Замкнутый цикл управления параметрами бурения

Иллюстрации

Показать все

Изобретение относится к средствам управления буровой компоновкой. Техническим результатом является исключение неравномерного вращения бурильной колонны при заклинивании или проскальзывании бурового долота. В частности, предложен способ управления буровой компоновкой, содержащий: получение данных измерений по меньшей мере от одного датчика, присоединенного к элементу буровой компоновки, расположенному в пласте; определение эксплуатационного ограничения по меньшей мере для участка буровой компоновки, основанного по меньшей мере частично на модели пласта и наборе данных отклонения, причем это определение включает определение верхнего и нижнего пределов количества скручиваний в колонне бурильных труб буровой компоновки; генерирование управляющего сигнала для изменения одного или более параметров бурения буровой компоновки, основанных по меньшей мере частично на данных измерения и эксплуатационном ограничении; и передачу управляющего сигнала к регулируемому элементу буровой компоновки. 2 н. и 18 з.п. ф-лы, 11 ил.

Реферат

УРОВЕНЬ ТЕХНИКИ

Углеводороды, такие как нефть и газ, как правило, добывают из подземных пластов, которые могут быть расположены на суше или в море. В большинстве случаев пласты расположены в тысячах футов под поверхностью, а ствол скважины должен пройти через пласт перед началом добычи углеводородов. Поскольку операции бурения скважин становятся все более сложными, и углеводородные пласты, соответственно, становятся более труднодоступными, повышается необходимость точного определения местонахождения буровой компоновки в пласте как вертикальной, так и горизонтальной. Бурение скважин для достижения пластов, представляющих интерес, в механических и эксплуатационных пределах системы бурения, при этом с высокой степенью точности и производительности, является тяжелым, но важным для рентабельности операции бурения.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

Некоторые конкретные типовые варианты реализации настоящего изобретения будут понятны частично со ссылкой на следующее описание и сопроводительные графические материалы.

На фиг. 1 представлена схема, иллюстрирующая типовую систему бурения, в соответствии с аспектами настоящего изобретения.

На фиг. 2 представлена схема, иллюстрирующая типовую систему обработки информации, в соответствии с аспектами настоящего изобретения.

На фиг. 3 представлена схема, показывающая рельеф участка местности одновременно с разрезом земной коры типовой модели земных недр, в соответствии с аспектами настоящего изобретения.

На фиг. 4 представлена схема, иллюстрирующая типовой процесс генерирования эксплуатационных ограничений и выходных управляющих сигналов, в соответствии с аспектами настоящего изобретения.

На фиг. 5 представлена схема, иллюстрирующая типовую систему управления процессом, в соответствии с аспектами настоящего изобретения.

На фиг. 6 представлена примерная схема, иллюстрирующая систему управления для блока управления, в соответствии с аспектами настоящего изобретения.

На фиг. 7 представлена диаграмма, иллюстрирующая типовое эксплуатационное ограничение, относящееся к поворотам в бурильной колонне, в соответствии с аспектами настоящего изобретения.

На фиг. 8 представлена диаграмма, иллюстрирующая типовое эксплуатационное ограничение для предотвращения радиального биения бурового долота в скважине, в соответствии с аспектами настоящего изобретения.

На фиг. 9 проиллюстрирован типовой внутрискважинный инструмент, способный изменить один или более параметров бурения, в соответствии с аспектами настоящего изобретения.

На фиг. 10 проиллюстрирован типовой блок управления тягой, в соответствии с аспектами настоящего изобретения.

На фиг. 11 проиллюстрирован типовой забойный двигатель, в соответствии с аспектами настоящего изобретения.

Несмотря на то, что варианты реализации настоящего изобретения были проиллюстрированы, описаны и изложены посредством ссылки на приведенные в качестве примера варианты реализации изобретения, эти ссылки не ограничивают изобретение, и такое ограничение не подразумевается. Раскрываемый объект изобретения допускает значительную модификацию, изменение и эквиваленты по форме и функции, которые станут понятны специалистам в данной отрасли и имеют преимущества данного изобретения. Проиллюстрированные и описанные варианты реализации настоящего изобретения приведены исключительно в целях иллюстрации и не ограничивают объем настоящего изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

В контексте настоящего описания система обработки данных может содержать любые устройства или совокупность устройств, выполненных с возможностью вычисления, систематизации, обработки, передачи, получения, извлечения, создания, перенаправления, хранения, отображения, выдачи, обнаружения, записи, воспроизведения, управления или применения любой формы информации, оперативной информации или данных для бизнеса, научных целей, управления или других целей. Например, система обработки информации может являться персональным компьютером, сетевым устройством хранения данных или любым подходящим устройством и может иметь разный размер, форму, производительность, функциональность и стоимость. Система обработки данных может содержать оперативное запоминающее устройство (ОЗУ), один или более ресурсов, производящих обработку, таких как центральный процессор (ЦП) или логическое устройство управления аппаратным или программным обеспечением, постоянное запоминающее устройство ПЗУ и/или другие типы энергонезависимого запоминающего устройства. Дополнительные компоненты системы обработки данных могут содержать одно или большее количество внешних запоминающих устройств, таких как дисковые запоминающие устройства, твердотельные накопители, такие как ОЗУ флеш-накопители, устройства облачного хранения в сети, один или большее количество сетевых портов для обмена данными с внешними устройствами, а также с различными устройствами ввода-вывода (I/O), такими как клавиатура, мышь и монитор. Система обработки данных может также содержать одну или большее количество шин, выполненных с возможностью обеспечения обмена данными между различными компонентами аппаратного обеспечения. Она также может содержать одну или большее количество интерфейсных устройств, способных передавать один или большее количество сигналов на автоматическое регулирующее устройство, привод или подобное устройство.

Для целей данного раскрытия машиночитаемый носитель может содержать любое устройство или совокупность устройств, способных хранить данные и/или команды в течение определенного периода времени. Читаемые компьютером носители могут включать, например, носитель данных, такой как запоминающее устройство с прямым доступом (например, жесткий диск или дискета), запоминающее устройство с последовательным доступом (например, магнитная лента), компакт диск, CD-ROM, DVD, ОЗУ, ПЗУ, электрически стираемое программируемое постоянное запоминающее устройство (EEPROM) и/или флеш-память, но не ограничиваются ими; а также средства коммуникации, такие как провода, оптоволокно, микроволны, радиоволны и другие электромагнитные и/или оптические носители; и/или сочетание перечисленного ранее.

Иллюстративные варианты реализации настоящего изобретения более подробно приведены в данном описании изобретения. Для ясности в настоящем описании могут быть приведены не все признаки фактической реализации. Конечно, следует понимать, что в разработке любого такого фактического варианта осуществления для достижения конкретных целей реализации выполняют многочисленные реализации конкретных решений, которые будут отличаться от одной реализации к другой. Кроме того, следует иметь в виду, что такая разработка может быть сложной и трудоемкой, но, тем не менее, благодаря настоящему описанию, быть повседневным делом для специалиста в данной области техники.

С целью лучшего понимания настоящего изобретения приведены следующие примеры конкретных вариантов реализации. Эти примеры не следует воспринимать как ограничивающие или определяющие объем изобретения. Варианты реализации настоящего изобретения могут быть применимы к горизонтальным, вертикальным, отклоненным или другим нелинейным стволам скважины в любом типе подземного пласта. Варианты реализации изобретения могут быть применимы к нагнетательным скважинам, а также добывающим скважинам, включая углеводородные скважины. Варианты осуществления могут быть реализованы с использованием инструмента, подходящего для тестирования, извлечения и отбора проб вдоль секций пласта. Варианты осуществления могут быть реализованы посредством инструментов, которые, например, могут быть переправлены через канал потока в колонне труб или с использованием кабеля, тросовой проволоки, колонны гибких труб, скважинного робота и т.п.

В контексте настоящего описания предполагается, что термин «соединены» или «соединен» обозначает непрямое либо прямое соединение. Таким образом, если первое устройство соединено со вторым устройством, такое соединение может быть осуществлено через прямое соединение или через непрямое механическое или электрическое соединение посредством других устройств и соединений. Аналогично термин "коммуникационно присоединенный" обозначает непрямое либо прямое коммуникационное присоединение. Такое соединение может быть проводным или беспроводным соединением, таким как, например, Ethernet или локальная вычислительная сеть (LAN). Данные проводные или беспроводные соединения хорошо известны специалистам в данной отрасли, поэтому они не будут подробно рассматриваться в контексте данного изобретения. Таким образом, если первое устройство коммуникационно присоединено ко второму устройству, такое соединение может быть осуществлено через прямое присоединение или через непрямое коммуникационное присоединение посредством других устройств и соединений.

Современные операции бурения и добычи нефти требуют информации относительно параметров и условий в скважине. Существует несколько способов сбора информации о скважине, включая каротаж во время бурения ("КВБ") и измерения во время бурения ("ИВБ"). При КВБ, данные обычно собирают во время процесса бурения, таким образом исключая необходимость удаления буровой компоновки для введения кабельного каротажного прибора. Следовательно, КВБ обеспечивает возможность оператору, осуществляющему бурение, вносить точные модификации или исправления в режиме реального времени для оптимизации производительности, при этом сводя к минимуму время простоя. Термин ИВБ обозначает измерение условий в скважине, относящихся к перемещению и расположению буровой компоновки во время продолжения бурения. КВБ более сконцентрирован на измерении параметров пласта. Хотя существуют различия между ИВБ и КВБ, термины ИВБ и КВБ часто используются взаимозаменяемо. В настоящем описании термин КВБ будет использован с пониманием того, что этот термин включает сбор параметров пласта и сбор информации, относящейся к перемещению и расположению буровой компоновки.

На фиг. 1 представлена схема, иллюстрирующая типовую систему бурения 100, в соответствии с аспектами настоящего изобретения. Система бурения 100 может содержать буровую платформу 102, расположенную на поверхности 104. В проиллюстрированном варианте реализации изобретения поверхность 102 содержит верхнюю часть пласта 106, содержащую одну или более породных толщин или слоев 106a-d. Несмотря на то, что на фиг. 1 поверхность 104 проиллюстрирована как участок земли, в некоторых вариантах реализации изобретения буровая платформа 102 может быть расположена в море, в таком случае поверхность 104 будет отделена от буровой платформы 102 массой воды.

Система бурения 100 может содержать буровую установку 108, установленную на буровую платформу 102 и расположенную над стволом скважины 110, находящимся внутри пласта 106. В проиллюстрированном варианте реализации изобретения буровая компоновка 112 может быть по меньшей мере частично размещена внутри ствола скважины 110 и присоединена к буровой установке 108. Буровая компоновка 112 может содержать бурильную колонну 114, компоновку низа бурильной колонны (КНБК) 116, и буровое долото 118. Бурильная колонна 114 может содержать множество участков бурильной трубы с резьбовым соединением. КНБК 116 может быть присоединена к бурильной колонне 114, а буровое долото 118 может быть присоединено к КНБК 116.

КНБК 116 может содержать устройства, такие как телеметрическая система 120 и элементы КВБ/ИВБ 122. Элементы КВБ/ИВБ 122 могут содержать внутрискважинные приборы – в том числе датчики, антенны, гравитометры, гироскопы, магнитометры, инерциальные измерительные блоки и т.д., которые могут непрерывно или периодически контролировать условия в скважине и измерять показатели скважины 110 и пласта 106, окружающего скважину 110. Элементы КВБ/ИВБ 122 могут дополнительно измерять угол торца долота внутрискважинных элементов, угловое положение внутрискважинных элементов относительно пласта 106. Такие значения измерений могут быть предусмотрены как данные измерений для процессора (например, как описано в фиг. 2 ниже). В некоторых вариантах реализации изобретения, информация, сгенерированная элементом КВБ/ИВБ 122, может быть передана в виде данных измерения на поверхность с использованием телеметрической системы 120. Телеметрическая система 120 может обеспечивать обмен данными с поверхностью через различные каналы, включая проводные и беспроводные каналы обмена данными, а также гидроимпульсы через буровой раствор внутри буровой компоновки 112.

В некоторых вариантах реализации изобретения КНБК 116 может дополнительно содержать блок управления 124. Блок управления 124 может быть присоединен к буровому долоту 118, может управлять любым направлением бурения буровой компоновки 112, управляя углом и ориентацией бурового долота относительно КНБК 116 и/или пласта 106. Угол и ориентация бурового долота 112 могут управляться блоком управления 124, например, посредством управления продольной осью 126 КНБК 116 наряду с продольной осью 128 бурового долота 118 относительно пласта 106 (например, размещение с отклонением долота) или путем управления продольной осью 128 бурового долота 118 относительно продольной оси 126 КНБК 116 (например, размещение с направлением долота).

В проиллюстрированных вариантах реализации изобретения продольная ось 128 бурового долота 118 смещена относительно продольной оси 126 КНБК 116. Продольная ось 128 бурового долота 118 может соответствовать направлению бурения буровой компоновки 112, т.e. направлению, при котором буровое долото 118 будет врезаться в пласт 106 при вращении. То есть, блок управления 124 может быть коммуникационно присоединен к телеметрической системе 120, а также к одному или более внутрискважинным и/или поверхностным автоматическим регулирующим устройствам, которые могут определять и обмениваться данными о направлении бурения для буровой компоновки 112 с блоком управления 128 .

Насос 130, расположенный на поверхности 104, может прокачивать буровой раствор со скоростью нагнетания (например, галлонов в минуту) из резервуара для раствора 132 через питающую трубу 134 к ведущей бурильной трубе 136, вниз по скважине через внутреннее пространство бурильной колонны 114, через отверстия в буровом долоте 118, обратно к поверхности через кольцевое пространство вокруг бурильной колонны 114, и в резервуар для раствора 132. Буровой раствор переносит буровой шлам из ствола скважины 110 в резервуар 132 и способствует сохранению целостности ствола скважины 110. Скорость нагнетания на насосе 130 может соответствовать скважинному расходу, отличающемуся от скорости нагнетания вследствие потери текучей среды внутри пласта 106. В некоторых вариантах реализации изобретения, КНБК 116 может содержать забойный двигатель с гидравлическим приводом (не показан), который преобразует поток бурового раствора во вращательный момент и крутящий момент, который используется для передачи движения буровому долоту 118. Крутящий момент, приложенный к буровому долоту 118 забойным двигателем, и результирующая скорость вращения бурового долота 118 могут основываться, по меньшей мере частично, на скорости нагнетания.

В некоторых вариантах реализации изобретения, участки буровой компоновки 112 могут быть подвешены от буровой установки 108 на крюке в сборе 138. Общая сила, опускающая крюк в сборе 138, может упоминаться как нагрузка на крюк, характеризующаяся весом соответствующей бурильной колонны 114, КНБК 116, бурового долота 118, и других элементов скважины, присоединенных к бурильной колонне 114 за вычетом любых сил, уменьшающих вес, таких как трение вдоль стенки ствола скважины 110 и подъемные силы, действующие на колонну бурильных труб 114, вызванные ее затоплением в буровом растворе. При контакте бурового долота 118 с нижней частью пласта 106, пласт 106 обеспечивает смещение некоторого веса буровой компоновки 112, и это смещение может соответствовать осевой нагрузке на долото (WOB) буровой компоновки 112. Крюк в сборе 138 может содержать индикатор веса, показывающий количество веса, подвешенного на крюке 138 в данный момент времени. В некоторых вариантах реализации изобретения, положение крюка в сборе 138 относительно буровой установки 108 и, следовательно, нагрузку на крюк и WOB можно изменять при помощи лебёдки 140, присоединенной к крюку в сборе 138.

Система бурения 100 может дополнительно содержать механизм верхнего силового привода или роторный стол 142. Бурильная колонна 114 может находиться по меньшей мере частично внутри роторного стола 142, который может сообщать крутящий момент и вращение к бурильной колонне 114 и приводит к вращению бурильной колонны 114. Крутящий момент и вращение, сообщаемые бурильной колонне 114, могут быть переданы на КНБК 116 и буровое долото 118, приводя их к вращению. Описанный выше крутящий момент на буровом долоте 118 вызванный роторным столом 142 и/или забойным двигателем, может быть обозначен как момент вращения долота (ТОВ), а скорость вращения бурового долота 118 может быть выражена в оборотах в минуту (RPM). Вращение бурового долота 118 может приводить к взаимодействию бурового долота 118 с пластом 106 или его забуриванию в пласт, и углублению ствола скважины 110. Возможны и другие конфигурации буровой компоновки.

В некоторых вариантах реализации изобретения, система бурения 100 может содержать блок управления 144, расположенный на поверхности 104. Узел управления 144 может содержать систему обработки данных, реализующую систему управления или алгоритм управления для системы бурения 100. Блок управления 144 может быть коммуникационно присоединен к одному или более регулируемым элементам системы бурения 100, включая насос 130, крюк в сборе 138/лебёдку 140, элементы КВБ/ИВБ 122, роторный стол 142, и блок управления 124. Регулируемые элементы могут содержать элементы буровой компоновки 112, которые отвечают на управляющие сигналы от блока управления 114 для изменения одного или более параметров бурения системы бурения 100, как будет описано ниже. Блок управления 144 может быть коммуникационно присоединен к поверхностным регулируемым элементам, например, посредством проводных или беспроводных соединений, а также может быть коммуникационно присоединен к забойным регулируемым элементам посредством телеметрической системы 120 и поверхностного приёмника 146. В некоторых вариантах реализации изобретения, система управления или алгоритм может обеспечивать генерирование и передачу блоком управления 124 сигналов управления к одному или более элементам системы бурения 100.

В некоторых вариантах реализации изобретения, блок управления 144 может принимать входные сигналы от системы бурения 100 и выпускать управляющие сигналы, основанные по меньшей мере частично на входных сигналах. Входные сигналы могут содержать данные измерений или запись показаний приборов в пласте от КНБК 116, в том числе прямые или косвенные значения измерений параметров бурения для буровой компоновки 112. Типовые параметры бурения включают ТОВ, WOB, скорость вращения бурового долота, угол торца долота, скорость потока и т.д. Управляющие сигналы могут быть направлены к элементам системы бурения 100, коммуникационно присоединенным к блоку управления 144, или к приводам или другим управляемым механизмам, содержащимся в данных элементах. В некоторых вариантах реализации изобретения, некоторые или все из управляемых элементов системы бурения 100 могут содержать ограниченные интегральные элементы управления или процессоры, выполненные с возможностью приема управляющего сигнала от блока управления 144 и создавать конкретную команду к соответствующим приводам или другим управляемым механизмам.

Управляющие сигналы, выпускаемые блоком управления, могут вызывать изменения одного или более параметров бурения элементами системы бурения 100, к которым для этого направляются управляющие сигналы. Например, управляющий сигнал, направленный к насосу 130, может вызвать изменение скорости нагнетания насоса, при которой буровой раствор перекачивается в бурильную колонну 114, которая в свою очередь может изменить скорость потока через забойный двигатель, присоединенный к буровому долоту 118, а также ТОВ и скорость вращения бурового долота 118. Управляющий сигнал, отправленный к крюку в сборе 138, может изменять нагрузку на крюк в сборе путем увеличения или уменьшения веса буровой установки, переносимого лебедкой 140, что может приводить к изменению WOB и TOB. Управляющий сигнал, отправленный к роторному столу 142, может изменять скорость вращения и крутящий момент роторного стола, приложенные к бурильной колонне 110, которые могут изменять TOB, скорость вращения бурового долота 118, и угол торца долота КНБК 116. Несмотря на то, что управляющие сигналы описаны выше по отношению к поверхностным элементам системы бурения 100, в некоторых вариантах реализации изобретения, как будет описано ниже, один или более забойных элементов могут принимать управляющие сигналы от автоматического регулирующего устройства и изменять один или более параметров бурения на основании управляющего сигнала. Другие типы управляющего сигнала будут понятны специалисту в данной отрасли при ознакомлении с настоящим описанием.

На фиг. 2 представлена схема, иллюстрирующая типовую систему обработки данных 200, в соответствии с аспектами настоящего изобретения. Система обработки данных 200 может применяться, например, как часть системы или блока управления для буровой компоновки, и может быть расположена на поверхности, в скважине (например, в стволе скважины), или частично на поверхности и частично в скважине. Например, оператор буровой установки может взаимодействовать с системой обработки данных 200, расположенной на поверхности, для изменения параметров бурения или для выдачи управляющих сигналов к регулируемым элементам системы бурения, коммуникационно присоединенным к системе обработки данных 200. В других вариантах реализации изобретения, система обработки данных 200 может автоматически генерировать управляющие сигналы, что приводит к изменению параметров бурения элементами системы бурения, основанному по меньшей мере частично на входных сигналах, принимаемых от забойных элементов, которые более подробно будут описаны ниже.

Система обработки данных 200 может содержать процессор или центральный процессор ЦП 201, коммуникационно присоединенный к контроллеру-концентратору запоминающего устройства или северному мосту 202. Контроллер-концентратор запоминающего устройства 202 может содержать контроллер запоминающего устройства для передачи информации к или от различных компонентов запоминающего устройства системы в пределах системы обработки данных, таких как, ОЗУ 203, элемент запоминающего устройства 206 и накопитель на жестких дисках 207. Контроллер-концентратор запоминающего устройства 202 может быть соединен с ОЗУ 203 и графическим процессором 204. Контроллер-концентратор запоминающего устройства 202 также может быть присоединен к контроллеру-концентратору ввода-вывода или южному мосту 205. Концентратор ввода-вывода 205 присоединен к элементам запоминающего устройства вычислительной системы, содержащей элемент 206 запоминающего устройства, который может содержать флэш-ПЗУ, которое содержит базовую систему ввода-вывода (BIOS) вычислительной системы. Концентратор ввода-вывода 205 также присоединен к накопителю на жестких дисках 207 вычислительной системы. Концентратор ввода-вывода 205 также может быть присоединен к сверхбольшой интегральной схеме 208 ввода-вывода, которая присоединена к нескольким портами ввода-вывода вычислительной системы, включая порты для подключения клавиатуры 209 и мыши 210. Система обработки данных 200 может быть дополнительно коммуникационно присоединена к одному или более элементам системы бурения посредством интегральной схемы 208. Система обработки данных 200 может содержать компоненты программного обеспечения, которые обрабатывают входные сигналы, и компоненты программного обеспечения, которые генерируют командные сигналы или управляющие сигналы, основанные по меньшей мере частично на входных сигналах. В контексте данного изобретения, программное обеспечение или компоненты программного обеспечения могут содержать набор команд, хранящийся в машиночитаемом носителе информации, исполнение которых процессором, присоединенным к машиночитаемому носителю информации, приводит к выполнению процессором определенных действий.

В соответствии с аспектами настоящего изобретения, блок управления может обнаруживать или принимать по меньшей мере одно эксплуатационное ограничение для буровой компоновки, и может генерировать и выпускать управляющие сигналы к элементам буровой компоновки, основанные по меньшей мере частично на эксплуатационном ограничении и принятых входящих данных. Эксплуатационные ограничения могут содержать диапазон значений параметров бурения или диапазон значений, имеющих отношение к параметрам бурения буровой компоновки. В дополнение к этому, эксплуатационные ограничения могут быть вычислены для того, чтобы буровая компоновка оставалась в физико-механических пределах элементов буровой компоновки, или для оптимизации работы буровой компоновки или элемента буровой компоновки.

В некоторых вариантах реализации изобретения, эксплуатационные ограничения могут быть установлены с использованием по меньшей мере одного из указанных: модели земных недр и набора данных отклонения. На фиг. 3 представлена схема, показывающая рельеф участка местности одновременно с разрезом земной коры типовой модели земных недр 300, в соответствии с аспектами настоящего изобретения. Как можно увидеть, модель земных недр 300 содержит пласт 302 с отложениями пластов 302a-d, каждый из которых может содержать отличающийся от другого тип породы с различными механическими и электромагнитными характеристиками. Модель 300 может идентифицировать конкретные точки заложения скважины, ориентировки, литологические типы пород и особенности формирования пластов 302a-d, в том числе местоположения граничных поверхностей 304-308, отделяющих отложения пластов 302a-d. В некоторых вариантах реализации изобретения, модель 300 может быть получена на месте из записи показаний приборов и материалов обследования, в том числе, но не ограничиваясь только ими: акустических, электромагнитных и сейсмических данных обследования. Несмотря на то, что модель земных недр 300 проиллюстрирована в виде наглядного изображения в пояснительных целях, модель земных недр 300 также может содержать математическую модель.

В некоторых вариантах реализации изобретения, блок управления может внедрять данные отклонения в или использовать их в сочетании с моделью земных недр 300 при определении эксплуатационных ограничений для буровой компоновки. В контексте данного изобретения, данные отклонения могут содержать фактические показатели, зарегистрированные в ходе других операций бурения, которые сопоставляют типы породы и пласты с определенными инструментами и параметрами бурения. Данные отклонения могут, например, определять взаимосвязи крутящего момента между литологическими типами пород и буровыми долотами, пределы скорости бурового долота для конкретных типов пластов и т.д. Данные отклонения могут быть охарактеризованы литологическими типами пород, соответствующими данным, и связаны с теми литологическими типами породами, что в структуре модели 300. Следовательно, эксплуатационные ограничения, установленные с использованием как модели земных недр 300, так и набора данных отклонения, могут быть строго определенными для отложений пластов, каждое отложение пласта связанно с отличным от другого эксплуатационным ограничением или набором эксплуатационных ограничений.

На фиг. 3 дополнительно проиллюстрирован план бурения 350 внутри пласта 300. План бурения 350 может содержать заданную траекторию скважины, пробуренную в пласте 300. Модель 300 может применяться для определения где и когда скважина будет проходить через граничные поверхности 304-308, где и когда скважина будет вскрывать определенные типы геологических пластов в отложениях пластов 302a-d, параметров бурения внутри скважины, прогнозируемых когда буровая компоновка, следующая по плану бурения 350, находится в контакте с отложением пластов 302a-d, и эксплуатационных ограничений, применяемых при выпускании управляющих сигналов. Когда скважина бурится в соответствии с планом бурения 350, блок управления может выбрать эксплуатационное ограничение или набор эксплуатационных ограничений, связанный с отложением пластов, в котором размещена буровая компоновка в соответствии с моделью земных недр 300 и планом бурения 350, и может использовать выбранный набор эксплуатационных ограничений для генерирования и выпускания управляющих сигналов к элементам буровой компоновки. В дополнение к этому, блок управления может использовать входные сигналы от буровой компоновки, чтобы определить, когда была пересечена граница в разных отложениях пластов модели земных недр 300, и может выбрать эксплуатационное ограничение или набор эксплуатационных ограничений, связанных с различными отложениями пластов. Блок управления также может использовать входные сигналы для проверки корректности модели земных недр 300 и обновления модели земных недр 300 и эксплуатационных ограничений, если модель земных недр 300 ошибочна.

На фиг. 4 представлена схема, иллюстрирующая типовой процесс генерирования эксплуатационных ограничений и выходных управляющих сигналов, основанных по меньшей мере частично на эксплуатационных ограничениях, в соответствии с аспектами настоящего изобретения. Процесс может быть осуществлен в системе обработки данных или блоке управления, как описано выше. В проиллюстрированном варианте реализации изобретения, модель земных недр 400 и набор данных отклонения 402 могут быть получены процессором, который может генерировать набор прогнозных измеренных значений 404, основанных по меньшей мере частично на модели земных недр 400 и данных отклонения 402. Набор прогнозных измеренных значений 404 может содержать выборки, связанные с различными отложениями пластов, определенными в модели земных недр 400. В проиллюстрированном варианте реализации изобретения, набор прогнозных измеренных значений 404 обозначен как EXPi, где i соответствует одному отложению пласта из отложений пластов в модели земных недр 400. Набор прогнозных параметров бурения 404 может содержать параметры бурения и/или измерений промысловых геофизических исследований, которые прогнозируются в системе конкретного отложения пластов на основании типа отложения пластов из модели земных недр 400 и параметров бурения и/или значений измерений при промысловых геофизических исследованиях, выявленных в подобном отложении пластов из данных отклонения 402.

В некоторых вариантах реализации изобретения, процессор может принимать набор прогнозных измеренных значений 404 и по меньшей мере один физический, механический, или эксплуатационный предел 406 буровой компоновки, и может генерировать набор эксплуатационных ограничений 408, основанных по меньшей мере частично на наборе значений прогнозных параметров бурения 404 и по меньшей мере одном физическом, механическом или эксплуатационном пределе 406 буровой компоновки. По меньшей мере одна физическая, механическая, или эксплуатационная характеристика 406 буровой компоновки может содержать интервал значений, вне которого буровая компоновка или элемент буровой компоновки не будет функционировать должным образом. Эти интервалы значений могут основываться на механических предельных значениях буровой компоновки, например, прочности скважинной опорной поверхности, временном сопротивлении при растяжении внутрискважинных инструментов, и т.д. Интервалы значений также могут основываться на взаимодействии между различными элементами буровой компоновки. Например, как будет описано ниже, определенный блок управления может быть способен только поддерживать направление бурения буровой компоновки, когда определенный крутящий момент и параметры вращения оказываются в соответствии относительно двигателя, входящего в комплект блока управления.

Набор эксплуатационных ограничений 408 может быть образован или вычислен процессором и может отражать диапазон параметров бурения или диапазон значений, относящихся к параметрам бурения буровой компоновки, которые будут гарантировать, что буровая компоновка функционирует надлежащим образом и/или функционирует оптимальным образом. Также, как и набор прогнозных значений параметров бурения 404, набор эксплуатационных ограничений 408 может содержать выборки, связанные с различными отложениями пластов, определенными в модели земных недр 400, эксплуатационные ограничения 408 на фиг. 4 обозначены как OpCi , где i соответствует одному отложению пласта из отложений пластов в модели земных недр 400. В некоторых вариантах реализации изобретения, эксплуатационные ограничения 408 могут быть многомерными по отношению к параметрам бурения буровой компоновки. В частности, эксплуатационные ограничения 408 могут содержать двух- и более мерные рабочие параметры, которые ограничивают комбинации двух и более параметров бурения.

В некоторых вариантах реализации изобретения, набор эксплуатационных ограничений 408 может использоваться системой управления или алгоритмом 410 для управления системой бурения 412. В частности, система управления 410 может принимать входные сигналы 414 от элементов системы бурения 412 и может выборочно выпускать управляющие сигналы 416 для системы бурения 412, основанные по меньшей мере частично на сравнении между входными сигналами 414 и набором эксплуатационных ограничений 408. В некоторых вариантах реализации изобретения, система управления 410 может автоматически генерировать управляющие сигналы 416 для системы бурения 412 без вмешательства оператора. В дополнение к этому, в некоторых вариантах реализации изобретения, система управления 410 может использовать входные сигналы 414, чтобы обновить модель земных недр 400 для формирования или для отслеживания условий работы буровой установки.

Фиг. 5 иллюстрирует схему типовой системы управления процессом, в соответствии с аспектами настоящего изобретения. В целях иллюстрации, нижеприведенный процесс может содержать текущую переменную пласта x, которая может быть установлена до значений, соответствующих одному или более отложениям пластов i, i+1, i+2, и т.д. Текущая переменная пласта x может быть изначально установлена до i , при этом i соответствует самому близкому к поверхности отложению пластов. Этап 500 может содержать приём входных сигналов по меньшей мере от одного элемента системы бурения. Как было описано выше, входные сигналы могут содержать значение измерения или регистрируемую информацию от КНБК, которая может содержать прямые или косвенные значения измерений параметров бурения буровой компоновки. На этапе 502 входные сигналы могут быть сопоставлены непосредственно с набором прогнозных измеренных значений, связанных с фактическим отложением пластов x, EXPx, или входные сигналы могут быть сопоставлены с EXPx после чего входные сигналы подвергаются обработке.

На этапе 504 определяют, находятся ли входные сигналы в пределах диапазона набора прогнозных значений измерений EXPx. Если входные сигналы находятся в диапазоне набора прогнозных значений измерений EXPx, входные сигналы могут быть сопоставлены с набором эксплуатационных ограничений, связанных с фактическим отложением пластов x, OpCx, на этапе 506. Если входные сигналы находятся вне диапазона набора прогнозных значений измерений EXPx, это может свидетельствовать о том, что модель земных недр, используемая для определения набора прогнозных значений измерений EXPx ошибочна, или глубина буровой компоновки точно не известна по отношению к модели земных недр, и процесс может перейти к этапу 508. Этап 508 может содержать определение, находятся ли входные сигналы в диапазоне набора прогнозных измеренных значений, связанных со следующим отложением пластов i+1. Это может произойти, например, когда граничная поверхность следующего отложения пластов i+1 достигнута, и один или более параметров бу