Система смазки крейцкопфного механизма машины (варианты)

Иллюстрации

Показать все

Изобретение относится к системе смазки крейцкопфного механизма машины. Система (220) смазки содержит крейцкопф (30), имеющий корпус, углубление (252) для смазки, выполненное на наружной поверхности (250) корпуса крейцкопфа, и отверстие (254) для смазки, проходящее через корпус крейцкопфа от углубления (252) к отверстию (182) в крейцкопфе, причем крейцкопф (30) выполнен с возможностью перемещения в машине возвратно-поступательным образом. Корпус крейцкопфа (30) представляет собой единую цельную конструкцию, выполненную из первого композиционного материала, содержащего первый упрочняющий материал, распределенный в первом материале матрицы. Технический результат: создание крейцкопфа из композиционного материала, который является облегченным, но при этом обладает надлежащей прочностью, облегченная конструкция крейцкопфа повышает производительность компрессора, обеспечивая возможность его работы на более высоких скоростях. 3 н. и 15 з.п. ф-лы, 12 ил.

Реферат

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ

[0001] Приоритет настоящей заявки заявляется по дате подачи заявки на патент США №13/674933, озаглавленной «Система Смазки Крейцкопфа», поданной 12 ноября 2012 года, которая включена в настоящий документ в полном объеме посредством ссылки.

ПРЕДПОСЫЛКИ

[0002] Этот раздел описания предназначен для ознакомления читателя с различными аспектами данной области техники, которые могут быть связаны с различными аспектами настоящего изобретения, которые описаны и/или заявлены ниже. Это обсуждение, как следует полагать, полезно в том смысле, что предоставляет читателю справочную информацию для облегчения лучшего понимания различных аспектов настоящего изобретения. Соответственно, следует понимать, что эти утверждения следует рассматривать в этом аспекте, а не как признание предшествующего уровня техники.

[0003] Поршень может представлять собой диск или цилиндр, который перемещается в цилиндре механического узла с плотным прилеганием. Поршень в цилиндре работает для передачи усилия от рабочей жидкости коленчатому валу, или наоборот. Поршень может содержать крейцкопф, предназначенный для уменьшения или устранения бокового, или радиального, давления на поршень во время работы. Например, механические узлы, такие как двигатели, насосы, компрессоры, содержат цилиндры с движущимися возвратно-поступательно поршнями. В двигателях поршень перемещается в ответ на давление текучей среды в результате сгорания топлива. Более конкретно, усилие от давления жидкости передается поршню, который далее передает усилие коленчатому валу. В отличие от двигателя, насосы и компрессоры содержат поршни для сжатия или извлечения жидкости внутри соответствующего цилиндра. Насос или компрессор содержит коленчатый вал, который передает усилие от поршня рабочей жидкости, так что рабочая жидкость сжимается или перемещается внутри цилиндра. К сожалению, скорость поршня и крейцкопфа и, поэтому, пропускная способность механического узла может быть ограничена конструкцией поршня.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0004] Различные признаки, аспекты и преимущества настоящего изобретения станут более понятными из нижеследующего подробного описания со ссылкой на прилагаемые чертежи, на которых одинаковые символы обозначают одинаковые части на всех чертежах, на которых:

[0005] Фиг. 1 представляет собой вид в аксонометрии поршневого компрессора, содержащего облегченный композиционный крейцкопф и/или облегченный композиционный поршень, выполненный в соответствии с вариантами выполнения настоящего изобретения;

[0006] Фиг. 2 представляет собой вид в осевом разрезе иллюстративного компрессора, показанного на Фиг. 1, включая облегченный композиционный крейцкопф и/или облегченный композиционный поршень, выполненный в соответствии с вариантами выполнения настоящего изобретения;

[0007] Фиг. 3 представляет собой вид сбоку в разрезе облегченного композиционного поршня, выполненного в соответствии с вариантами выполнения настоящего изобретения;

[0008] Фиг. 4 представляет собой вид в частичном поперечном разрезе в плоскости 4-4, показанной на Фиг. 3, иллюстрирующий вариант выполнения композиционного материала, имеющего упрочняющий материал, распределенный в материале матрицы;

[0009] Фиг. 5 представляет собой разобранный вид узла облегченного композиционного поршня, выполненного в соответствии с вариантами выполнения настоящего изобретения;

[0010] Фиг. 6 представляет собой вид сбоку в разрезе узла облегченного композиционного поршня, показанного на Фиг. 5, выполненного в соответствии с вариантами выполнения настоящего изобретения;

[0011] Фиг. 7 представляет собой схематическое изображение иллюстративной системы поршневого цилиндра, содержащей облегченный композиционный поршень, выполненный в соответствии с вариантами выполнения настоящего изобретения;

[0012] Фиг. 8 представляет собой вид сбоку облегченного композиционного крейцкопфа, выполненного в соответствии с вариантами выполнения настоящего изобретения;

[0013] Фиг. 9 представляет собой вид сбоку в разрезе пальца крейцкопфа, выполненного в соответствии с вариантами выполнения настоящего изобретения;

[0014] Фиг. 10 представляет собой вид сбоку в разрезе пальца крейцкопфа, выполненного в соответствии с вариантами выполнения настоящего изобретения;

[0015] Фиг. 11 представляет собой вид в аксонометрии крейцкопфа, выполненного в соответствии с вариантами выполнения настоящего изобретения; и

[0016] Фиг. 12 представляет собой схематическое изображение компрессора, имеющего систему смазки крейцкопфа.

ПОДРОБНОЕ ОПИСАНИЕ КОНКРЕТНЫХ ВАРИАНТОВ ВЫПОЛНЕНИЯ

[0017] Ниже описаны один или несколько конкретных вариантов выполнения настоящего изобретения. Эти описанные варианты выполнения являются только примерами настоящего изобретения. Кроме того, в попытке дать краткое описание этих иллюстративных вариантов выполнения, все признаки фактической реализации не могут быть описаны в описании. Следует отметить, что при разработке любой такой фактической реализации, как и в любом инженерном или дизайнерском проекте, для достижения конкретных целей разработчиков, таких как соблюдение ограничений, связанных с системой и с бизнесом, которые могут варьироваться от одной реализации к другой, должны быть выполнены многочисленные реализации конкретных решений. Кроме того, следует понимать, что такие усилия по разработке могут быть сложными и трудоемкими, но, тем не менее, представляют собой для специалистов, обладающих преимуществом этого описания, обычное дело конструирования, изготовления и производства.

[0018] При введении элементов различных вариантов выполнения настоящего изобретения, термины «указанный» и те, которые обозначают единственное или множественное число, предназначены для обозначения наличия одного или нескольких элементов. Термины «содержащий», «включающий» и «имеющий» подразумевают включение и означают, что могут иметься и другие дополнительные элементы, помимо перечисленных элементов. Кроме того, использование терминов «верхний», «нижний», «выше», «ниже» и вариации этих терминов сделано для удобства и не требует при этом какой-либо конкретной ориентации элементов.

[0019] Некоторые варианты выполнения настоящего изобретения содержат поршень, выполненный из облегченного композиционного материала или другого облегченного материала. Например, облегченный композиционный материал может представлять собой материал, образованный из материала матрицы и упрочняющего материала. Например, упрочняющий материал может содержать частицы, волокна или т.п., распределенные по всему материалу матрицы. В других вариантах выполнения облегченный композиционный материал может содержать металлические элементы и неметаллические элементы. Поршень может быть выполнен с возможностью использования в поршневом компрессоре, двигателе, насосе или тому подобном. В некоторых вариантах выполнения композиционный облегченный поршень может иметь единую цельную конструкцию или конструкции с несколькими частями. В вариантах выполнения облегченного композиционного поршня, имеющего конструкцию с несколькими частями, поршень может содержать две полые половинки, каждая из которых имеет одно или несколько внутренних ребер жесткости, выполненных с обеспечением увеличения прочности поршня. Варианты выполнения облегченного композиционного поршня дополнительно содержат держатель поршневого кольца, выполненный с возможностью установки и поддержки поршневого кольца. Как должно быть понятно, поршневое кольцо может служить для получения газонепроницаемого уплотнения между поршнем и поршневым цилиндром, когда поршень перемещается в поршне цилиндра. Кроме того, некоторые варианты выполнения могут содержать шток поршня, выполненный из композиционного материала. Как подробно описано ниже, облегченный композиционный поршень может быть выполнен из различных облегченных материалов. Преимущественно, облегченный конструкционный материал поршня обеспечивает возможность работы поршня на более высоких скоростях. Таким образом, компрессор, насос, двигатель или другая машина, в которой работает поршень, может иметь большую пропускную способность без увеличения размера поршневого цилиндра. Кроме того, облегченная конструкция может обеспечить дополнительные преимущества, как описано ниже.

[0020] Кроме того, некоторые варианты выполнения настоящего изобретения содержат крейцкопф, изготовленный из облегченного композиционного материала или другого облегченного материала. Например, облегченный композиционный материал может представлять собой материал, образованный из материала матрицы и упрочняющего материала (например, частицы или волокна, распределенные по всему материалу матрицы). В других вариантах выполнения облегченный композиционный материал может содержать металлические элементы и неметаллические элементы. Крейцкопф может быть выполнен с возможностью использования в поршневом компрессоре, двигателе, насосе или тому подобном. В некоторых вариантах выполнения облегченный композиционный крейцкопф может также включать крейцкопф, изготовленный из облегченного композиционного материала. Варианты выполнения пальца облегченного композиционного крейцкопфа могут быть выполнены с возможностью работы в качестве опорной поверхности между крейцкопфом и соединительной тягой. В частности, палец облегченного композиционного крейцкопфа может быть выполнен с возможностью подачи масла или другой смазки к поверхностям крейцкопфа, пальца и соединительной тяги. Как подробно описано ниже, облегченный композиционный крейцкопф может быть изготовлен из различных облегченных материалов. Преимущественно, облегченный конструкционный материал крейцкопфа обеспечивает возможность работы крейцкопфа на более высоких скоростях. Таким образом, компрессор, насос, двигатель или другая машина, использующая крейцкопф, может реализовать большую пропускную способность без увеличения размера поршневого цилиндра. Кроме того, облегченная конструкция может обеспечить дополнительные преимущества, как описано ниже.

[0021] Кроме того, некоторые варианты выполнения настоящего изобретения содержат системы смазки для крейцкопфа в механическом узле, таком как компрессор, двигатель, насос или тому подобное. Например, система смазки крейцкопфа может содержать крейцкопф и палец крейцкопфа (например, кольцевой палец крейцкопфа), выполненный с возможностью приема потока смазочного средства, такого как масло, от соединительной тяги, и направления смазочного средства к внешним или наружным поверхностям крейцкопфа. Например, в одном варианте выполнения смазка может протекать от соединительной тяги к крейцкопфу и входить в кольцевое отверстие в пальце крейцкопфа через впускные отверстия. После этого смазка может проходить через выпускные отверстия пальца крейцкопфа и входить в отверстия для смазки крейцкопфа. Таким образом, смазка может уменьшать трение, истирание и/или износ между крейцкопфом и пальцем крейцкопфа. Кроме того, смазка дополнительно проходит через отверстия для смазки крейцкопфа, которые проходят от пальца крейцкопфа (например, на внутренней части крейцкопфа) к наружной стороне крейцкопфа. Более конкретно, отверстия для смазки крейцкопфа проходят до углублений, образованных на наружной или наружных поверхностях крейцкопфа. Как подробно обсуждается ниже, наружные поверхности крейцкопфа перемещаются вдоль направляющих крейцкопфов механического узла (например, компрессора). Следовательно, когда смазка выходит из отверстий для смазки и протекает в углубления, образованные на наружной поверхности крейцкопфа, смазка может уменьшить трение, истирание и/или износ между крейцкопфом и башмаками крейцкопфа и/или направляющими крейцкопфа, когда крейцкопф перемещается в механическом узле.

[0022] Обратимся теперь к чертежам, на которых Фиг. 1 показывает вид в аксонометрии иллюстративного компрессора 10. В показанном варианте выполнения компрессор 10 содержит пару цилиндров 12 сжатия, соединенных с корпусом 14. В цилиндрах 12 и в корпусе 14 могут быть расположены различные внутренние элементы, чтобы обеспечить возможность сжатия текучих сред, вводимых в компрессор 10. Например, как описано более подробно ниже, цилиндры 12 могут содержать крейцкопф, выполненный из композиционного материала. В одном варианте выполнения компрессор 10 может быть использован для сжатия природного газа. Тем не менее в других вариантах выполнения компрессор 10 может быть выполнен с возможностью и/или использован для сжатия других текучих сред.

[0023] Источник механической энергии или приводное устройство 16, такое как двигатель или электрический двигатель, соединен с компрессором 10, чтобы обеспечить механическую энергию для различных внутренних элементов и обеспечить возможность сжатия текучей среды в цилиндрах 12. Для облегчения доступа к таким внутренним элементам, что может быть желательно для диагностических целей или для технического обслуживания, могут быть предусмотрены отверстия в корпусе 14, которые могут быть сделаны избирательно доступными через съемные заглушки 18. Кроме того, цилиндры 12 также содержат клапанные узлы 20 для регулирования потока текучей среды через цилиндры 12.

[0024] Несмотря на то, что изображенный иллюстративный компрессор 10 представляет собой двухтактный поршневой компрессор, другие компрессоры 10 могут иметь альтернативные конфигурации. Например, в других вариантах выполнения компрессор 10 может содержать различное число тактов цилиндра, как, например, четырехтактный компрессор, шеститактный компрессор, неспаренный поршневой компрессор, винтовой компрессор, или тому подобное. Кроме того, другие изменения в компрессоре 10 могут включать, среди много другого, изменения в длине хода, скорости работы и размере.

[0025] Фиг. 2 представляет собой вид в поперечном разрезе компрессора 10, который иллюстрирует ряд иллюстративных внутренних элементов компрессора, показанного на Фиг. 1. В показанном варианте выполнения корпус 14 компрессора 10 содержит полый центральный корпус или кожух 22, который, как правило, ограничивает внутренний объем 24, в котором могут быть расположены различные внутренние элементы, такие как коленчатый вал 26. В одном варианте выполнения центральный корпус 22 может иметь в целом криволинейную или цилиндрическую форму. Следует отметить, однако, что центральный корпус 22 может иметь другую форму или конфигурацию.

[0026] В процессе работы приводное устройство 16 вращает коленчатый вал 26, поддерживаемый во внутреннем объеме 24 корпуса 14. В одном варианте выполнения коленчатый вал 26 соединен с крейцкопфами 30 с помощью соединительных тяг 28 и пальцев 32 крейцкопфа. Крейцкопфы 30 дополнительно соединяют соединительные тяги 28 со штоками 90 поршня. Крейцкопфы 30 расположены внутри направляющих 34, которые, как правило, выступают из центрального корпуса 22 и облегчают присоединение цилиндров 12 к компрессору 10. В одном варианте выполнения компрессор 10 содержит две направляющие 34 крейцкопфа, которые проходят в целом перпендикулярно от противоположных сторон центрального корпуса или кожуха 22, хотя также предусмотрены и другие конфигурации. Как будет понятно, вращательное движение коленчатого вала 26 преобразуется с помощью соединительных тяг 28 в возвратно-поступательное прямолинейное движение крейцкопфов 30 в направляющих 34.

[0027] Как описано более подробно ниже, крейцкопфы 30 могут иметь облегченную конструкцию. Более конкретно, некоторые элементы крейцкопфов 30 могут быть выполнены из облегченного композиционного материала. Как будет понятно, облегченная конструкция крейцкопфов 30 может позволить оператору увеличить скорость компрессора 10, увеличивая, тем самым, его пропускную способность. Кроме того, увеличенная пропускная способность компрессора 10 с крейцкопфами 30, выполненными из композиционного материала, может быть реализована без увеличения размера цилиндров 12 компрессора 10. Как описано ниже, пальцы 32 крейцкопфов 30 могут быть также выполнены из облегченного композиционного материала.

[0028] Кроме того, некоторые варианты выполнения крейцкопфов 30 и пальцев 32 могут содержать систему 220 смазки крейцкопфа. Например, крейцкопфы 30 и пальцы 32 могут иметь функции, которые позволяют крейцкопфам 30 и пальцам 32 функционировать в качестве системы 220 смазки. Более конкретно, система 220 смазки выполнена с возможностью направления масла или другой смазки к опорным поверхностям между крейцкопфами 30, тягами 28 и направляющими 34, башмаками крейцкопфа и тому подобное. Таким образом, трение, истирание и износ в компрессоре 10 могут быть снижены.

[0029] Как отмечалось выше, цилиндры 12 выполнены с возможностью приема текучей среды для сжатия. Крейцкопфы 32 соединены с поршнями 36, расположенными в цилиндре 12, при этом возвратно-поступательное движение крейцкопфов обеспечивает сжатие текучей среды в цилиндрах 12 с помощью поршней 36. В частности, когда поршень 36 движется вперед (то есть в наружном направлении от центрального корпуса 22) в цилиндр 12, поршень 36 принудительно перемещает текучую среду внутри цилиндра, сжимая ее до меньшего объема, увеличивая, тем самым, давление текучей среды. Выпускной клапан клапанного узла 20 может быть затем открыт, чтобы обеспечить возможность выхода из цилиндра 12 сжатой или находящейся под давлением текучей среды. Поршень 36 может затем перемещаться назад, при этом дополнительная текучая среда может попасть в цилиндр 12 через впускной клапан клапанного узла 20 для сжатия таким же образом, как и описано выше.

[0030] Фиг. 3 представляет собой вид сбоку в разрезе иллюстративного поршня 36, который также может быть выполнен из облегченного композиционного материала или другого облегченного материала. В показанном варианте выполнения поршень 36 имеет по существу цилиндрическую форму с диаметром 38 и высотой 40 (например, осевой длиной). Кроме того, поршень 36 имеет конструкцию, выполненную из одной цельной части. Другими словами, поршень 36 образован из одного композиционного корпуса 42, выполненного из облегченного композиционного материала или другого облегченного материала. Как упоминалось выше, композиционный материал может содержать материал матрицы и упрочняющий материал. Например, облегченный композиционный материал может представлять собой углеродный композиционный, стекловолоконный композиционный или другой облегченный композиционный материал. Кроме того, могут быть использованы и другие облегченные материалы, например пластмасса, керамика, полиимид, полиэфирэфиркетон (PEEK), эластомер, такой как SA4, или другие облегченные материалы. Композиционная и/или облегченная конструкция поршня 36 может предотвращать распространение коррозии из-за агрессивных газов, с которыми может контактировать поршень 36. Для некоторых применений облегченный композиционный материал или другой облегченный материал может быть выполнен с возможностью выдерживать минимальное радиальное давление приблизительно от 100 до 500, от 150 до 450, от 200 до 400 или от 300 до 350 МПа. Кроме того, поршень 36 может быть выполнен с возможностью минимального диаметрального расширения при максимальной рабочей температуре. Другими словами, поршень 36 может быть выполнен из облегченного композиционного материала или другого облегченного материала, который может ограничивать увеличение диаметра 38 поршня при заданной температуре. Например, облегченный композиционный материал или другой облегченный материал может быть выбран таким образом, что поршень 36 имеет диаметральное расширение, меньшее чем приблизительно от 0,001 до 0,003, от 0,0015 до 0,0025 или от 0,0018 до 0,0022 мм, при температуре приблизительно от 150 до 200, от 160 до 190 или от 170 до 180 градусов С.

[0031] Кроме того, для формирования единого цельного композиционного корпуса 42 поршня 36 могут использоваться различные процессы. В некоторых вариантах выполнения единый цельный композиционный корпус 42 может быть сжат, отформован или подвергнут механической обработке. Как показано, единый цельный композиционный корпус 42 поршня 36 имеет отверстие 44. Как и единый цельный композиционный корпус 42, отверстие 44 может быть выполнено с использованием различных процессов. Например, в вариантах выполнения, в которых единый цельный композиционный корпус 42 отформован, форма, используемая для формирования единого корпуса 42, может быть выполнена с возможностью формования отверстия 44 в процессе формовки. В качестве альтернативы, в вариантах выполнения, в которых единый цельный композиционный корпус 42 получен механической обработкой, отверстие 44 может быть выполнено в процессе механической обработки, такой как сверление. Отверстие 44 предназначено для вставления соединительной тяги поршня для присоединения поршня 36 к коленчатому валу.

[0032] Поршень 36 также содержит держатель 46 поршневого кольца, выполненный с возможностью размещения одного или нескольких поршневых колец. Как будет понятно, поршневые кольца, расположенные в держателе 46, служат для создания газонепроницаемого соединения, когда поршень 36 расположен внутри поршневого цилиндра. Держатель 46 может быть выполнен из металла, такого как сталь. В показанном варианте выполнения держатель 46 имеет две кольцевые канавки 48, причем каждая канавка 48 выполнена с возможностью вмещения одного поршневого кольца. В других вариантах выполнения держатель 46 может иметь 1, 3, 4, 5 или большее количество канавок 48. Единый цельный композиционный корпус 42 и держатель 48 выполнены как одно целое. Например, для поршня 36, образованного путем процесса формовки, держатель 48 может быть помещен в форму, используемую для формования поршня 36. Затем облегченный композиционный материал или другой облегченный материал заливают в форму, при этом облегченный композиционный материал или другой облегченный материал формуется вместе с держателем 48, чтобы создать единый цельный отформованный поршень 36.

[0033] Фиг. 4 представляет собой вид в частичном поперечном разрезе, выполненном по линии 4-4, показанной на Фиг. 3, иллюстрирующий вариант выполнения композиционного материала 50, имеющего упрочняющий материал 52, распределенный в материале 54 матрицы. Как показано, материал 54 матрицы является материалом основы, который удерживает упрочняющий материал 52. Другими словами, материал 54 матрицы окружает и поддерживает упрочняющий материал 52. Например, материал матрицы может представлять собой пластмассу, полимер, полиэфир, эпоксидную смолу, полиимид, полиэфирэфиркетон (РЕЕК), полипропилен или другой материал матрицы. Упрочняющий материал 52 распределен по материалу 54 матрицы и может служить для усиления физических и/или механических свойств композиционного материала 50. Например, упрочняющий материал может представлять собой волокна или другие частицы, такие как углерод, стекло, керамика, или другой упрочняющий материал. Как будет понятно, соотношение материала 54 матрицы и упрочняющего материала 52 может варьироваться для различных композиционных материалов 50. Например, соотношение материалов 54 и 52 может быть приблизительно от 10:1 до 1:10, от 5:1 до 1:5, от 3:1 до 1:3, от 2:1 до 1:2 или 1:1.

[0034] Фиг. 5 представляет собой разобранный вид сбоку узла 70 облегченного композиционного поршня, иллюстрирующий поршень 36, имеющий конструкцию из нескольких частей. В частности, в показанном варианте выполнения поршень 36 содержит две корпусные части, первую часть 72 и вторую часть 74, каждая из которых выполнена из облегченного композиционного материала или другого облегченного материала. Как упоминалось выше, облегченный композиционный материал или другой облегченный материал может представлять собой углеродный композиционный материал, пластмассу, керамику, композиционное стекловолокно, полиимид, полиэфирэфиркетон (PEEK), эластомер, такой как SA4, или другой облегченный композиционный материал. Как и в случае одного композиционного корпуса 42, указанные первая и вторая части 72 и 74 корпуса могут быть изготовлены с использованием различных технологических процессов. Например, первая и вторая части 72 и 74 могут быть выполнены с помощью процесса формования или механической обработки. Кроме того, в показанном варианте выполнения первая и вторая части 72 и 74 по существу идентичны. В результате, производство поршня 36 может быть упрощено и оптимизировано. Например, в вариантах выполнения, в которых первая и вторая части 72 и 74 выполнены с использованием процесса формования, одна единственная пресс-форма может быть использована для формирования как первой части 72, так и второй части 74. В других вариантах выполнения поршня 36, имеющего конструкцию из нескольких частей, первая и вторая части 72 и 74 могут и не быть идентичными. Другими словами, первая и вторая части 72 могут иметь однозначно выполненные различные конструкции.

[0035] Как показано, каждая из первой и второй частей 72 и 74 имеет основание 76, наружный выступ 78 и внутреннюю втулку 80. Наружный выступ 78 и внутренняя втулка 80 проходят в осевом направлении от основания 76 в сторону центральной радиальной оси 82 поршня 36. В некоторых вариантах выполнения как наружный выступ 78, так и внутренняя втулка 80 могут иметь кольцевую конфигурацию. Между наружным выступом 78 и внутренней втулкой 80 находится кольцевая полость 84. Как должно быть понятно, кольцевая полость 84 как первой части 72, так и второй части 74 обеспечивает более облегченную конструкцию поршня 36. В вариантах выполнения, в которых первая и вторая части 72 и 74 формируются с использованием процесса формования, форма, используемая для формования первой и второй частей 72 и 74, может быть выполнена с возможностью формирования кольцевой полости 84. В качестве альтернативы, кольцевая полость 84 может быть образована в таком процессе, как фрезерование или токарная обработка. Как первая часть 72, так и вторая часть 74 дополнительно имеет ребра 86, проходящие между основанием 76 и внутренней втулкой 80. Ребра 86 обеспечивают дополнительную конструктивную поддержку для первой и второй частей 72 и 74 и поршня 36 в целом. Как и в случае кольцевой полости 84, ребра 86 могут быть сформированы с помощью формовки или с помощью процесса обработки. Как первая часть 72, так и вторая часть 74 может иметь от 1 до 10, от 2 до 8 или от 3 до 4 ребер 86.

[0036] Внутренняя втулка 80 как первой части 72, так и второй части 74 имеет отверстие 88, выполненное с возможностью приема штока 90 поршня. В частности, отверстие 88 проходит через внутреннюю втулку 80 и основание 76 как первой части 72, так и второй части 74. Кроме того, отверстие 88 имеет углубление 92, выполненное в основании 76 как первой части 72, так и второй части 74. Отверстия 88 и углубления 92 могут быть образованы в соответствующих первой и второй частях 72 и 74 с использованием процесса обработки, такого как сверление, или с использованием процесса формования. Как показано ниже, углубление 92, образованное в первой части 72, выполнено с обеспечением вставления гайки 94 штока поршня. Более конкретно, когда поршень 70 собирают, гайку 94 штока размещают в углублении 92 первой части 72 и соединяют со штоком 90 поршня, тем самым, частично прикрепляя шток 90 к поршню 36. Аналогичным образом, углубление 92 второй части 74 выполняют с возможностью размещения шайбы 96 штока. Когда узел 70 штока поршня собран, шайба 96 штока поршня расположена вокруг штока 90 поршня и расположена в углублении 92 второй части 74, ограничивая, тем самым, радиальное перемещение штока 90 поршня относительно поршня 36.

[0037] В изображенном варианте выполнения держатель 46 поршневого кольца расположен между первой и второй частями 72 и 74. Как описано ниже, когда поршневой узел 70 собран, держатель 46 примыкает к наружным выступам 78 первой и второй частей 72 и 74 и расположен между ними. Кроме того, когда поршневой узел 70 собран, внутренние втулки 80 первой и второй частей 72 и 74 примыкают друг к другу. В частности, отверстия 88 и углубления 92 соответствующих первой и второй частей 72 и 74 функционально соединены для приема штока 90 поршня вдоль центральной оси 98 поршня 36.

[0038] Фиг. 6 представляет собой вид сбоку в разрезе поршневого узла 70, показанного на Фиг. 4, иллюстрирующий собранный поршневой узел 70. Изображенный вариант выполнения содержит аналогичные элементы и номера позиций, что и вариант выполнения, показанный на Фиг. 5. Как упоминалось выше, когда поршневой узел 70 собран, держатель 46 поршневого кольца аксиально зажат между первой и второй частями 72 и 74. В частности, держатель 46 примыкает к наружным выступам 78 как первой части 72, так и второй части 74 и аксиально зажат между ними. В показанном варианте выполнения поршневые кольца 120 расположены в канавках 48. Как обсуждалось выше, поршневые кольца 120 служат для создания воздухонепроницаемого уплотнения между поршнем 36 и поршневым цилиндром, в котором работает поршень 36. Держатель 46 и первая и вторая части 72 и 74 соединены друг с другом с образованием поршня 36. Как упоминалось выше, внутренние втулки 80 как первой части 72, так и второй части 74 примыкают друг к другу. Кроме того, кольцевые полости 84 как первой части 72, так и второй части 74 соединены с образованием полых частей 122 поршня 36. Как должно быть понятно, полые части 122 поршня 36 обеспечивают облегченную конфигурацию поршня 36, которая позволяет ему работать при более высоких скоростях, чем это делают поршни, выполненные с использованием традиционной конструкции. В результате поршневой цилиндр, содержащий поршень 36, может реализовать большую пропускную способность без увеличения размера поршневого цилиндра. Кроме того, облегченная конструкция поршня 36 уменьшает инерционную нагрузку на поршень, что приводит к увеличению его срока службы.

[0039] Как показано, шток 90 поршня соединен с поршневым узлом 70. Диаметр 124 штока 90 может иметь значение приблизительно от 10 до 500, от 20 до 400, от 30 до 300, от 40 до 200 или от 50 до 100 мм. Первый конец 126 штока 90 соединен с поршневым узлом 70. В частности, первый конец 126 вставлен в отверстия 88 первой и второй частей 72 и 74 поршня 36. Как уже упоминалось выше, гайка 94 штока поршня расположена в углублении 92 первой части 72 и соединена с частью 128 первого конца 126 штока 70 поршня. Например, как часть 128 штока 90 поршня, так и гайка 94 штока поршня могут иметь резьбу и быть выполнены с возможностью зацепления друг с другом. В частности, когда гайка 94 штока поршня расположена внутри углубления 92 первой части 72, гайка 94 штока поршня удерживается неподвижно. Другими словами, гайка 94 штока поршня может иметь, например многоугольную конфигурацию, при этом гайка 94 штока поршня не может вращаться вокруг центральной оси 98 поршня 36, когда гайка 94 расположена в углублении 92 первой части 72. Далее, первый конец 128 штока 90 поршня может быть помещен через отверстие 88 первой и второй частей 72 и 74, а шток 90 может быть повернут вокруг центральной оси 98. Таким образом, резьбы части 128 штока 90 поршня и резьбы гайки 94 штока поршня могут взаимодействовать, соединяя, тем самым, шток 90 и гайку 94.

[0040] Аналогично, шайба 96 штока поршня расположена вокруг части 130 первого конца 126 штока 70 поршня и в углублении 92 второй части 74 корпуса поршня 36. Поскольку часть 128 штока 90 соединена с гайкой 94, например, путем поворота штока 90 относительно центральной оси 98, шток 90 поступательно перемещается в направлении 132. В результате фланец 134 части 130 штока 90 примыкает в осевом направлении к шайбе 96 штока поршня, которая расположена в углублении 92 второй части 74. Таким образом, шток 90 соединяет гайку 94 штока поршня, поршневое кольцо 46, первую и вторую части 72 и 74 и шайбу 96 штока поршня с формированием поршня 36.

[0041] Фиг. 7 представляет собой схематическое изображение иллюстративной системы 150 поршневого цилиндра, содержащей облегченный композиционный поршень 36. Как описано выше, облегченный композиционный поршень 36 может использоваться в различных областях применения, таких как компрессоры, насосы и двигатели. Например, система 150 поршневого цилиндра, изображенная на Фиг. 7, может использоваться в двигателе внутреннего сгорания. Изображенный вариант выполнения системы 150 поршневого цилиндра содержит систему 152 впрыска топлива, соединенную с камерой 154 сгорания. Система 152 впрыска топлива содержит контроллер 156, соединенный с воспламенителем 158 топлива, входное отверстие для топлива, или источник 160, и входное отверстие для воздуха, или источник 162. Контроллер выполнен с возможностью управления количеством и временем впрыска топлива и воспламенения топлива через входное отверстие 160 для топлива и воспламенитель 158 топлива, в сочетании с количеством и временем подачи воздуха в камеру 154 сгорания.

[0042] Как показано, камера 154 сгорания содержит поршень 36, расположенный в цилиндре 164. Поршень 36 может представлять собой вариант выполнения облегченного композиционного поршня 36, описанного выше. Например, поршень 36 может содержать один цельный композиционный корпус 42, выполненный из облегченного композиционного материала или другого облегченного материала. В качестве альтернативы, поршень 36 может быть выполнен из первой и второй частей 72 и 74, сформированных из облегченного композиционного материала или другого облегченного материала. Другие варианты выполнения поршня 36 могут содержать три или большее количество частей корпуса, выполненных из облегченного композиционного материала или другого облегченного материала. Когда поршень 36 движется вверх в цилиндре 164, поршень 36 сжимает объем 166 сгорания, имеющий воздух и в конечном счете топливо из входных отверстий 162 и 160. Например, входное отверстие 160 для топлива может впрыскивать топливо один или большее количество раз в течение хода поршня 36 вверх, когда поршень подходит к верхней мертвой точке. В этот момент топливно-воздушная смесь находится при повышенном давлении и повышенной температуре из-за сжатия поршнем 22. В соответствующее время воспламенитель топлива воспламеняет топливно-воздушную смесь для создания горячих газов сгорания под давлением, которые перемещают поршень 36 от верхней мертвой точки.

[0043] Фиг. 8 представляет собой вид сбоку в поперечном разрезе одного из вариантов выполнения крейцкопфа 30, который может быть выполнен из облегченного композиционного материала или другого облегченного материала. Как упоминалось выше, крейцкопф 30 выполнен с возможностью соединения соединительной тяги 28 со штоком 33 поршня, передавая тем самым энергию от поршня 36 и штока 33 к соединительной тяге 28 и коленчатому валу 28. В показанном варианте выполнения крейцкопф 30 имеет корпус 178 с цельной конфигурацией.

[0044] В показанном варианте крейцкопф 30 имеет первое отверстие 180, выполненное с возможностью приема штока 90 поршня. Например, шток 90 поршня может быть соединен с крейцкопфом 30 в первом отверстии 180 с помощью болтов, гаек, штифтов или других средств зажима. Кроме того, крейцкопф 30 имеет второе отверстие 182, которое может быть использовано для соединения крейцкопфа 30 с соединительной тягой 28. В частности, второе отверстие 182 крейцкопфа 30 может быть совмещено с отверстием или окном в соединительной тяге 28, а палец 32 может быть расположен в отверстии 182 крейцкопфа 30 и в отверстии соединительной тяги 28, соединяя, тем самым, крейцкопф 30 с соединительной тягой 28. Таким образом, крейцкопф 30 и соединительная тяга 28 могут поворачиваться относительно друг друга, передавая, при этом, энергию от штока 90 поршня к соединительной тяге 28.

[0045] Как упоминалось выше, крейцкопф 30 может быть выполнен из облегченного композиционного материала или другого облегченного материала. Например, как упоминалось выше, крейцкопф 30 имеет цельную конфигурацию и, следовательно, может быть выполнен из одного облегченного композиционного материала или другого облегченного материала. В других вариантах выполнения крейцкопф 30 может иметь конструкцию с несколькими частями и может быть выполнен с использованием нескольких облегченных и/или облегченных композиционных материалов. Крейцкопф 30 может быть выполнен из облегченных материалов, таких как керамика, упрочненный материал матрицы, углеродные волокнистые материалы, полиимид, полиэфирэфиркетон (PEEK), эластомер или другие композиционные материалы. Кроме того, облегченный крейцкопф 30 может быть выполнен, используя процесс формования, процесс штамповки или другой механической обработки. Как должно быть понятно, облегченная конструкция крейцкопфа 3