Термоформованные устройства офтальмологической вставки
Иллюстрации
Показать всеГруппа изобретений относится к медицине. Офтальмологическая линза содержит: устройство вставки, содержащее: первый элемент вставки и второй элемент вставки, которые представляют собой термоформованный материал трехмерной формы; и гидрогелевый герметизирующий материал вокруг устройства вставки; причем на участке между первым элементом вставки и вторым элементом вставки образована полость. В другом варианте офтальмологической линзы устройство вставки дополнительно может содержать юстировочные элементы для размещения компонентов на устройстве вставки, или устройство вставки содержит множество слоев материала; где первый слой материала обладает диэлектрическими свойствами и включает в себя часть проводящего материала, размещенного на поверхности элемента вставки. Группа изобретений позволит расширить арсенал технических средств, а именно офтальмологических устройств. 4 н. и 15 з.п. ф-лы, 10 ил., 1 табл.
Реферат
ОБЛАСТЬ ПРИМЕНЕНИЯ ИЗОБРЕТЕНИЯ
Изобретение описывает способы, прибор и устройства, связанные с термоформованием элементов вставки для включения в другие офтальмологические устройства и, более конкретно, в некоторых вариантах осуществления со способами использования аспектов термоформования при производстве офтальмологической линзы с жесткой вставкой, внутри которой или на которой есть компоненты.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Традиционно офтальмологическое устройство, такое как контактная линза, интраокулярная линза или пробка для слезной точки, представляет собой биосовместимое устройство, обладающее корректирующими, косметическими или терапевтическими качествами. Например, контактная линза может обеспечивать одно или более из коррекции зрения, получения косметического эффекта или использования линзы в терапевтических целях. Каждая функция обусловлена определенной физической характеристикой линзы. Конфигурация линзы с учетом светопреломляющего свойства позволяет осуществлять функцию коррекции зрения. Введение в материал линзы пигмента позволяет получить косметический эффект. Введение в материал линзы активного агента позволяет использовать линзу в терапевтических целях. Таких физических характеристик можно добиться без подключения линзы к источнику питания.
Недавно в контактную линзу были включены активные компоненты.
Альтернативное решение может предусматривать включение в офтальмологическое устройство элементов питания. Характеристики относительно сложных компонентов, предназначенных для достижения данного эффекта, можно улучшить путем включения их в устройства вставки, которые затем включают в состав стандартных или аналогичных материалов, подходящих для производства офтальмологических линз существующего уровня техники. Для создания вставок различных видов желательно улучшить технологический процесс, способы и полученные устройства. Можно предположить, что некоторые из решений для вставок с электроникой могут обеспечить новые аспекты проектирования устройств без встроенной электроники и других биомедицинских устройств. Таким образом, важно представить новые способы, устройства и прибор, связанные с термоформованием различных компонентов в офтальмологических и биомедицинских устройствах, выполненных со вставками.
ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
Настоящее изобретение включает в себя инновационные решения, относящиеся к способу формирования офтальмологической линзы с термоформованным устройством вставки, причем офтальмологическая линза содержит термоформованное устройство вставки, которое содержит первый элемент вставки, причем первый элемент вставки представляет собой термоформованный материал трехмерной формы; и гидрогелевый герметизирующий материал вокруг термоформованного устройства вставки.
В некоторых вариантах осуществления термоформованное устройство вставки может дополнительно содержать юстировочный элемент. В некоторых вариантах осуществления термоформованное устройство вставки может дополнительно содержать оптическую зону, причем термоформованный материал по меньшей мере в оптической зоне обладает способностью поляризовать свет, который проходит через оптическую зону. В альтернативном варианте осуществления термоформованная вставка может быть кольцеобразной, причем круговую часть в центре термоформованной вставки можно удалить в процессе термоформования.
Термоформованное устройство вставки может содержать множество слоев материала. Первый слой материала может обладать диэлектрическими свойствами и включает в себя часть проводящего материала, размещенного на поверхности элемента вставки. Первый слой материала может обладать изолирующими свойствами и включать в себя часть проводящего материала, размещенного на поверхности элемента вставки. В некоторых вариантах осуществления слой материала может изменять гидрофобность поверхности элемента вставки.
Некоторые такие варианты осуществления могут включать в себя слой красителя, покрывающий часть элемента вставки, например, в зоне радужной оболочки. Поляризующий слой может быть размещен между вторым и третьим слоями, которые могут располагаться смежно с первым слоем, причем второй и третий слои могут определять ориентацию поляризующего слоя. Поляризующий слой можно центрировать относительно юстировочного элемента, размещенного внутри первого элемента вставки. В таких вариантах осуществления офтальмологическая линза может дополнительно содержать стабилизирующий элемент, включенный в устройство офтальмологической линзы, который ориентирует устройство линзы в заранее заданное положение на глазу. Стабилизирующий элемент может быть окрашен или промаркирован для обеспечения визуального ориентира, причем стабилизирующий элемент может указывать пользователю, каким образом необходимо ориентировать офтальмологическую линзу на глазу.
В некоторых вариантах осуществления термоформованное устройство вставки может содержать второй элемент вставки, который представляет собой термоформованный материал трехмерной формы, причем на участке между первым элементом вставки и вторым элементом вставки образована полость. Термоформованное устройство вставки может дополнительно содержать первый юстировочный элемент, размещенный на первом элементе вставки, и второй юстировочный элемент, размещенный на втором элементе вставки. Первый юстировочный элемент может сцепляться со вторым юстировочным элементом. Термоформованное устройство вставки может дополнительно содержать герметизирующий слой между первым элементом вставки и вторым элементом вставки, который обеспечивает герметичное прилегание друг к другу первого элемента вставки и второго элемента вставки по меньшей мере вдоль частей их поверхностей.
В некоторых вариантах осуществления термоформованное устройство вставки может дополнительно содержать активный оптический элемент менисковой линзы, размещенный между первым элементом вставки и вторым элементом вставки. В альтернативном варианте осуществления термоформованное устройство вставки может включать в себя активный агент, который может растворяться в офтальмологической среде при размещении офтальмологической линзы на глазу.
ОПИСАНИЕ ЧЕРТЕЖЕЙ
На фиг. 1 представлен пример прибора для термоформования в соответствии с некоторыми вариантами осуществления настоящего изобретения.
На фиг. 2 представлен пример технологических стадий термоформования компонента, соответствующего активной офтальмологической линзе со встроенной электроникой.
На фиг. 3 представлен пример сложного элемента вставки, который может быть изготовлен способом термоформования в соответствии с некоторыми вариантами осуществления настоящего изобретения.
На фиг. 4 представлен пример юстировочных элементов и методик, которые можно включить в производство вставок с использованием принципов термоформования.
На фиг. 5 представлен пример осуществления жесткой вставки с использованием принципов термоформования.
На фиг. 6 представлен пример осуществления вкладыша-субстрата с использованием принципов термоформования.
На фиг. 7 представлен пример осуществления элементарной линзы с использованием принципов термоформования.
На фиг. 8 представлен пример функциональных элементов и методик, которые можно включить в производство вставок с использованием принципов термоформования.
На фиг. 9 представлен пример осуществления центрированного дифференциального поляризующего элемента для офтальмологических линз с использованием принципов термоформования.
На фиг. 10 представлена схема технологических операций примера способа формирования термоформованных компонентов и включающих их офтальмологических линз.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Настоящее изобретение включает в себя способы и прибор для производства офтальмологической линзы с жесткой вставкой, где части вставки можно сформировать методом термоформования. Кроме того, настоящее изобретение включает в себя офтальмологическую линзу с жесткой вставкой, встроенной в офтальмологическую линзу.
В соответствии с настоящим изобретением офтальмологическая линза может быть сформирована со встроенной вставкой, которая в некоторых случаях включает в себя источник энергии, такой как электрохимический элемент или аккумуляторная батарея, в качестве средства хранения энергии. В некоторых вариантах осуществления жесткая вставка также включает в себя набор схем, компонентов и источников энергии. Различные варианты осуществления могут включать в себя жесткую вставку, в которой набор схем, компонентов и источников энергии размещен по периферии оптической зоны, через которую может видеть пользователь линзы, тогда как другие варианты осуществления могут включать в себя набор схем, компонентов и источников энергии, которые имеют достаточно малые размеры для оказания негативного воздействия на зрение пользователя контактной линзы, и, следовательно, они могут располагаться в жесткой вставке внутри или снаружи оптической зоны. Вставные элементы одноэлементных и многоэлементных жестких вставок могут быть сформированы методом термоформования. Многочисленные стадии, направленные на обеспечение различных функций компонентов офтальмологических устройств на основе вставки, можно выполнять на тонком листе подложки перед термоформованием или на элементе вставки после термоформования.
В целом в соответствии с некоторыми вариантами осуществления настоящего изобретения жесткую вставку можно встроить в офтальмологическую линзу с помощью автоматического устройства, которое может поместить вставку в необходимое местоположение относительно части формы для литья, используемой для производства линзы. Варианты осуществления, в которых в офтальмологическую линзу помещают различные компоненты, могут включать в себя одну или более стадий, на которых компоненты герметизируют и адгезивно прикрепляют на место или на которых компоненты герметически закрывают.
В некоторых вариантах осуществления источник энергии может находиться в электрическом соединении с компонентом, который можно активировать по команде и который потребляет электрический ток от источника энергии, включенного в офтальмологическую линзу. Компонент может включать в себя, например, полупроводниковое устройство, активное или пассивное электрическое устройство или электрически активируемый механизм, включая, например: микроэлектромеханические системы (МЭМС), наноэлектромеханические системы (НЭМС) или микромеханизмы. После размещения источника энергии и компонента реакционной смеси при помощи формы для литья можно придать необходимую форму, и ее можно полимеризовать для образования офтальмологической линзы.
В следующих разделах будет приведено подробное описание вариантов осуществления настоящего изобретения. Описания как предпочтительных, так и альтернативных вариантов осуществления являются только примерами осуществления. Предполагается, что специалистам в данной области будут понятны возможности использования вариаций, модификаций и внесения изменений. Следовательно, следует учитывать, что указанные примеры осуществления не ограничивают объем настоящего изобретения.
СПИСОК ТЕРМИНОВ
В данном описании и формуле изобретения, относящихся к настоящему изобретению, используются различные термины, для которых будут приняты следующие определения.
Задний криволинейный элемент или задний элемент вставки - при использовании в настоящем документе термин относится к сплошному элементу жесткой вставки, который после сборки в составе указанной вставки занимает местоположение на стороне офтальмологической линзы, которая находится сзади. В офтальмологическом устройстве такой элемент будет размещен на стороне вставки, которая ближе к поверхности глаза пользователя. В некоторых вариантах осуществления задний криволинейный элемент может содержать и включать в себя участок в центре офтальмологического устройства, через который свет может проходить в глаз пользователя, который можно назвать оптической зоной. В других вариантах осуществления элемент может иметь кольцевую форму и не содержать или включать в себя некоторые или все участки оптической зоны. В некоторых вариантах осуществления офтальмологической вставки можно использовать множество задних криволинейных элементов, и один из них может включать в себя оптическую зону, тогда как другие могут иметь кольцевую форму или форму частей кольца.
Компонент - при использовании в настоящем документе термин относится к устройству, которое может потреблять электрический ток от источника энергии для осуществления одного или более из изменения логического состояния или изменения физического состояния.
Герметизировать - при использовании в настоящем документе термин относится к созданию барьера для отделения объекта, такого как, например, вкладыш-субстрат, от окружающей среды, смежной с объектом.
Герметизирующий материал - при использовании в настоящем документе термин относится к слою, образованному вокруг объекта, такого как, например, вкладыш-субстрат, который создает барьер для отделения объекта от окружающей среды, смежной с объектом. Например, герметизирующие материалы могут быть образованы из силикон-гидрогелей, таких как этафилкон, галифилкон, нарафилкон и сенофилкон, либо другого гидрогелевого материала для контактных линз. В некоторых вариантах осуществления герметизирующий материал может быть полупроницаемым, чтобы удерживать указанные вещества внутри объекта и предотвращать проникновение в объект указанных веществ, таких как, например, вода.
Заряженный - при использовании в настоящем документе термин относится к состоянию возможности подачи электрического тока или хранения электрической энергии внутри устройства.
Энергия - при использовании в настоящем документе термин относится к способности физической системы совершать работу. Множество вариантов применения в рамках настоящего изобретения могут относиться к указанной способности системы выполнять электрические действия во время работы.
Источник энергии - при использовании в настоящем документе обозначает устройство, выполненное с возможностью поставлять энергию или приводить биомедицинское устройство в заряженное состояние.
Устройство сбора энергии - при использовании в настоящем документе термин относится к устройству, способному извлекать энергию из окружающей среды и преобразовывать ее в электрическую энергию.
Передний криволинейный элемент или передний элемент вставки - при использовании в настоящем документе термин относится к сплошному элементу жесткой вставки, который после сборки в составе указанной вставки занимает местоположение на стороне офтальмологической линзы, которая находится спереди. В офтальмологическом устройстве передний криволинейный элемент будет размещен на стороне вставки, которая дальше от поверхности глаза пользователя. В некоторых вариантах осуществления элемент может содержать и включать в себя участок в центре офтальмологического устройства, через который свет может проходить в глаз пользователя, который можно назвать оптической зоной. В других вариантах осуществления элемент может иметь кольцевую форму и не содержать или включать в себя некоторые или все участки оптической зоны. В некоторых вариантах осуществления офтальмологической вставки можно использовать множество передних криволинейных элементов, и один из них может включать в себя оптическую зону, тогда как другие могут иметь кольцевую форму или форму частей кольца.
Линзообразующая смесь, или реакционная смесь, или реакционная смесь мономера (РСМ) - при использовании в настоящем документе обозначает мономерный или форполимерный материал, который можно подвергать отверждению и поперечному сшиванию или подвергать поперечному сшиванию для формирования офтальмологической линзы. Различные варианты осуществления могут включать в себя линзообразующие смеси с одной или более добавками, такими как УФ-блокаторы, оттеночные добавки, фотоинициаторы или катализаторы, а также другие желаемые добавки для офтальмологических линз, таких как контактные или интраокулярные линзы.
Линзообразующая поверхность - относится к поверхности, которую используют для литья линзы. В некоторых вариантах осуществления любая такая поверхность может представлять собой поверхность оптической чистоты и качества, что указывает на то, что она является достаточно гладкой и выполнена таким образом, что поверхность линзы, образованная при полимеризации линзообразующего материала, которая контактирует с поверхностью формы для литья, обладает оптически приемлемым качеством. Кроме того, в некоторых вариантах осуществления линзообразующая поверхность может иметь такую геометрию, которая необходима для придания поверхности линзы необходимых оптических характеристик, включая, без ограничений, коррекцию сферических, асферических и цилиндрических степенных аберраций волнового фронта, коррекцию топографии роговицы и т.п., а также любых их комбинаций.
Литий-ионный элемент - относится к электрохимическому элементу, в котором электрическая энергия вырабатывается в результате перемещения ионов лития через элемент. Данный электрохимический элемент, как правило, называемый аккумуляторной батареей, в своей типичной форме может быть возвращен в состояние с более высоким зарядом или перезаряжен.
Вкладыш-субстрат - при использовании в настоящем документе относится к герметизированному вкладышу, который будет включен в офтальмологическое устройство со встроенной электроникой. Во вкладыш-субстрат могут быть встроены элементы питания и электрическая схема. Вкладыш-субстрат определяет основное назначение офтальмологического устройства со встроенной электроникой. Например, в вариантах осуществления, в которых офтальмологическое устройство со встроенной электроникой позволяет пользователю корректировать оптическую силу, вкладыш-субстрат может включать в себя элементы питания, управляющие частью жидкостного мениска в оптической зоне. В альтернативном варианте осуществления вкладыш-субстрат может иметь кольцевую форму, так что оптическая зона не содержит материал. В таких вариантах осуществления обусловленная энергопитанием функция линзы может быть не связана с оптическим качеством, а может предусматривать, например, мониторинг уровня глюкозы или введение лекарственного препарата.
Форма для литья - относится к жесткому или полужесткому объекту, который можно использовать для формирования линз из неполимеризованных составов. Некоторые предпочтительные формы для литья включают в себя две части - часть формы для литья передней криволинейной поверхности и часть формы для литья задней криволинейной поверхности.
Офтальмологическая линза, или офтальмологическое устройство, или линза - при использовании в настоящем документе термин относится к любому устройству, расположенному в глазу или на нем. Устройство может обеспечивать возможность оптической или косметической коррекции или обеспечивать некоторые функции, не связанные с оптическим качеством. Например, термин «линза» может относиться к контактной линзе, интраокулярной линзе, накладной линзе, глазной вставке, оптической вставке или другому аналогичному устройству, которое применяют для коррекции или модификации зрения или для косметической коррекции физиологии глаза (например, изменения цвета радужной оболочки) без снижения зрения. В альтернативном варианте осуществления термин «линза» может относиться к устройству, которое можно помещать на глаз для осуществления функции, отличной от коррекции зрения, такой как, например, мониторинг содержания компонента слезной жидкости или средств введения активного агента. В некоторых вариантах осуществления предпочтительные линзы, составляющие предмет настоящего изобретения, могут представлять собой мягкие контактные линзы, изготовленные из силиконовых эластомеров или гидрогелей, которые могут включать в себя, например, силикон-гидрогели и фторгидрогели.
Оптическая зона - при использовании в настоящем документе термин относится к области офтальмологической линзы, через которую смотрит пользователь офтальмологической линзы.
Мощность - при использовании в настоящем документе термин относится к совершенной работе или переданной энергии за единицу времени.
Перезаряжаемый или перезапитываемый - при использовании в настоящем документе термин относится к возможности возврата в состояние способности совершать работу с более высокой мощностью. Множество вариантов применения в рамках настоящего изобретения могут относиться к возможности восстановления указанной способности, при которой электрический ток определенной величины испускается в течение определенного периода времени.
Перезапитывать или перезаряжать - возвращать в состояние совершения работы с более высокой мощностью. Множество вариантов применения в рамках настоящего изобретения могут относиться к восстановлению указанной способности устройства испускать электрический ток определенной величины в течение определенного периода времени.
Высвобожденный из формы для литья - термин означает, что линза либо полностью отделена от формы для литья, либо лишь слабо прикреплена к ней таким образом, что ее можно удалить легким встряхиванием или сдвинуть тампоном.
Жесткая вставка - при использовании в настоящем документе термин относится к вставке, которая сохраняет заранее определенную геометрическую форму. При включении в контактную линзу жесткая вставка может способствовать реализации функциональных характеристик линзы. Например, различная геометрическая форма или плотность жесткой вставки может определять зоны, способные корректировать зрение пользователей, страдающих астигматизмом.
Стабилизирующий элемент - при использовании в настоящем документе термин относится к физической характеристике, которая стабилизирует офтальмологическое устройство в конкретном положении на глазу при размещении офтальмологического устройства на глазу. В некоторых вариантах осуществления стабилизирующий элемент может иметь достаточный вес для придания устойчивости офтальмологическому устройству. В некоторых вариантах осуществления стабилизирующий элемент может изменять переднюю изогнутую поверхность, где веко может соприкасаться со стабилизирующим элементом, позволяя пользователю изменять ориентацию линзы посредством моргания. Такие варианты осуществления можно усовершенствовать путем включения стабилизирующих элементов, способных придавать дополнительную массу. В некоторых примерах осуществления стабилизирующие элементы могут представлять собой отдельный материал, изготовленный из герметично закрывающего биосовместимого материала, могут представлять собой вставку, образованную отдельно от элементов, изготовленных методом литья, либо могут быть включены в жесткую вставку или вкладыш-субстрат.
При использовании в настоящем документе термин «многослойные интегрированные многокомпонентные устройства», или «SIC-устройства», относится к результату применения технологий упаковки, позволяющих собирать тонкие слои подложек, которые могут содержать электрические и электромеханические устройства, в функциональные интегрированные устройства путем наложения по меньшей мере части каждого слоя друг на друга. Слои могут содержать многокомпонентные устройства различных типов, материалов, форм и размеров. Более того, слои могут быть изготовлены по различным технологиям производства устройств для получения различных контуров.
Трехмерная поверхность или трехмерная подложка - при использовании в настоящем документе термин относится к любой поверхности или подложке, которые были образованы в трех измерениях, где в отличие от плоской поверхности геометрическая форма разработана для конкретной цели.
Термоформование
В процессе термоформования тонкий лист материала нагревают до такой температуры, при которой он становится гибким или легко сгибаемым. Затем лист материала сгибают или подвергают термоформованию для формирования заранее определенной формы, соответствующей части формы для литья. В результате прессования листа в форме для литья и, как правило, откачивания воздуха между поверхностями формы для литья и листа материал деформируется с образованием трехмерной структуры, которая соответствует части формы для литья. После охлаждения соответствующий тонкий лист материала может сохранять трехмерную форму, в которую он был преобразован.
На фиг. 1 представлен пример прибора 100 для термоформования листа. Представленный прибор 100 является примером осуществления прибора, с помощью которого можно выполнять термоформование, однако данной области техники, представленной в настоящем документе, могут соответствовать и другие альтернативные варианты осуществления прибора, осуществляющего термоформование. В некоторых вариантах осуществления лист 110 материала, предназначенный для термоформования, может иметь отверстия 111, выполненные в листе 110 таким образом, чтобы лист мог надежно удерживаться на месте другими частями прибора.
Лист 110 может удерживаться на месте в результате размещения между верхним удерживающим элементом 120 и нижним удерживающим элементом 130. Штифты могут центрировать отверстия 121 на верхнем удерживающем элементе 120 и отверстия 131 на нижнем удерживающем элементе 130 с выполненными в листе 110 центрирующими отверстиями 111. После размещения листа 110 между верхним удерживающим элементом 120 и нижним удерживающим элементом 130 удерживающие элементы 120 и 130 можно прочно скрепить вместе. В некоторых вариантах осуществления через отверстие 121, расположенное в верхнем удерживающем элементе 120, в положении за пределами тонкого листа 110 можно вставить фиксирующий элемент, такой как, например, винт. Например, для неподвижной фиксации листа 110 на месте винт можно вставить через резьбовое отверстие 132. В других вариантах осуществления оборудование для термоформования может удерживать лист 110 на месте без применения винтов или фиксирующего элемента.
Удерживаемый в постоянном положении и центрированный лист 110 можно подвергать обработке при помощи оборудования многочисленных типов, во время работы которого для центрирования удерживаемого листа 110 можно использовать центрирующие отверстия 122 и 132. Данные технологические процессы могут осуществляться до или после термоформования, но в данном примере осуществления удерживаемый лист 110 можно обрабатывать на стадии термоформования. В таких вариантах осуществления штифт, который проходит через нижний удерживающий элемент 130, может определять местоположение юстировочных элементов 122 и 132. Штифт может проходить над нижним удерживающим элементом 130 для центрирования листа 110, а также над верхним удерживающим элементом 120 и под нижним удерживающим элементом 130 для центрирования листа с формующими элементами прибора для термоформования 140. Штифты под нижним удерживающим элементом 130 могут сопрягаться с центрирующими отверстиями 141 на приборе для термоформования 140.
В некоторых вариантах осуществления прибор для литья 100 и тонкий лист 110 можно нагревать до соответствующей температуры, для того чтобы лист стал гибким, после чего к тонкому листу 110, удерживаемому между верхним удерживающим элементом 120 и нижним удерживающим элементом 130, можно прикладывать давление, чтобы протолкнуть лист к формующему элементу 150. При приложении давления на поверхности формующего элемента 150 или около него через контактные точки 142 и 143 прибора для литья 100 может создаваться вакуум. В некоторых вариантах осуществления формующий элемент 150 может иметь регулируемую температуру. В альтернативных вариантах осуществления через контактные точки 142 и 143 прибора для литья 100 может подаваться текучая среда с контролируемой температурой. В других вариантах осуществления источник энергии, такой как электрический ток, может нагревать форму для литья через контактные точки 142 и 143. В других вариантах осуществления вся рабочая среда листа 110 и прибора для термоформования 140 может иметь соответствующую температуру для термоформования материала тонкого листа 110.
После прекращения подачи давления и вакуума, предназначенных для удерживания тонкого листа 110 на формующем элементе 150, лист 110 можно снять с формующего элемента 150. После остывания лист 110 снова может стать жестким, сохраняя трехмерную форму, в которую лист 110 был преобразован путем термоформования.
На фиг. 2 представлен пример последовательности обработки 200 листа для формирования элемента вставки, который в дальнейшем может подвергнуться термоформованию. Данная последовательность обработки 200 приведена только в качестве примера, и объем настоящего изобретения включает в себя другие модификации и последовательности.
Последовательность обработки 200 может начинаться со стадии 210, на которой обеспечивают тонкий лист 211 термоформуемого материала. Например, в некоторых вариантах осуществления тонкий лист 211 может состоять из поликарбоната. Дополнительные примеры тонкого листа термоформуемого материала представлены в таблице 1. В некоторых вариантах осуществления в ходе стадии 220 на лист 211 можно наносить центрирующие метки 221. Например, указанные центрирующие метки 221 можно напечатать на листе 211, проштамповать в листе 211 или вырезать из листа 211. Некоторые варианты осуществления могут включать в себя отверстия 222, проштампованные в листе 211 для удержания листа 211 в приборе для термоформования 100, таком как, например, представленный на фигуре 1.
В некоторых вариантах осуществления в ходе стадии 230 на листе 211 можно выполнить проводящие соединения 231. Данные соединения 231 можно выполнить путем покрытия листа 211 пленками проводящего материала с последующим структурированным удалением участков проводящего материала для образования соединений 231. В альтернативных вариантах осуществления соединения 231 можно напечатать на поверхности с использованием проводящих чернил. Любой способ формирования проводящих соединений 231 на плоском листе может согласовываться с областью техники, представленной в настоящем документе.
В некоторых вариантах осуществления в ходе стадии 240 проводящие соединения 231 можно по меньшей мере частично покрыть изолирующим материалом. Напыление изолятора может быть важной составляющей некоторых конкретных способов производства, таких как, например, формирование вставок для вариантов осуществления менисковой линзы. В некоторых вариантах осуществления в ходе стадии 250 участки элемента вставки можно покрыть пленкой для изменения гидрофобности поверхности. В одном примере осуществления в ходе стадии 250 можно покрыть весь лист 211, однако объем настоящего изобретения включает в себя также варианты осуществления, в которых покрывают только часть листа 211, такую как, например, только участок, который станет элементом вставки. Стадия 250 может согласовываться с вариантами осуществления, которые связаны с образованием активных линз менискового типа. В ходе стадии 260 тонкий лист 211 можно подвергнуть обработке, включающей в себя стадию термоформования для создания трехмерной формы 261 на поверхности тонкопленочного материала.
В некоторых вариантах осуществления после выполнения стадии 260 лист 211, который подвергали термоформованию, можно в дальнейшем обрабатывать для создания отдельных элементов вставки. В ходе стадии 270 посредством вырезания указанной части 271 листа, который подвергали термоформованию, можно сформировать элемент вставки, имеющий приблизительно круговую форму. Способ вырезания может включать в себя, например, механическую резку, штампование или резку с помощью лучей, таких как лазерная резка, плазменная резка, химическая резка или резка струей жидкости высокого давления.
Следующая стадия может зависеть от предпочтительного варианта осуществления полученного элемента вставки. В ходе стадии 280 элемент вставки может быть извлечен из листа 211 с центральной оптической частью. В альтернативных вариантах осуществления в ходе стадии 290 элемент вставки может быть извлечен из листа 211, где центральная оптическая часть 291 также может быть извлечена для создания элемента кольцеобразной вставки. В данном примере осуществления термоформованный лист 211 переходит от стадии 270 либо к стадии 280, либо к стадии 290. В других вариантах осуществления стадия 280 может быть промежуточной стадией между стадией 270 и стадией 290. Специалистам в данной области могут быть понятны и другие комбинации и вариации данной последовательности обработки, которые могут считаться включенными в объем области техники, представленной в настоящем документе. С помощью описанных выше технологий можно сформировать более сложные элементы вставки.
Таблица 1 | |
Примеры материалов для термоформования | |
Тип пленки | |
Акрилонитрилбутадиенстирол | |
Поликарбонат | |
Полистирол | |
Поливинилхлорид | |
Двуосноориентированный полипропилен | |
Полиэтилентерефталат (ПЭТ) | |
Аморфный ПЭТ | |
ПЭТ-гликоль | |
Ориентированный ПЭТ | |
Двуосноориентированный полипропилен | |
Сополимер циклоолефина |
На фиг. 3 представлена офтальмологическая вставка 300, изготовленная из термоформованного листа. В некоторых вариантах осуществления офтальмологическая вставка 300 может включать в себя многочисленные важные элементы, получаемые при термоформовании листа в трехмерный элемент. Например, в некоторых вариантах осуществления оптическая зона 310 офтальмологического устройства, выполненного вместе со вставкой 300, может включать в себя оптически прозрачный элемент. В таких вариантах осуществления для получения оптической прозрачности термоформованной поверхности можно применять различные материалы и настройки оборудования для термоформования.
Проводящие соединения 320, 330, 340, 370 и 380 можно добавить к тонкопленочной поверхности перед термоформованием или к трехмерной форме после термоформования. В некоторых вариантах осуществления поверхность может включать в себя один или оба изолированных проводящих соединения 340 и 370 или соединения 330 и 380, электрически соединенные в точке соединения 320. Размещение соединений 320, 330, 340, 370 и 380 на офтальмологической вставке 300 показано только в качестве примера; в некоторых альтернативных вариантах осуществления можно применять и другие конфигурации. Расположение в определенном порядке может оказаться полезным при формировании вставки с питанием с двумя последовательно соединенными электрохимическими аккумуляторными элементами. Полученный элемент питания может иметь точки соединения 350 и 360. Компоненты, способные переносить электрический ток от элемента питания, можно прикрепить, например, к точкам соединения 350 и 360 либо, в других вариантах осуществления, к другим местоположениям на показанном варианте осуществления офтальмологической вставки.
Аспекты центрирования термоформованных вставок
В случае сложных компонентов вставки, включая трехмерные формы, проводящие соединения и другие к