностная скорость газа может составлять от 1,1 до 2,2 м/с (от 3,5 до 7 фут/с). Кислород в газе для сжигания вступает в контакт с отработанным катализатором и выжигает углеродистые отложения из катализатора с по меньшей мере частичной регенерацией катализатора и образованием дымового газа.

Смесь из катализатора и газа для сжигания в нижней камере 54 поднимается через переходную секцию в форме усеченного конуса к транспортировочной секции стояка нижней камеры 54. Смесь из частиц катализатора и дымового газа отводится из верхней части секции стояка в верхнюю камеру 60. По существу полностью или частично регенерированный катализатор может выходить через верх транспортировочной секции стояка. Отведение производится через отделяющее устройство 58, которое отделяет большую часть регенерированного катализатора от дымового газа. Катализатор и газ выходят сверху вниз из отделяющего устройства 58. Внезапная потеря кинетической энергии и изменение течения потока на обратное в направлении сверху вниз вызывают падение большей части более тяжелого катализатора в плотный слой катализатора и подъем более легкого дымового газа и меньшей части катализатора, все еще удерживаемой в нем, снизу вверх в верхнюю камеру 60. Циклоны 62 дополнительно отделяют катализатор от поднимающегося газа и осаждают катализатор через опускные трубы в плотный слой катализатора. Дымовой газ выходит из циклонов 62 через канал для газа и собирается в камере 64 для прохождения к выпускному соплу емкости 30 регенератора. Плотность катализатора в плотном катализаторном слое обычно поддерживается в диапазоне от 640 до 960 кг/м3 (40-60 фунт/фут3).

Емкость 30 регенератора обычно имеет температуру от 594°С до 704°С (от 1100°F до 1300°F) в нижней камере 54, и от 649°С до 760°С (от 1200°F до 1400°F) в верхней камере 60. Регенерированный катализатор из плотного слоя катализатора транспортируется по трубопроводу 32 регенерированного катализатора из емкости 30 регенератора через регулировочный клапан обратно, в первый лифт-реактор 26, где он снова контактирует с первым подаваемым сырьем в трубопроводе 24 по мере продолжения процесса FCC. Поток первого продукта крекинга в трубопроводе 46 первого продукта крекинга из первого реактора 22, относительно свободный от частиц катализатора и включающий отпаривающую текучую среду, выходит из емкости 28 первого реактора через выпускное сопло. Поток первых продуктов крекинга в трубопроводе 46 может быть подвергнут дополнительной обработке для удаления мелких частиц катализатора или для дополнительной подготовки потока перед фракционированием. Трубопровод 46 транспортирует поток первых продуктов крекинга в зону 100 извлечения FCC, которая находится ниже по потоку в сообщении с зоной 20 FCC. Зона 100 извлечения FCC обычно включает в себя основную ректификационную колонну и секцию извлечения газа. Зона извлечения FCC может включать в себя множество ректификационных колонн и другое сепарационное оборудование. В зоне 100 извлечения FCC из потока продукта крекинга в трубопроводе 46 первого продукта крекинга может извлекаться, среди прочего, поток пропиленового продукта по трубопроводу 102 пропилена, поток бензина по трубопроводу 104 бензина, поток легких олефинов по трубопроводу 106 легких олефинов и поток легкого рециклового газойля (LCO) по трубопроводу 107 LCO. Поток легких олефинов в трубопроводе 106 легких олефинов включает в себя поток сырья для олигомеризации, содержащий С4 углеводороды, в том числе С4 олефины, и, возможно, содержащий С5 углеводороды, в том числе С5 олефины.

Рециркуляционный поток FCC в рециркуляционном трубопроводе 280 доставляет рециркуляционный поток FCC в зону 20 FCC. Рециркуляционный поток FCC направляется в первый рециркуляционный трубопровод 202 FCC при открытом на нем регулировочном клапане 202'. В одном аспекте рециркуляционный поток FCC может быть направлен в необязательный второй рециркуляционный трубопровод 204 FCC при открытом на нем регулировочном клапане 204'. Первый рециркуляционный трубопровод 202 FCC доставляет первый рециркуляционный поток FCC в первый реактор 22 FCC, в одном из аспектов - в лифт-реактор 26 на высоте над первым подаваемым углеводородным сырьем в трубопроводе 24. Второй рециркуляционный трубопровод 204 FCC доставляет второй рециркуляционный поток FCC во второй реактор 70 FCC. Как правило, оба регулировочных клапана 202' и 204' не будут открыты одновременно, так что рециркуляционный поток FCC проходит только по одному трубопроводу из первого рециркуляционного трубопровода 202 FCC и второго рециркуляционного трубопровода 204 FCC. Однако подача через оба трубопровода предусмотрена.

Второй рециркуляционный поток FCC может быть подан во второй реактор 70 FCC по второму рециркуляционному трубопроводу 204 FCC через распределитель 72 подаваемого сырья. Второй реактор 70 FCC может включать в себя второй лифт-реактор 74. Второй рециркуляционный поток FCC приводится в контакт с катализатором, доставляемым во второй лифт-реактор 74 по возвратной трубе 76 катализатора для получения улучшенных продуктов крекинга. Катализатор может быть приведен в псевдоожиженное состояние инертным газом, таким как водяной пар из распределителя 78. Обычно второй реактор 70 FCC может работать в условиях, подходящих для конверсии второго рециркуляционного потока FCC во вторые продукты крекинга, такие как этилен и пропилен. Емкость 80 второго реактора находится ниже по потоку в сообщении со вторым лифт-реактором 74 для приема вторых продуктов крекинга и катализатора из второго лифт-реактора. Смесь газообразных вторых углеводородных продуктов крекинга и катализатора продолжает движение снизу вверх через второй лифт-реактор 74 и принимается в емкости 80 второго реактора, в которой катализатор и газообразные вторые продукты крекинга разделяются. Пара выводящих рукавов может обеспечивать тангенциальную и горизонтальную выгрузку смеси из газа и катализатора из верха второго лифт-реактора 74 через одно или несколько выпускных отверстий 82 (показано только одно) в емкость 80 второго реактора, которая осуществляет частичное отделение газов от катализатора. Катализатор может падать в плотный слой катализатора в емкости 80 второго реактора. Циклоны 84 в емкости 80 второго реактора могут дополнительно отделять катализатор от вторых продуктов крекинга. После этого, поток вторых продуктов крекинга может быть удален из второго реактора 70 FCC через выпускное отверстие в трубопроводе 86 вторых продуктов крекинга, расположенном ниже по потоку в сообщении со вторым лифт-реактором 74. Поток вторых продуктов крекинга по трубопроводу 86 подается в зону 100 извлечения FCC, предпочтительно отдельно от первых продуктов крекинга, для разделения и извлечения этилена и пропилена. Отделенный катализатор может быть рециркулирован из емкости 80 второго реактора через возвратную трубу 76 для катализатора, регулируемую регулировочным клапаном, обратно во второй лифт-реактор 74 для приведения в контакт со вторым рециркуляционным потоком FCC.

В некоторых вариантах осуществления второй реактор 70 FCC может содержать смесь из первого и второго катализаторов FCC, как описано выше для первого реактора 22 FCC. В одном предпочтительном варианте осуществления второй реактор 70 FCC может содержать менее 20% масс, предпочтительно менее 5% масс, первого катализатора FCC, и по меньшей мере 20% масс, второго катализатора FCC. В другом предпочтительном варианте осуществления второй реактор 70 FCC может содержать только второй катализатор FCC, предпочтительно цеолит ZSM-5.

Второй реактор 70 FCC находится ниже по потоку в сообщении с емкостью 30 регенератора и получает из нее регенерированный катализатор по трубопроводу 88. В варианте осуществления первый реактор 22 FCC и второй реактор 70 FCC совместно используют одну и ту же емкость 30 регенератора. Трубопровод 90 подает отработанный катализатор из емкости 80 второго реактора в нижнюю камеру 54 емкости 30 регенератора. Регенератор катализатора находится ниже по потоку в сообщении со вторым реактором 70 FCC через трубопровод 90.

Одна и та же каталитическая композиция может использоваться в обоих реакторах 22, 70. Однако если во втором реакторе 70 FCC желательна более высокая доля второго катализатора FCC из цеолита с размером пор от мелкого до среднего, чем первого катализатора FCC, состоящего из крупнопористого цеолита, замещающий катализатор, добавляемый во второй реактор 70 FCC, может содержать более высокую долю второго катализатора FCC. Поскольку второй катализатор FCC не теряет активность так быстро, как первый катализатор FCC, меньшее количество второго катализатора должно быть подано в регенератор 30 катализатора по трубопроводу 90 из емкости 80 второго реактора, но большее количество катализатора может быть рециркулировано в лифт-реактор 74 по возвратной трубе 76 без регенерации для сохранения высокого уровня второго катализатора FCC во втором реакторе 70.

Второй лифт-реактор 74 может работать в любых подходящих условиях, таких как температура от 425°С до 705°С, предпочтительно температура от 550°С до 600°С, и давление от 140 кПа до 400 кПа, предпочтительно давление от 170 кПа до 250 кПа. Как правило, время пребывания во втором лифт-реакторе 74 может быть менее 3 с и предпочтительно составляет менее 1 с. Примеры лифт-реакторов и рабочих условий описаны, например, в US 2008/0035527 A1 и US 7261807 В2.

Перед тем, как продукты крекинга могут быть поданы в зону 130 олигомеризации, потоку легких олефинов в трубопроводе 106 легких олефинов может потребоваться очистка. Множество примесей в потоке легких олефинов в трубопроводе 106 легких олефинов могут отравлять катализатор олигомеризации. Диоксид углерода и аммиак могут атаковать кислотные центры катализатора. Серосодержащие соединения, оксигенаты и нитрилы могут наносить вред катализатору олигомеризации. Ацетилены и диолефины могут полимеризоваться и образовывать смолы на катализаторе или оборудовании. Следовательно, поток легких олефинов, который включает в себя поток сырья для олигомеризации в трубопроводе 106 легких олефинов, может быть очищен в необязательной зоне 110 очистки.

Поток легких олефинов в трубопроводе 106 легких олефинов может вводиться в необязательную установку 112 экстракции меркаптанов для удаления меркаптанов до более низких концентраций. В установке 112 экстракции меркаптанов подаваемое сырье легких олефинов может быть предварительно промыто в необязательной емкости для предварительного промывания, содержащей водный раствор щелочи для превращения любого имеющегося сероводорода в сульфидную соль, которая растворима в водном щелочном потоке. Поток легких олефинов, теперь лишенный какого-либо сероводорода, приводится в контакт с более концентрированным водным щелочным потоком в емкости экстрактора. Меркаптаны в потоке легких олефинов вступают в реакцию с щелочью с образованием меркаптидов. Прошедший экстракцию поток легких олефинов, обедненный меркаптанами, поступает в головной погон из экстракционной колонны и может быть смешан с растворителем, который удаляет COS на пути в необязательный отстойник растворителя COS. COS удаляется вместе с растворителем из нижней части отстойника, в то время как головной поток легких олефинов может подаваться в дополнительную емкость водной промывки для удаления остатков щелочи и образования обедненного серой потока легких олефинов в трубопроводе 114. Щелочь, обогащенная меркаптидом из емкости экстрактора, принимает впрыскиваемые воздух и катализатор, такой как фталоцианин, по мере прохождения из емкости экстрактора в емкость окисления для регенерации. Окисление меркаптидов до дисульфидов с использованием катализатора обеспечивает регенерацию щелочного раствора. Сепаратор дисульфида принимает обогащенную дисульфидом щелочь из емкости окисления. Сепаратор дисульфида обеспечивает выпуск избыточного воздуха и декантацию дисульфидов из щелочного раствора до того, как регенерированная щелочь будет слита, промыта с маслом для удаления оставшихся дисульфидов и возвращена в емкость экстрактора. Дополнительное удаление дисульфидов из регенерированного щелочного потока также предусматривается. Дисульфиды пропускают через песочный фильтр и удаляют из процесса. Для получения более подробной информации об экстракции меркаптанов может быть сделана ссылка на US 7326333 В2.

Чтобы предотвратить полимеризацию и образование смолы в реакторе олигомеризации, которые могут уменьшать производительность оборудования и катализатора, желательно привести к минимуму содержание диолефинов и ацетиленов в подаваемом сырье легких олефинов в трубопроводе 114. Конверсия диолефинов в моноолефиновые углеводороды может быть осуществлена с помощью селективного гидрирования обедненного серой потока в традиционном реакторе 116 селективного гидрирования. Водород может добавляться к очищенному потоку легких олефинов по трубопроводу 118.

Катализатор селективного гидрирования может содержать материал носителя из оксида алюминия, предпочтительно с общей площадью поверхности более 150 м2/г, при этом большая часть общего объема пор катализатора представлена порами со средним диаметром более 600 ангстрем, и содержит осажденные на поверхности никель от 1,0 до 25,0% масс, и серу от 0,1 до 1,0% масс, как описано в US 4695560. Сферы, имеющие диаметр от 0,4 до 6,4 мм (1/64 и 1/4 дюйма), могут быть получены с помощью добавления по каплям в масло загущенного золя оксида алюминия. Золь оксида алюминия может быть получен с помощью растворения металлического алюминия в водном растворе 12% масс, хлороводорода с получением золя хлорида алюминия. Компонент никеля может быть добавлен к катализатору во время образования сфер или с помощью погружения прокаленных сфер из оксида алюминия в водный раствор соединения никеля с последующей сушкой, прокаливанием, очисткой и восстановлением. Затем никельсодержащие сферы оксида алюминия могут быть сульфидированы. Палладиевый катализатор