Способ и устройство получения компенсированных сигналов для определения характеристик пласта

Иллюстрации

Показать все

Настоящее изобретение относится, в целом, к устройствам и способам выполнения измерений, связанных с нефтегазопоисковой разведкой. Способ получения сигналов для определения характеристик пласта, включающий следующие этапы: сбор измерений сигналов, полученных измерительным зондом; генерирование компонентов ZZ, XZ, ZX и XX взаимозависимости между сигналами, передаваемыми на пласт, и сигналами, принимаемыми от него, на основе измерений сигналов; генерирование набора сигналов из указанных компонентов и выполнение операции инверсии с применением указанного набора сигналов для определения одной или более характеристик пласта. Технический результат заключается в повышении точности измерения характеристик пласта. 2 н. и 10 з.п. ф-лы, 13 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится, в целом, к устройствам и способам выполнения измерений, связанных с нефтегазопоисковой разведкой.

УРОВЕНЬ ТЕХНИКИ

При бурении скважин для целей нефтегазопоисковой разведки знание структуры и свойств соответствующей геологической формации способствует получению данных для проведения такой разведки. Как правило, замеры в буровых скважинах производят для получения таких знаний. Приборы индукционного каротажа могут производить точные замеры значений удельного сопротивления пластов внутри скважины и представляют собой важную часть каротажных работ. Показания этих приборов основаны на принципе индукции, в соответствии с которым передатчик производит магнитный поток, воспринимаемый приемником.

Сигналы электромагнитных (ЭМ) приборов каротажа удельного сопротивления, состоящие из множества связывающих компонентов, широко применяют для исследования таких характеристик пласта, как анизотропия пласта, относительный угол падения пласта, контуры и т.д. Обработка данных инверсии для определения характеристик пласта может быть выполнена согласно подходу с моделированием пласта. Операции инверсии могут включать сопоставление измерений с предварительными оценками модели, благодаря чему можно определить величину или пространственную вариацию физических свойств. В инверсии измеряемые данные могут быть применены для построения модели, согласующейся с этими данными. Для целей исследования операция инверсии может включать определение изменения удельной проводимости пласта из замеров индуцированного электрического и магнитного полей. Другие методы, такие как опережающее моделирование, связаны с расчетом ожидаемых замеренных величин применительно к заданной модели. В нульмерной (0D) инверсии изменчивости пласта не имеется, как, например, в однородном пласте. В одномерном (1D) моделировании имеет место изменчивость в одном направлении, например, такая, как пласт из параллельных слоев. В двухмерном (2D) моделировании имеет место изменчивость в двух направлениях, а в трехмерном (3D) моделировании имеет место изменчивость в трех направлениях. Система координат, в которой задаются вышеупомянутые измерения, как правило, может быть прямоугольной или цилиндрической. Применительно к буровым скважинам зачастую применяют цилиндрическую систему координат.

В целом, нульмерная (0D) инверсия, в которой принимаются эти связывающие компоненты, привлекательна благодаря своей простоте и быстроте вычислений. На основе 0D-инверсии для расчета характеристик пласта предложено несколько схем обработки данных с применением различных связывающих компонентов. На основании четко выраженной чувствительности этих связывающих компонентов при помощи 0D-инверсии можно получить точную инвертированную модель пласта с произвольно выбранными значениями наклона ствола скважины, особенно в случае, когда электромагнитный прибор находится в мощном слое. Благодаря схемам обработки данных успешно определяют характеристики анизотропии, которые могут включать горизонтальное удельное сопротивление, вертикальное удельное сопротивление, относительный угол падения пласта и угол относительного простирания, представленные искусственными каротажными сигналами и эксплуатационными данными. Искусственный каротажный сигнал - это смоделированный сигнал прибора относительно известных характеристик пласта, к которому применяют прибор. Искусственный каротажный сигнал может быть произведен численным моделированием взаимодействия прибора с пластом. При этом, как правило, задействовано имитационное моделирование. В искусственном каротаже имитационное моделирование можно проводить для каждого значения глубины каротажа на основании поточечных измерений.

В многокомпонентном приборе индукционного каротажа, содержащем три перпендикулярные рамочные антенны передатчиков (TX, TY, и TZ) и три перпендикулярные рамочные антенны приемников (RX, RY, и RZ), магнитное поле Н в рамочных антеннах приемников может быть представлено в единицах магнитных моментов М передатчиков и матрицы связи С как:

Уравнение (1) может быть выражено в виде:

где MX, MY и MZ представляют собой магнитные моменты передаваемого сигнала, испускаемого соответственно передатчиками TX, TY и TZ. HX, HY и HZ представляют собой магнитные поля, пропорциональные сигналу, получаемому соответственно антеннами приемников RX, RY, и RZ. Может быть получено девять абсолютных или дифференциальных измерений, когда каждая антенна испускает излучение и на каждом из трех приемников соответственно замеряется сигнал. Здесь дифференциал обозначает комплексное соотношение (или, аналогично, соотношение амплитуд или сдвиг фаз) между сигналами от двух разделенных пространством приемников, применяемыми вместо одного сигнала от одного приемника. Благодаря этим девяти измерениям можно задавать полную матрицу связи C. Определение компонентов CIJ может быть представлено как , где I является индексом приемника RX, RY, и RZ, J является индексом приемника TX, TY и TZ, aIJ и является постоянным коэффициентом, определяемым конструкцией прибора, а является комплексной величиной, представляющей амплитуду сигнала и сдвиг фаз, замеряемые приемником I в виде реакции на излучение передатчика J. Для определения свойств пласта может быть применена матрица связи, например, с помощью процесса инверсии. Было приведено описание преобразования измеренных сигналов в перекрестные связывающие компоненты для определения полной матрицы связи C.

В документе WO 2011/129828 A1 приведено обсуждение различных вариантов реализации изобретения, включая устройства и способы обработки данных и забойной системы контроля и управления параметрами бурения в отношении каротажных работ. Способы и соответствующие устройства могут включать восприятие сигналов, генерируемых работающим прибором, который вращается в испытательной скважине, при этом прибор содержит антенну приемника, наклоненную относительно продольной оси прибора, и две антенны передатчика. Воспринятые сигналы могут обрабатываться применительно к направлению вращения прибора для определения свойств пласта и/или для определения геосигнала для геонавигации во время буровых работ. Документ WO 2011/129828 А1 включает обсуждение преобразования воспринятых сигналов в связывающие компоненты.

В документе WO 2012/030327 приведено обсуждение различных вариантов реализации изобретения, включая устройства и способы эксплуатации применительно к каротажным работам. Устройства и способы включают прибор со схемой расположения передатчиков и приемников, эксплуатируемых в различных положениях внутри скважины, и блок обработки данных для целей обработки полученных сигналов, вследствие чего данная схема расположения передатчиков и приемников производит измерения, имитирующие эксплуатацию с другой схемой расположения передатчиков и приемников.

В документе WO 2012/030327 приведено обсуждение различных вариантов реализации изобретения, включая устройства и способы эксплуатации применительно к каротажным работам. Устройства и способы включают прибор со схемой расположения передатчиков и приемников, эксплуатируемых в различных положениях внутри скважины, и блок обработки данных для целей обработки полученных сигналов, вследствие чего данная схема расположения передатчиков и приемников производит измерения, имитирующие эксплуатацию с другой схемой расположения передатчиков и приемников.

В документе WO 2008/076130 приведено обсуждение каротажных систем по методу электромагнитного удельного сопротивления и способы, в которых задействована конфигурация антенны, имеющая не более двух настроек ориентации антенн приемников или передатчиков, при этом антенны вращаются относительно буровой скважины. Измерения, произведенные при помощи такой упрощенной конфигурации антенны, обеспечивают возможность определения по меньшей мере семи компонентов матрицы связи, которые могут быть определены с применением системы линейных уравнений, выражающих зависимость измерений от азимута. Для большей точности может быть выполнено вычисление средней величины находящихся с интервалом по азимуту друг от друга и сгруппированных измерений. Затем компоненты матрицы связи могут быть применены в качестве основания для определения каротажных диаграмм различных характеристик пласта, в том числе горизонтального удельного сопротивления, вертикального удельного сопротивления и отношения вертикального удельного сопротивления к горизонтальному удельному сопротивлению. Отношение вертикального удельного сопротивления к горизонтальному удельному сопротивлению представляет собой количественный показатель анизотропии. Для простоты последующего обсуждения его можно заменять словом «анизотропия».

В модели пласта, состоящей из множественных маломощных слоев, имеют место явления влияния прилегающих слоев; их влияние на различные связывающие компоненты различно. Применительно к замерам индукции, влияние прилегающих слоев (или влияние границы вмещающей породы) представляет собой воздействие на замеры индукции исследуемого слоя со стороны верхнего или нижнего слоя, смежного с тем, который подвергается замерам. Такие воздействующие связывающие компоненты вызывают неточность результатов 0D-инверсии. Например, при более высоком наклоне пробуренной скважины связывающий компонент ZZ испытывает большее влияние прилегающих слоев, чем один из связывающих компонентов XX или YY, и, напротив, при более глубоком бурении такие влияния прилегающих слоев преобладают в связывающих компонентах XX и YY. Таким образом, 0D-инверсия, в которой применяют эти связывающие компоненты, становится проблематичной в среде маломощных слоев.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На Фигуре 1 проиллюстрирована блок-диаграмма варианта реализации устройства 100 с конструкцией 105 прибора, выполненной с возможностью работы в буровой скважине для определения свойств пласта в соответствии с различными вариантами реализации изобретения.

На Фигурах 2А-В проиллюстрированы конфигурации антенн с конструкцией наклонной антенны в соответствии с различными вариантами реализации изобретения.

На Фигуре 3А проиллюстрировано представление модели пласта с маломощными слоями в соответствии с различными вариантами реализации изобретения.

На Фигурах 3B-3F проиллюстрированы некомпенсированные искусственные сигналы от прибора с конфигурацией, как на Фигурах 2А-В, в соответствии с различными вариантами реализации изобретения.

На Фигуре 4А проиллюстрирована модель пласта с Фигуры 3А для иллюстрации результатов инверсии в соответствии с различными вариантами реализации изобретения.

На Фигурах 4В-Е проиллюстрированы результаты нульмерной инверсии с некомпенсированными входными сигналами, как на Фигурах 3B-F, в соответствии с различными вариантами реализации изобретения.

На Фигурах 5A-D проиллюстрированы конфигурации симметричных антенн, выполненных с возможностью восприятия компенсированных сигналов, в соответствии с различными вариантами реализации изобретения.

На Фигуре 6А проиллюстрирована модель пласта с Фигуры 3А в соответствии с различными вариантами реализации изобретения.

На Фигурах 6B-F проиллюстрированы компенсированные искусственные сигналы от прибора с конфигурацией, как на Фигурах 4A-D, в соответствии с различными вариантами реализации изобретения.

На Фигуре 7А проиллюстрирована модель пласта с Фигуры 3А для иллюстрации результатов инверсии в соответствии с различными вариантами реализации изобретения.

На Фигурах 7В-Е проиллюстрированы результаты нульмерной инверсии с компенсированными входными сигналами, как на Фигурах 6B-F, в соответствии с различными вариантами реализации изобретения.

На Фигуре 8 проиллюстрирован пример конфигурации асимметричной антенны, выполненной с возможностью получения компенсированных сигналов, в соответствии с различными вариантами реализации изобретения.

На Фигуре 9 проиллюстрировано представление схемы отклонения по глубине симметричной антенны с конфигурацией, как на Фигуре 8, для получения конструкции симметричной антенны в соответствии с различными вариантами реализации изобретения.

На Фигуре 10 проиллюстрированы особенности описанного в примере способа определения характеристик пласта с помощью компенсированных сигналов в соответствии с различными вариантами реализации изобретения.

На Фигуре 11 проиллюстрированы особенности описанного в примере способа определения характеристик пласта с помощью компенсированных сигналов в соответствии с различными вариантами реализации изобретения.

На Фигуре 12 проиллюстрирована блок-диаграмма с особенностями системы, описанной в примере, в которой прибор спроектирован таким образом, чтобы была предусмотрена конструкционная компенсация при определении характеристик пласта, в соответствии с различными вариантами реализации изобретения.

На Фигуре 13 проиллюстрирован вариант реализации изобретения системы на буровой площадке, в котором система содержит прибор, спроектированный с возможностью обеспечения конструкционной компенсации при определении характеристик пласта, в соответствии с различными вариантами реализации изобретения.

ПОДРОБНОЕ РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Нижеследующее подробное описание относится к прилагаемым графическим материалам, где методом иллюстрирования, а не ограничений, показаны различные варианты реализации изобретения, в которых оно может быть применено на практике. Эти варианты реализации изобретения описаны достаточно детально, чтобы позволить специалистам в данной области техники применять на практике эти и другие варианты реализации изобретения. Могут быть применены другие варианты реализации изобретения, и в данные варианты реализации изобретения могут быть внесены изменения в конструкцию, логическую и электрическую часть. Различные варианты реализации изобретения не обязательно являются взаимоисключающими, поскольку некоторые варианты реализации можно комбинировать с одним или более других вариантов реализации изобретения для получения новых вариантов реализации изобретения. Поэтому нижеследующее подробное описание не следует понимать в ограничивающем смысле.

На Фигуре 1 проиллюстрирована блок-диаграмма варианта реализации изобретения устройства 100 с конструкцией 105 прибора, выполненного с возможностью работы в буровой скважине для определения свойств пласта. Конструкция 105 прибора содержит схему расположения сенсорных датчиков 110-1, 110-2…110-(N-1), 110-N вдоль продольной оси 107 прибора 105. Каждый датчик 110-1, 110-2…110-(N-1), 110-N может быть наклонен относительно продольной оси 107. Наклонный датчик - это датчик, расположенный на конструкции 105 прибора под выбранным углом, имеющим большее значение, чем углы допусков, в связи с тем, что навешенный датчик помещен параллельно или перпендикулярно к продольной оси 107. Как правило, угол наклона варьируется по абсолютной величине в пределах 5°-85°. Схема расположения датчиков может включать одну или более комбинаций передающих и приемных датчиков с такими углами наклона, что они образуют симметричный измерительный зонд. Эксплуатация симметричного измерительного зонда обеспечивает генерирование конструкционной компенсацией сигналов компенсации, которые могут обрабатываться для определения характеристик пласта. Сенсорные датчики 110-1, 110-2…110-(N-1), 110-N могут включать одну или более комбинаций передающих и приемных датчиков с такими углами наклона, что они образуют асимметричный измерительный зонд. Асимметричный измерительный зонд может функционировать в режиме имитации симметричного прибора для генерации компенсированных сигналов, которые можно обрабатывать для определения характеристик пласта. Обработка генерируемых компенсированных сигналов может обеспечивать точные показания для анизотропных измерений и точную оценку продуктивности пластов как в областях применения с каротажной проволокой, так и в областях применения с телеметрией во время бурения (ТВБ), например, каротажа во время бурения (КВБ).

В различных вариантах реализации изобретения схемы расположения датчиков, предлагаемые в данном описании, могут включать применение большого разнообразия сенсорных датчиков. Например, и передающие, и приемные датчики могут быть антеннами. Датчики могут быть реализованы в виде катушки, соленоида, магнитометра или другого аналогичного датчика. В случае с датчиком-катушкой угол наклона можно получить путем намотки витков под углом. В случае с соленоидом угол подъема сердечника может быть отрегулирован на нужное значение. В случае с магнитометром его можно устанавливать на прибор или внутрь него с нужным углом наклона.

Устройство 100 может содержать блок управления 120, осуществляющий управление генерацией передаваемых сигналов и сбором принимаемых сигналов, соответствующих передаваемым сигналам. Блок управления 120 выполнен с возможностью выбора тех или иных датчиков 10-1, 110-2…110-(N-1), 110-N в качестве передающих датчиков и приемных датчиков, с тем чтобы образовывать симметричный измерительный зонд. Блок управления 120 может контролировать излучение выбранных передающих датчиков и прием сигналов от выбранных приемных датчиков, благодаря чему измеренные сигналы могут быть применены для генерирования компенсированных сигналов, относящихся к связывающим компонентам, предлагаемым в данном описании. Блок управления 105 может выбирать те или иные датчики 10-1, 110-2…110-(N-1), 110-N в качестве передающих датчиков и приемных датчиков, образующих асимметричный измерительный зонд, с тем чтобы имитировать симметричный измерительный зонд. Блок управления 105 может управлять таким асимметричным измерительным зондом, благодаря чему измеренные сигналы могут быть применены для генерирования компенсированных сигналов, относящихся к связывающим компонентам, предлагаемым в данном описании. Генерация передаваемых сигналов может проводиться для подачи сигналов с разными частотами. Каждая из таких разных частот может быть связана с другим передающим датчиком. Собранные принимаемые сигналы могут быть переданы на блок обработки данных 126 в соответствующем формате для выполнения численного обращения данных, генерируемых сигналами, воспринятыми приемными датчиками в схеме расположения датчиков 110-1, 110-2…110-(N-1), 110-N.

Блок обработки данных 126 может быть сконструирован так, чтобы обрабатывать измеренные сигналы от симметричного измерительного зонда или чтобы имитированный симметричный измерительный зонд генерировал сигналы компенсации. Схема генерирования сигналов компенсации может быть выполнена в соответствии с различными вариантами реализации изобретения, обсуждаемыми в данном документе. Блок обработки данных 126 может применять процесс инверсии к компенсированным сигналам для генерирования характеристик пласта. Выполнение одной или более операций инверсии может включать применение опережающего моделирования и/или библиотеки. Опережающее моделирование обеспечивает набор математических зависимостей для отклика датчиков; эти зависимости могут быть применены для определения того, какой из выбранных датчиков будет производить измерения в той или иной среде, которая может содержать тот или иной пласт. Библиотека может содержать информацию о различных свойствах пласта, которые можно соотносить с измеренными откликами на сигналы от выбранного щупа. Выполнение одной или более операций инверсии может включать выполнение повторяющегося процесса или выполнение процесса сопоставления с шаблоном. Блок обработки данных 126 может быть устроен в виде блока, отдельного от блока управления 120 или встроенного в блок управления 120. Как оба блока - блок обработки данных 126 и блок управления 120, - так и каждый их них по отдельности могут представлять собой сконструированные распределенные компоненты.

На Фигурах 2А-В проиллюстрированы конфигурации антенн с конструкцией наклонной антенны. Такая конструкция наклонной антенны может быть применена в приборах каротажа сопротивления КВБ. Такие конфигурации антенн могут быть применены для получения связывающих компонентов, где девять связывающих компонентов могут быть впоследствии рассоединены. Вследствие индивидуальной чувствительности каждого связывающего компонента, с помощью 0D-инверсии, в которой задействованы такие компоненты, можно получать горизонтальное удельное сопротивление, вертикальное удельное сопротивление, отношение вертикального удельного сопротивления к горизонтальному удельному сопротивлению, а также относительный угол падения пласта с произвольно выбранными значениями наклона ствола скважины. Однако такие связывающие компоненты, как правило, представляют собой некомпенсированные сигналы. В среде однородного пласта такие некомпенсированные связывающие компоненты все же могут быть успешно применены для исследования характеристик пласта.

Однако в пластах либо в смоделированных с множественными маломощными слоями пластах могут иметь место более сильные влияния прилегающих слоев, вызывающие значительные искажения связывающих компонентов. Без конструкционной компенсации влияния прилегающих слоев может оказывать большее воздействие на некоторые связывающие компоненты, чем на другие. Кроме того, при таких способах применения некомпенсированных сигналов может быть получен асимметричный отклик относительно центра прибора для измерений, который может произвести динамическую регулировку фокуса измерений в зависимости от контраста слоев пласта. Таким образом, в случае высокой контрастности влияния прилегающих слоев 0D-инверсия, основанная на всех некомпенсированных связывающих компонентах, может быть нестабильной.

В различных вариантах реализации изобретения процессы могут выполняться для восприятия компенсированных связывающих сигналов для целей расчета точных характеристик пласта в среде маломощных слоев. В таких процессах могут быть применены наклонные антенны, устанавливаемые на верхней и нижней частях измерительного прибора, для выдачи компенсированного сигнала, наименее подверженного воздействию прилегающих слоев. Инвертированные характеристики пласта можно сравнивать при помощи 0D-инверсии на основании некомпенсированных и компенсированных сигналов. Применяя компенсированные связывающие компоненты, с помощью 0D-инверсии можно получить более стабильные и точные инвертированные характеристики анизотропии пласта и относительных углов падения пласта. Кроме того, стабильные результаты, полученные с помощью 0D-инверсии, могут быть применены в качестве оптимальной исходной модели пласта для более сложной одномерной (1D) инверсии. Схемы и устройства, обсуждаемые в данном документе, могут быть применены к процессам двухмерной (2D) и трехмерной (3D) инверсий.

С помощью сигналов от измерительных приборов, могут быть смоделированы пять сигналов, которые могут быть очень чувствительны к анизотропии пласта и относительному углу падения пласта. Сигнал 1 может генерироваться в отношении связывающего компонента XX, например, в виде коэффициента связывающего компонента XX. Сигнал 2 может генерироваться в отношении связывающего компонента YY, например, в виде коэффициента связывающего компонента YY. Сигнал 3 может генерироваться в связи с соотношением связывающих компонентов XX и YY. Сигнал 4 может генерироваться в связи с суммой связывающих компонентов XZ и ZX, а сигнал 5 может генерироваться в связи с измерением удельного сопротивления. Для оценки продуктивности пластов с чувствительностью к анизотропии пласта и относительному углу падения пласта могут генерироваться другие совокупности сигналов, которые могут содержать пять сигналов, более пяти сигналов или менее пяти сигналов. На Фигурах 1А и 1В проиллюстрированы конфигурации антенн, которые могут быть применены для получения измеренных сигналов для генерирования пяти сигналов. Такие конфигурации с конструкцией наклонной антенны выполнены с возможностью применения в каротажных приборах сопротивления для процесса каротажа во время бурения (КВБ).

На Фигуре 3А проиллюстрировано представление модели пласта с маломощными слоями с учетом горизонтального удельного сопротивления, Rh, 341 и вертикального удельного сопротивления, Rv, 342, на глубине. На Фигурах 3B-2F проиллюстрирована часть фазы пяти некомпенсированных искусственных сигналов от прибора с конфигурацией как на Фигурах 2А-В, соответствующих модели пласта с Фигуры 3А, с настройкой относительно угла падения пласта 0°. В целом, сигналы 1-2 имеют одинаковую чувствительность к влиянию прилегающих слоев, а сигналы 3-5 разную чувствительности к влиянию прилегающих слоев.

На Фигурах 4 В-4Е проиллюстрированы результаты 0D-инверсии с некомпенсированными входными сигналами, соответствующими сигналам с Фигур 3B-2F, при этом на Фигуре 4А повторно проиллюстрирована модель пласта с Фигуры 3А для иллюстрации результатов инверсии в отношении пласта. На Фигуре 4В проиллюстрирована инвертированная модель для горизонтального удельного сопротивления, Rh, 441, и вертикального удельного сопротивления, Rv, 442, от сигналов, а на Фигуре 4С и на Фигуре 4D проиллюстрированы инвертированные результаты 447 и 449 в отношении моделей 446 и 448 соответственно для угла падения и анизотропии. Как проиллюстрировано на Фигуре 4В, инвертированное вертикальное удельное сопротивление 442, по-видимому, имеет тенденцию к отклонению по глубине, если сравнивать его с инвертированным горизонтальным удельным сопротивлением 441. На определенных глубинах с более сильными влияниями прилегающих слоев, т.е. с высоким скачком удельного сопротивления между слоями, такими как интервал глубин от 9400 до 9420, инвертированный относительный угол падения пласта становится очень нестабильным. То же относится к инвертированным характеристикам анизотропии пласта.

На Фигурах 5A-D проиллюстрированы конфигурации симметричных антенн, выполненных с возможностью получения компенсированных сигналов. Такие конфигурации могут обеспечивать конструкционную компенсацию. На Фигуре 6А проиллюстрирована модель пласта с Фигуры 3А. На Фигурах 6B-F проиллюстрированы компенсированные сигналы, соответствующие модели пласта с Фигуры 6А с применением прибора с Фигур 5A-D, имеющего такую же рабочую частоту и шаг, как прибор с Фигур 2А-В для пяти сигналов с Фигур 3B-F. Проиллюстрированные пять сигналов были сгенерированы согласно уравнению (8а-е). Максимальные отклики пяти компенсированных сигналов с Фигур 6B-F реагируют аналогично на влияние прилегающих слоев. На Фигурах 7 В-7Е проиллюстрированы результаты 0D-инверсии с компенсированными входными сигналами, соответствующими сигналам с Фигур 6B-6F, а на Фигуре 7А повторно проиллюстрирована модель пласта с Фигуры 6А (Фигуры 3А) для иллюстрации результатов инверсии в отношении пласта. На Фигуре 7В проиллюстрирована инвертированная модель для горизонтального удельного сопротивления, Rh, 741, и вертикального удельного сопротивления, Rv, 742, от сигналов, а на Фигуре 7С и Фигуре 7D проиллюстрированы инвертированные результаты 747 и 749 в отношении моделей 746 и 748 соответственно для угла падения и анизотропии. 0D-инверсия, применяющая компенсированные сигналы Фигур 6B-F, имеет более стабильные и точные результаты, проиллюстрированные на Фигурах 7В-Е, чем результаты на Фигурах 4В-Е, особенно для инвертированного относительного угла падения пласта. Применение 0D-инверсии с применением компенсированных сигналов способствует получению более согласующихся данных (меньшее значение среднеквадратической погрешности, СКП), чем применение некомпенсированных сигналов, как иллюстрируется сопоставление Фигуры 7Е с Фигурой 7Е. Кроме того, такие стабильные результаты 0D-инверсии от компенсированных входных сигналов могут быть применены в качестве оптимальной исходной модели пласта для более сложной одномерной (1D) инверсии.

В различных вариантах реализации изобретения устройство и связанные с ним схемы обработки данных для получения компенсированных сигналов могут быть реализованы с конструкциями симметричных датчиков. На Фигуре 5А проиллюстрирован пример конструкции прибора, содержащего верхний передатчик 512-1А (Т1) и нижний передатчик 512-2А (Т2), находящиеся возле центрального приемника 514-1А (R) и отделенные от центрального приемника 514-1А одинаковым расстоянием (d). Верхний передатчик 512-1А и нижний передатчик 512-2А могут быть повернуты относительно продольной оси 517А конструкции прибора, на которой они расположены так, что образуют симметричную конструкцию, например, при . Верхний передатчик 512-1А и нижний передатчик 512-2А, как проиллюстрировано на Фигуре 5А, параллельны друг другу.

На Фигуре 5В проиллюстрирован пример конструкции прибора, содержащего верхний передатчик 512-1 В (Т1), нижний передатчик 512-2 В (Т2), верхний приемник 514-1В (R1) и нижний приемник 514-2В (R2). Верхний передатчик 512-1В отделен от верхнего приемника 514-1В на расстояние d1, равное расстоянию разделения нижнего передатчика 512-2В от нижнего приемника 514-2 В. Верхний передатчик 512-1В отделен от нижнего передатчика 512-2 В на расстояние 2d2. Верхний приемник 514-1 В отделен от средней точки между верхним передатчиком 512-1В и нижним передатчиком 512-2 В на такое же расстояние, на которое нижний приемник 514-2 В отделен от этой же средней точки, а именно d2-d1. Верхний передатчик 512-1В и нижний передатчик 512-2В могут быть повернуты относительно продольной оси 517 В конструкции прибора, на котором они расположены так, что образуют симметричную конструкцию, например, при. При, верхний передатчик 512-1 В и нижний передатчик 512-2В, как проиллюстрировано на Фигуре 5 В, параллельны друг другу. Симметричная конструкция может также содержать верхний приемник 514-1В и нижний приемник 514-2В, повернутые относительно продольной оси конструкции прибора при . При верхний приемник 514-1В и нижний приемник 514-2В, как проиллюстрировано на Фигуре 4В, параллельны друг другу.

На Фигуре 5С проиллюстрирован пример конструкции прибора, содержащего два верхних передатчика 512-1С (T1) и 512-2С (Т2), два нижних передатчика 512-3С (Т3) и 512-4С (Т4), верхний приемник 514-1С (R1) и нижний приемник 514-2С (R2). Два верхних передатчика 512-1С и 512-2С совмещены вдоль продольной оси 517С, благодаря чему эти передатчики расположены так, что образуют верхнюю перекрестную конструкцию антенны. Два нижних передатчика 512-3С и 512-4С совмещены вдоль продольной оси 517С, благодаря чему эти передатчики расположены так, что образуют нижнюю перекрестную конструкцию антенны. Верхняя перекрестная конструкция антенны отделена от верхнего приемника 514-1С на расстояние равное расстоянию разделения нижней перекрестной конструкции антенны от нижнего приемника 514-2С. Верхняя перекрестная конструкция антенны отделена от нижней перекрестной конструкции антенны на расстояние 2d2. Верхний приемник 514-1С отделен от средней точки между верхней перекрестной конструкцией антенны и нижней перекрестной конструкцией антенны на такое же расстояние, на которое нижний приемник 514-2С отделен от этой же средней точки, а именно d2-d1. Два верхних передатчика 512-1С и 512-2С могут быть повернуты относительно продольной оси 517С конструкции прибора, так что . Нижний передатчик 512-3С может быть отклонен от продольной оси 517С под тем же углом, под которым верхний передатчик 512-1С отклонен от продольной оси 517С, а нижний передатчик 512-4С может быть отклонен от продольной оси 517С под тем же углом, под которым верхний передатчик 512-2С отклонен от продольной оси 517С. Симметричная конструкция может также содержать верхний приемник 514-1С и нижний приемник 514-2С, направленные под одинаковым углом, θr, относительно продольной оси 517С конструкции прибора. Верхний приемник 514-1С и нижний приемник 514-2С, как проиллюстрировано на Фигуре 5С, параллельны друг другу.

На Фигуре 5D проиллюстрирован пример конструкции прибора, содержащего верхний передатчик 512-1D (Т1), нижний передатчик 512-2D (Т2), два верхних приемника 514-1D (R1) и 514-2D (R2) и два нижних приемника 514-3D (R3) и 514-4D (R4). Два верхних приемника 514-1D и 514-2D совмещены вдоль продольной оси 517D, благодаря чему эти приемники расположены так, что образуют верхнюю перекрестную конструкцию антенны приемника. Два нижних приемника 512-3D и 512-4D совмещены вдоль продольной оси 417D, благодаря чему эти приемники расположены так, что образуют нижнюю перекрестную конструкцию антенны приемника. Верхний передатчик 512-1D отделен от верхней перекрестной конструкции антенны приемника на расстояние d1, равное расстоянию отделения нижней перекрестной конструкции антенны приемника от нижнего передатчика 512-2D. Верхний передатчик 512-1D отделен от нижнего передатчика 512-2D на расстояние 2d2. Верхняя перекрестная конструкция антенны приемника отделена от средней точки между верхним передатчиком 512-1D и нижним передатчиком 512-2D на такое же расстояние, на которое нижняя перекрестная конструкция антенны приемника отделена от этой же средней точки, а именно d2-d1. Нижний приемник 514-3D может быть отклонен от продольной оси 517С под тем же углом, под которым верхний приемник 514-1D отклонен от продольной оси 517С, а нижний приемник 514-4D может быть отклонен от продольной оси 517С под тем же углом, под которым верхний приемник 514-2D отклонен от продольной оси 517С. Симметричная конструкция может также содержать верхний передатчик 512-1D и нижний передатчик 512-2D, которые могут быть повернуты относительно продольной оси 517D конструкции прибора под одним и тем же углом. Верхний передатчик 512-1D и нижний передатчик 512-2D, как проиллюстрировано на Фигуре 5D, параллельны друг другу.

В случае с конструкциями симметричных антенн, проиллюстрированных на Фигурах 5A-D, может быть получена непосредственная компенсация. Например, рассмотрим Фигуру 5А. Верхний передатчик 512-1А и нижний передатчик 512-2А находятся на одинаковом расстоянии (d) от центрального приемника 514-1А. В этом случае измерение или сигнал от измерительного прибора, полученный приемником вследствие генерирования сигнала передатчиком (излучение передатчика) может быть обозначено как VT-R. Измерение (помеченное VT1-R), полученное приемником 514-1А в связи с излучением передатчика 512-1А, может быть компенсировано измерением (помеченным VT2-R) приемника 514-1А в связи с излучением передатчика 512-2А. Компенсация может генерироваться следующим образом:

Серии измерений могут быть выполнены при помощи прибора, вращаемого таким образом, что измерения производят в нескольких местах по ходу вращения прибора, при этом вращение подразделяют на некоторое количество или группы. В одном варианте реализации изобретения присутствуют только два измерения, выполненные в каждой группе для получения азимутального компенсированного сигнала согласно уравнению (1) в такой группе. Кроме того, все азимутальные компенсированные сигналы могут быть получены благодаря операции вращения прибора. В альтернативном варианте может быть произведено четное, но более двух, количество измерений для каждой группы, в которой может быть применено среднее количество сигналов от измерительных приборов, или может генерироваться среднее количество компенсированных сигналов. Такие операции с группами могут быть выполнены в отношении каждой схемы расположения датчиков, обсуждаемой в данном документе.

На Фигуре 5В вводят представление о дополнительном приемнике к конструкции с Фигуры 5А. Такой дополнительный приемник ус